Bacon, F. T. (1979). Credibility of repeated statements: Memory for trivia. Journal of Experimental Psychology: Human Learning and Memory, 5(3), 241–252. https://doi.org/10.1037/0278-7393.5.3.241
Article
Google Scholar
Batchelder, W. H., & Riefer, D. M. (1990). Multinomial processing models of source monitoring. Psychological Review, 97(4), 548–564. https://doi.org/10.3758/BF03210812
Article
Google Scholar
Bayen, U. J., & Kuhlmann, B. G. (2011). Influences of source-item contingency and schematic knowledge on source monitoring: Tests of the probability-matching account. Journal of Memory and Language, 64(1), 1–17. https://doi.org/10.1016/j.jml.2010.09.001
Article
PubMed
PubMed Central
Google Scholar
Bayen, U. J., Murnane, K., & Erdfelder, E. (1996). Source discrimination, item detection, and multinomial models of source monitoring. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(1), 197–215. https://doi.org/10.1037/0278-7393.22.1.197
Article
Google Scholar
Bayen, U. J., Nakamura, G. V., Dupuis, S. E., & Yang, C. L. (2000). The use of schematic knowledge about sources in source monitoring. Memory & Cognition, 28(3), 480–500. https://doi.org/10.3758/BF03198562
Article
Google Scholar
Begg, I. M., Anas, A., & Farinacci, S. (1992). Dissociation of processes in belief: Source recollection, statement familiarity, and the illusion of truth. Journal of Experimental Psychology: General, 121(4), 446–458. https://doi.org/10.1037/0096-3445.121.4.446
Article
Google Scholar
Bell, R., Buchner, A., & Musch, J. (2010). Enhanced old-new recognition and source memory for faces of cooperators and defectors in a social-dilemma game. Cognition, 117(3), 261–275. https://doi.org/10.1016/j.cognition.2010.08.020
Article
PubMed
Google Scholar
Bell, R., Mieth, L., & Buchner, A. (2020). Source attributions for detected new items: Persistent evidence for schematic guessing. Quarterly Journal of Experimental Psychology, 73(9), 1407–1422. https://doi.org/10.1177/1747021820911004
Article
Google Scholar
Bell, R., Mieth, L., & Buchner, A. (2021). Source memory for advertisements: The role of advertising message credibility. Memory & Cognition, 49(1), 32–45. https://doi.org/10.3758/s13421-020-01075-9
Article
Google Scholar
Britt, S. H., & Adams, S. C. (2007). How many advertisements is a person exposed to in a day? American Association of Advertising Agencies. https://ams.aaaa.org//eweb/upload/FAQs/adexposures.pdf.
Bröder, A., & Meiser, T. (2007). Measuring source memory. Zeitschrift Fur Psychologie/journal of Psychology, 215(1), 52–60. https://doi.org/10.1027/0044-3409.215.1.52
Article
Google Scholar
Buchner, A., Bell, R., Mehl, B., & Musch, J. (2009). No enhanced recognition memory, but better source memory for faces of cheaters. Evolution and Human Behavior, 30(3), 212–224. https://doi.org/10.1016/j.evolhumbehav.2009.01.004
Article
Google Scholar
Calfee, J. E., & Ringold, D. J. (1994). The 70 % majority: Enduring consumer beliefs about advertising. Journal of Public Policy & Marketing, 13(2), 228–238. https://doi.org/10.1177/074391569401300204
Article
Google Scholar
Cho, C.-H., & Cheon, H. J. (2004). Why do people avoid advertising on the Internet? Journal of Advertising, 33(4), 89–97. https://doi.org/10.1080/00913367.2004.10639175
Article
Google Scholar
Echterhoff, G., Hirst, W., & Hussy, W. (2005). How eyewitnesses resist misinformation: Social postwarnings and the monitoring of memory characteristics. Memory & Cognition, 33(5), 770–782. https://doi.org/10.3758/BF03193073
Article
Google Scholar
Epstein, Z., Berinsky, A. J., Cole, R., Gully, A., Pennycook, G., & Rand, D. G. (2021). Developing an accuracy-prompt toolkit to reduce COVID-19 misinformation online. Harvard Kennedy School Misinformation Review. https://doi.org/10.37016/mr-2020-71
Article
Google Scholar
Erdfelder, E., Auer, T.-S., Hilbig, B. E., Aßfalg, A., Moshagen, M., & Nadarevic, L. (2009). Multinomial processing tree models. A review of the literature. Zeitschrift Fur Psychologie/journal of Psychology, 217(3), 108–124. https://doi.org/10.1027/0044-3409.217.3.108
Article
Google Scholar
Evans, N. J., & Park, D. (2015). Rethinking the Persuasion Knowledge Model: Schematic antecedents and associative outcomes of persuasion knowledge activation for covert advertising. Journal of Current Issues & Research in Advertising, 36(2), 157–176. https://doi.org/10.1080/10641734.2015.1023873
Article
Google Scholar
Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/BF03193146
Article
PubMed
Google Scholar
Friestad, M., & Wright, P. (1994). The Persuasion Knowledge Model: How people cope with persuasion attempts. Journal of Consumer Research, 21(1), 1–31. https://doi.org/10.1086/209380
Article
Google Scholar
Frost, P., Ingraham, M., & Wilson, B. (2002). Why misinformation is more likely to be recognised over time: A source monitoring account. Memory, 10(3), 179–185. https://doi.org/10.1080/09658210143000317
Article
PubMed
Google Scholar
Green, M. C., & Brock, T. C. (2000). The role of transportation in the persuasiveness of public narratives. Journal of Personality and Social Psychology, 79(5), 701–721. https://doi.org/10.1037//0022-3514.79.5.701
Article
PubMed
Google Scholar
Henkel, L. A., & Mattson, M. E. (2011). Reading is believing: The truth effect and source credibility. Consciousness and Cognition, 20(4), 1705–1721. https://doi.org/10.1016/j.concog.2011.08.018
Article
PubMed
Google Scholar
Herzog, S., & Hertwig, R. (2013). The ecological validity of fluency. In C. Unkelbach & R. Greifeneder (Eds.), How the fluency of mental processes influences cognition and behavior (pp. 190–219). Psychology Press. https://doi.org/10.4324/9780203078938
Chapter
Google Scholar
Hovland, C. I., Janis, I. L., & Kelley, H. H. (1953). Communication and persuasion: Psychological studies of opinion change. Yale University Press.
Google Scholar
Hovland, C. I., & Weiss, W. (1951). The influence of source credibility on communication effectiveness. Public Opinion Quarterly, 15(4), 635–650. https://doi.org/10.1086/266350
Article
Google Scholar
Johnson, M. K. (1997). Source monitoring and memory distortion. Philosophical Transactions of the Royal Society of London B, 352(1362), 1733–1745. https://doi.org/10.1098/rstb.1997.0156
Article
Google Scholar
Johnson, M. K., Hashtroudi, S., & Lindsay, D. (1993). Source monitoring. Psychological Bulletin, 114(1), 3–28. https://doi.org/10.1037/0033-2909.114.1.3
Article
PubMed
Google Scholar
Keefe, R. S. E., Arnold, M. C., Bayen, U. J., McEvoy, J. P., & Wilson, W. H. (2002). Source-monitoring deficits for self-generated stimuli in schizophrenia: Multinomial modeling of data from three sources. Schizophrenia Research, 57(1), 51–68. https://doi.org/10.1016/S0920-9964%2801%2900306-1
Article
PubMed
Google Scholar
Keuleers, E., & Brysbaert, M. (2010). Wuggy: A multilingual pseudoword generator. Behavior Research Methods, 42(3), 627–633. https://doi.org/10.3758/BRM.42.3.627
Article
PubMed
Google Scholar
Komar, G. F., Mieth, L., Buchner, A., & Bell, R. Animacy enhances recollection but not familiarity: Convergent evidence from the remember-know-guess paradigm and the process-dissociation procedure. Memory & Cognition. https://doi.org/10.3758/s13421-022-01339-6(in press).
Kroneisen, M., Woehe, L., & Rausch, L. S. (2015). Expectancy effects in source memory: How moving to a bad neighborhood can change your memory. Psychonomic Bulletin & Review, 22(1), 179–189. https://doi.org/10.3758/s13423-014-0655-9
Article
Google Scholar
Kuhlmann, B. G., Symeonidou, N., Tanyas, H., & Wulff, L. (2021). Remembering and reconstructing episodic context: An overview of source monitoring methods and behavioral findings. In K. D. Federmeier & L. Sahakyan (Eds.), Psychology of learning and motivation (Vol. 75, pp. 79–124). Elsevier. https://doi.org/10.1016/bs.plm.2021.06.002
Chapter
Google Scholar
Kuhlmann, B. G., Vaterrodt, B., & Bayen, U. J. (2012). Schema bias in source monitoring varies with encoding conditions: Support for a probability-matching account. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(5), 1365–1376. https://doi.org/10.1037/a0028147
Article
PubMed
Google Scholar
Law, S. (1995). Belief in imitator claims: The role of source memory. Advances in Consumer Research, 22(1), 165–170.
Google Scholar
Law, S. (1998). Do we believe what we remember or do we remember what we believe? Advances in Consumer Research, 25(1), 221–225.
Google Scholar
Law, S. (2002). Can repeating a brand claim lead to memory confusion? The effects of claim similarity and concurrent repetition. Journal of Marketing Research, 39(3), 366–378. https://doi.org/10.1509/jmkr.39.3.366.19104
Article
Google Scholar
Leiner, D. J. (2019). SoSci Survey. SoSci Survey GmbH www.soscisurvey.de.
Lindsay, D. S., & Johnson, M. K. (1989). The eyewitness suggestibility effect and memory for source. Memory & Cognition, 17(3), 349–358. https://doi.org/10.3758/BF03198473
Article
Google Scholar
Marsh, R. L., Cook, G. I., & Hicks, J. L. (2006). Gender and orientation stereotypes bias source-monitoring attributions. Memory, 14(2), 148–160. https://doi.org/10.1080/09658210544000015
Article
PubMed
Google Scholar
Meiser, T., & Bröder, A. (2002). Memory for multidimensional source information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(1), 116–137. https://doi.org/10.1037/0278-7393.28.1.116
Article
PubMed
Google Scholar
Mitchell, J. P., Dodson, C. S., & Schacter, D. L. (2005). fMRI evidence for the role of recollection in suppressing misattribution errors: The illusory truth effect. Journal of Cognitive Neuroscience, 17(5), 800–810. https://doi.org/10.1162/0898929053747595
Article
PubMed
Google Scholar
Mitchell, J. P., Sullivan, A. L., Schacter, D. L., & Budson, A. E. (2006). Misattribution errors in alzheimer’s disease: The illusory truth effect. Neuropsychology, 20(2), 185–192. https://doi.org/10.1037/0894-4105.20.2.185
Article
PubMed
Google Scholar
Mitchell, K. J., & Johnson, M. K. (2009). Source monitoring 15 years later: What have we learned from fMRI about the neural mechanisms of source memory? Psychological Bulletin, 135(4), 638–677. https://doi.org/10.1037/a0015849
Article
PubMed
PubMed Central
Google Scholar
Moshagen, M. (2010). multiTree: A computer program for the analysis of multinomial processing tree models. Behavior Research Methods, 42(1), 42–54. https://doi.org/10.3758/BRM.42.1.42
Article
PubMed
Google Scholar
Nadarevic, L., & Erdfelder, E. (2013). Spinoza’s error: Memory for truth and falsity. Memory & Cognition, 41(2), 176–186. https://doi.org/10.3758/s13421-012-0251-z
Article
Google Scholar
Nadarevic, L., & Erdfelder, E. (2019). More evidence against the Spinozan model: Cognitive load diminishes memory for “true” feedback. Memory & Cognition, 47(7), 1386–1400. https://doi.org/10.3758/s13421-019-00940-6
Article
Google Scholar
Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. Science, 349(6251), aac4716. https://doi.org/10.1126/science.aac4716
Article
Google Scholar
Pena, M. M., Klemfuss, J. Z., Loftus, E. F., & Mindthoff, A. (2017). The effects of exposure to differing amounts of misinformation and source credibility perception on source monitoring and memory accuracy. Psychology of Consciousness: Theory, Research, and Practice, 4(4), 337–347. https://doi.org/10.1037/cns0000137
Article
Google Scholar
Pennycook, G., Epstein, Z., Mosleh, M., Arechar, A. A., Eckles, D., & Rand, D. G. (2021). Shifting attention to accuracy can reduce misinformation online. Nature, 592(7855), 590–595. https://doi.org/10.1038/s41586-021-03344-2
Article
PubMed
Google Scholar
Pennycook, G., McPhetres, J., Zhang, Y., Lu, J. G., & Rand, D. G. (2020). Fighting COVID-19 misinformation on social media: Experimental evidence for a scalable accuracy-nudge intervention. Psychological Science, 31(7), 770–780. https://doi.org/10.1177/0956797620939054
Article
PubMed
Google Scholar
Pornpitakpan, C. (2004). The persuasiveness of source credibility: A critical review of five decades’ evidence. Journal of Applied Social Psychology, 34(2), 243–281. https://doi.org/10.1111/j.1559-1816.2004.tb02547.x
Article
Google Scholar
Rapp, D. N., Hinze, S. R., Kohlhepp, K., & Ryskin, R. A. (2014). Reducing reliance on inaccurate information. Memory & Cognition, 42(1), 11–26. https://doi.org/10.3758/s13421-013-0339-0
Article
Google Scholar
Roggeveen, A. L., & Johar, G. V. (2002). Perceived source variability versus familiarity: Testing competing explanations for the truth effect. Journal of Consumer Psychology, 12(2), 81–91. https://doi.org/10.1207/S15327663JCP1202_02
Article
Google Scholar
Schaper, M. L., Kuhlmann, B. G., & Bayen, U. J. (2019a). Metamemory expectancy illusion and schema-consistent guessing in source monitoring. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(3), 470–496. https://doi.org/10.1037/xlm0000602
Article
PubMed
Google Scholar
Schaper, M. L., Mieth, L., & Bell, R. (2019b). Adaptive memory: Source memory is positively associated with adaptive social decision making. Cognition, 186, 7–14. https://doi.org/10.1016/j.cognition.2019.01.014
Article
PubMed
Google Scholar
Schütz, J., & Bröder, A. (2011). Signal detection and threshold models of source memory. Experimental Psychology, 58(4), 293–311. https://doi.org/10.1027/1618-3169/a000097
Article
PubMed
Google Scholar
Skurnik, I., Yoon, C., Park, D., & Schwarz, N. (2005). How warnings about false claims become recommendations. Journal of Consumer Research, 31(4), 713–724. https://doi.org/10.1086/426605
Article
Google Scholar
Snodgrass, J. G., & Corwin, J. (1988). Pragmatics of measuring recognition memory: Applications to dementia and amnesia. Journal of Experimental Psychology: General, 117(1), 34–50. https://doi.org/10.1037/0096-3445.117.1.34
Article
Google Scholar
Spaniol, J., & Bayen, U. J. (2002). When is schematic knowledge used in source monitoring? Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(4), 631–651. https://doi.org/10.1037/0278-7393.28.4.631
Article
PubMed
Google Scholar
Twenge, J. M., Martin, G. N., & Spitzberg, B. H. (2019). Trends in U.S. adolescents’ media use, 1976–2016: The rise of digital media, the decline of TV, and the (near) demise of print. Psychology of Popular Media Culture, 8(4), 329–345. https://doi.org/10.1037/ppm0000203
Article
Google Scholar
Unkelbach, C., & Stahl, C. (2009). A multinomial modeling approach to dissociate different components of the truth effect. Consciousness and Cognition, 18(1), 22–38. https://doi.org/10.1016/j.concog.2008.09.006
Article
PubMed
Google Scholar
Van der Schuur, W. A., Baumgartner, S. E., Sumter, S. R., & Valkenburg, P. M. (2015). The consequences of media multitasking for youth: A review. Computers in Human Behavior, 53, 204–215. https://doi.org/10.1016/j.chb.2015.06.035
Article
Google Scholar
Watkins, L., Aitken, R., Gage, R., Smith, M. B., Chambers, T. J., Barr, M., Stanley, J., & Signal, L. N. (2019). Capturing the commercial world of children: The feasibility of wearable cameras to assess marketing exposure. The Journal of Consumer Affairs, 53(4), 1396–1420. https://doi.org/10.1111/joca.12234
Article
Google Scholar
Yeykelis, L., Cummings, J. J., & Reeves, B. (2014). Multitasking on a single device: Arousal and the frequency, anticipation, and prediction of switching between media content on a computer. Journal of Communication, 64(1), 167–192. https://doi.org/10.1111/jcom.12070
Article
Google Scholar