Askay, D., Metcalf, L., Rosenberg, L., & Willcox, G. (2019). Enhancing group social perceptiveness through a swarm-based decision-making platform. Proceedings of the 52nd Hawaii international conference on system sciences.
Barlow, J. B. (2015). Work smarter, not harder: Understanding and leveraging individual and collective intelligence in virtual groups. Indiana University.
Barrick, M. R., Stewart, G. L., Neubert, M. J., & Mount, M. K. (1998). Relating member ability and personality to work-team processes and team effectiveness. Journal of Applied Psychology, 83(3), 377–391.
Article
Google Scholar
Bear, J. B., & Woolley, A. W. (2011). The role of gender in team collaboration and performance. Interdisciplinary Science Reviews, 36(2), 146–153. https://doi.org/10.1179/030801811X13013181961473
Article
Google Scholar
Bell, S. T. (2007). Deep-level composition variables as predictors of team performance: A meta-analysis. Journal of Applied Psychology, 92(3), 595–615. https://doi.org/10.1037/0021-9010.92.3.595
Article
Google Scholar
Blum, D., & Holling, H. (2017). Spearman’s law of diminishing returns: A meta-analysis. Intelligence, 65, 60–66. https://doi.org/10.1016/j.intell.2017.07.004
Article
Google Scholar
Borenstein, M., Hedges, L., Higgins, J., & Rothstein, H. (2014). Comprehensive Meta-Analysis (Version 3.1)[Computer software]. Englewood, NJ: Biostat. Inc.
Botvinik-Nezer, R., Holzmeister, F., Camerer, C. F., Dreber, A., Huber, J., Johannesson, M., Kirchler, M., Iwanir, R., Mumford, J. A., Adcock, R. A., Avesani, P., Baczkowski, B. M., Bajracharya, A., Bakst, L., Ball, S., Barilari, M., Bault, N., Beaton, D., Beitner, J., & Schonberg, T. (2020). Variability in the analysis of a single neuroimaging dataset by many teams. Nature. https://doi.org/10.1038/s41586-020-2314-9
Article
PubMed
PubMed Central
Google Scholar
Carroll, J. B. (1993). Human Cognitive Abilities: A Survey of Factor-Analytic Studies. Cambridge University Press. https://doi.org/10.1017/CBO9780511571312
Book
Google Scholar
Carson, J. (2015). Intelligence: History of the Concept. In J. D. Wright (Ed.), International Encyclopedia of the Social and Behavioral Sciences (Second Edition) (pp. 309–312). Elsevier.
Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology, 54(1), 1.
Article
Google Scholar
Cattell, R. B. (1978). The scientific use of factor analysis in behavioral and life sciences. Springer, US. https://doi.org/10.1007/978-1-4684-2262-7
Article
Google Scholar
Chabris, C. F. (2007). Cognitive and neurobiological mechanisms of the Law of General Intelligence. In M. J. Roberts (Ed.), Integrating the mind: Domain general versus domain specific processes in higher cognition (pp. 449–491). Psychology Press.
Chmait, N., Dowe, D. L., Li, Y.-F., Green, D. G., & Insa-Cabrera, J. (2016). Factors of collective intelligence: How smart are agent collectives? 542–550.
Cohen, J. (1977). Statistical power analysis for the behavioral sciences. Academic Press.
Google Scholar
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. (Vol. 2). Lawrence Earlbaum Associates.
Cohen, S. G., & Bailey, D. E. (1997). What makes teams work: Group effectiveness research from the shop floor to the executive suite. Journal of Management, 23(3), 239.
Article
Google Scholar
Condon, D. M., & Revelle, W. (2014). The international cognitive ability resource: Development and initial validation of a public-domain measure. Intelligence, 43, 52–64. https://doi.org/10.1016/j.intell.2014.01.004
Article
Google Scholar
Credé, M., & Harms, P. D. (2015). 25 years of higher-order confirmatory factor analysis in the organizational sciences: A critical review and development of reporting recommendations: Higher-Order Factor Analysis. Journal of Organizational Behavior, 36(6), 845–872. https://doi.org/10.1002/job.2008
Article
Google Scholar
Credé, M., & Howardson, G. (2017). The structure of group task performance—A second look at “collective intelligence”: Comment on Woolley et al.(2010).
Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests. Psychological Bulletin, 52(4), 281.
Article
Google Scholar
Day, E. A., Arthur, W., Jr., Bell, S. T., Edwards, B. D., Bennett, W., Jr., Mendoza, J. L., & Tubré, T. C. (2005). Ability-based pairing strategies in the team-based training of a complex skill: Does the intelligence of your training partner matter? Intelligence, 33(1), 39–65. https://doi.org/10.1016/j.intell.2004.09.002
Article
Google Scholar
De Vincenzo, I., Massari, G. F., Giannoccaro, I., Carbone, G., Grigolini, P. %J C., & Fractals. (2018). Mimicking the collective intelligence of human groups as an optimization tool for complex problems. 110, 259–266.
Deary, I. J., & Batty, G. D. (2011). Intelligence as a predictor of health, illness and death (pp. 683–710). The Cambridge Handbook of Intelligence. Cambridge University Press.
Google Scholar
Deary, I. J., Pattie, A., & Starr, J. M. (2013). The stability of intelligence from age 11 to age 90 years: The Lothian birth cohort of 1921. Psychological Science, 24(12), 2361–2368.
Article
Google Scholar
Del Cerro, S., Chaves, A., Ros, E., Marti, M., Soler, G., Moreno, C. M., Cifre, I., Noguera, M., Lugo, O., & del Carmen Isanta, M. E. (2016). Collective intelligence in group activity: A pilot experiment., 34(2), 67–75.
Google Scholar
Devine, D. J. (2002). A review and integration of classification systems relevant to teams in organizations. Group Dynamics: Theory, Research, and Practice, 6(4), 291.
Article
Google Scholar
Devine, D. J., & Philips, J. L. (2001). Do smarter teams do better: A meta-analysis of cognitive ability and team performance. Small Group Research, 32(5), 507–532.
Article
Google Scholar
Diez Roux, A. V. (2002). A glossary for multilevel analysis. Journal of Epidemiology and Community Health, 56(8), 588–594. https://doi.org/10.1136/jech.56.8.588
Article
PubMed
Google Scholar
Dworak, E. M., Revelle, W., Doebler, P., & Condon, D. M. (2020). Using the International Cognitive Ability Resource as an open source tool to explore individual differences in cognitive ability. Personality and Individual Differences,. https://doi.org/10.1016/j.paid.2020.109906
Article
Google Scholar
Ekstrom, R. B., French, J. W., Harman, H. H., & Dermen, D. (1976). Manual for kit of factor-referenced cognitive tests. Educational Testing Service.
Google Scholar
Engel, D., Woolley, A. W., Aggarwal, I., Chabris, C. F., Takahashi, M., Nemoto, K., Kaiser, C., Kim, Y. J., & Malone, T. W. (2015). Collective Intelligence in computer-mediated collaboration emerges in different contexts and cultures. 3769–3778.
Engel, D., Woolley, A. W., Jing, L. X., Chabris, C. F., & Malone, T. W. (2014). Reading the mind in the eyes or reading between the lines? Theory of mind predicts collective intelligence equally well online and face-to-face. PLoS ONE, 9(12), 1–16. https://doi.org/10.1371/journal.pone.0115212
Article
Google Scholar
Euler, M. J. (2018). Intelligence and Uncertainty: Implications of Hierarchical Predictive Processing for the Neuroscience of Cognitive Ability. Neuroscience and Biobehavioral Reviews. https://doi.org/10.1016/j.neubiorev.2018.08.013
Article
PubMed
Google Scholar
Fletcher, R., & Hattie, J. (2011). Intelligence and intelligence testing (1st ed.). Routledge.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. JMR, Journal of Marketing Research (Pre-1986); Chicago, 18(000001), 39. http://search.proquest.com/docview/208824418/citation/A6EB65BC74554547PQ/1
Gimpel, H., Graf, V., Hosseini, S., & Seyfried, J. (2018). Analyzing the emergence and structure of collective intelligence in human groups—pre-registration of study design and data analysis procedures (July 4, 2018).
Goldman, M. (1971). Group performance related to size and initial ability of group members. Psychological Reports, 28(2), 551–557. https://doi.org/10.2466/pr0.1971.28.2.551
Article
Google Scholar
Gordon, R. A. (1997). Everyday life as an intelligence test: Effects of intelligence and intelligence context. Intelligence, 24(1), 203–320. https://doi.org/10.1016/S0160-2896(97)90017-9
Article
Google Scholar
Gottfredson, L. S. (1998). The General Intelligence Factor. Scientific American Presents, 9, 24–29.
Google Scholar
Gottfredson, L. S. (2016). Hans Eysenck’s theory of intelligence, and what it reveals about him. Personality and Individual Differences, 103, 116–127. https://doi.org/10.1016/j.paid.2016.04.036
Article
Google Scholar
Gunasekaran, S. S., Ahmad, M. S., Tang, A., & Mostafa, S. A. (2016). The Collective Intelligence concept: A literature review from the behavioral and cognitive perspective. 154–159. https://doi.org/https://doi.org/10.1109/ISAMSR.2016.7810020
Hackman, J. R. (2011). Collaborative intelligence. [Electronic resource]: Using teams to solve hard problems: Lessons from and for intelligence professionals. San Francisco, CA : Berrett-Koehler Publishers, 2011. 1st ed.
Hackman, J. R., & Morris, C. G. (1975). Group tasks, group interaction process, and group performance effectiveness: A review and proposed integration. Advances in Experimental Social Psychology, 8, 45–99.
Google Scholar
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate Data Analysis: Pearson New International Edition: Vol. Seventh edition. Pearson.
Hansen, M. J., & Vaagen, H. (2016). Collective intelligence in project groups: Reflections from the field. Procedia Computer Science, 100, 840–847. https://doi.org/10.1016/j.procs.2016.09.233
Article
Google Scholar
Hegelund, E. R., Flensborg-Madsen, T., Dammeyer, J., & Mortensen, E. L. (2018). Low IQ as a predictor of unsuccessful educational and occupational achievement: A register-based study of 1,098,742 men in Denmark 1968–2016. Intelligence, 71, 46–53. https://doi.org/10.1016/j.intell.2018.10.002
Article
Google Scholar
Hemming, V., Walshe, T. V., Hanea, A. M., Fidler, F., & Burgman, M. A. (2018). Eliciting improved quantitative judgements using the IDEA protocol: A case study in natural resource management. PLoS ONE, 13(6), e0198468. https://doi.org/10.1371/journal.pone.0198468
Article
PubMed
PubMed Central
Google Scholar
Hollenbeck, J. R., Beersma, B., & Schouten, M. E. (2012). Beyond team types and taxonomies: A dimensional scaling conceptualization for team description. Academy of Management Review, 37(1), 82–106. https://doi.org/10.5465/amr.2010.0181
Article
Google Scholar
Horn, J. L., & McArdle, J. J. (2007). Understanding human intelligence since Spearman. In R. Cudeck and R. C. MacCallum (Eds.), Factor analysis at 100: Historical developments and future directions. Lawrence Erlbaum Associates, Inc., Publishers.
Imbimbo, E., Stefanelli, F., & Guazzini, A. (2020). Adolescent’s collective intelligence: Empirical evidence in real and online classmates groups. Future Internet, 12(5), 81. https://doi.org/10.3390/fi12050081
Article
Google Scholar
Jensen, A. R. (1986). The theory of intelligence. In S. Modgil and C. Modgil (Eds.), Hans eysenck: Consensus and controversy (pp. 89–102). The Falmer Press.
Jensen, A. R. (1998). The g factor: The science of mental ability. Praeger.
Jensen, A. R., & Weng, L.-J. (1994). What is a good g? Intelligence, 18(3), 231–258. https://doi.org/10.1016/0160-2896(94)90029-9
Article
Google Scholar
Johnson, W., & Bouchard, T. J. (2005). The structure of human intelligence: It is verbal, perceptual, and image rotation (VPR), not fluid and crystallized. Intelligence, 33(4), 393–416.
Article
Google Scholar
Jones, D. R. (2015). Testing Evidence for a Collective Intelligence Factor in the Performance of Human Groups [Masters dissertation]. The University of Edinburgh.
Kaur, R., & Shah, R. (2018). Collective intelligence: Scale development and validation. Journal of Human Behavior in the Social Environment, 1–13.
Kim, Y. J., Engel, D., Woolley, A. W., Lin, J. Y.-T., McArthur, N., & Malone, T. W. (2017). What Makes a Strong Team?: Using Collective Intelligence to Predict Team Performance in League of Legends. Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing, 2316–2329. https://doi.org/https://doi.org/10.1145/2998181.2998185
Kline, P. (1993). An Easy Guide to Factor Analysis. Routledge. http://ebookcentral.proquest.com/lib/unimelb/detail.action?docID=1639423
Kline, P. (2013). Intelligence. [Electronic resource]: The Psychometric View. Hoboken : Taylor and Francis, 2013.
Kosinski, M., Bachrach, Y., Kasneci, G., Van Gael, J., & Graepel, T. (2012). Crowd IQ: Measuring the Intelligence of Crowdsourcing Platforms. Proceedings Of The 3rd Annual Acm Web Science Conference, 2012, 151–160.
Kovacs, K., & Conway, A. R. A. (2019). What Is IQ? Life Beyond “General Intelligence.” Current Directions in Psychological Science,. https://doi.org/10.1177/0963721419827275
Article
Google Scholar
Kozlowski, S. W. J., & Klein, K. J. (2000). A multilevel approach to theory and research in organizations: Contextual, temporal, and emergent processes.
Krafft, P. M. (2018). A Simple Computational Theory of General Collective Intelligence. Topics in Cognitive Science.
Lasek, R. (1994). Understanding the effects of practice, process and ability on abstract problem-solving performance: A study of group intelligence [Ph.D. Thesis]. Case Western Reserve University/OhioLINK, 2006-08-11.
Laughlin, P. R. (2011). Group problem solving. Princeton University Press.
Book
Google Scholar
Laughlin, P. R., & Branch, L. G. (1972). Individual versus tetradic performance on a complementary task as a function of initial ability level. Organizational Behavior and Human Performance, 8(2), 201–216. https://doi.org/10.1016/0030-5073(72)90046-3
Article
Google Scholar
Laughlin, P. R., & Johnson, H. H. (1966). Group and individual performance on a complementary task as a function of initial ability level. Journal of Experimental Social Psychology, 2(4), 407–414. https://doi.org/10.1016/0022-1031(66)90032-1
Article
Google Scholar
Laws, K. R. (2016). Psychology, replication and beyond. BMC Psychology, 4(1), 30–30. https://doi.org/10.1186/s40359-016-0135-2
Article
PubMed
PubMed Central
Google Scholar
Lee, J.-Y., & Jin, C.-H. (2019). How collective intelligence fosters the development of incremental innovation capability [Preprint]. Social Sciences. https://doi.org/10.20944/preprints201907.0071.v1
LePine, J. A. (2005). Adaptation of teams in response to unforeseen change: Effects of goal difficulty and team composition in terms of cognitive ability and goal orientation. Journal of Applied Psychology, 90(6), 1153–1167. https://doi.org/10.1037/0021-9010.90.6.1153
Article
Google Scholar
LePine, J. A., Piccolo, R. F., Jackson, C. L., Mathieu, J. E., & Saul, J. R. (2008). A meta-analysis of teamwork processes: Tests of a multidimensional model and relationships with team effectiveness criteria. Personnel Psychology, 61(2), 273–307. https://doi.org/10.1111/j.1744-6570.2008.00114.x
Article
Google Scholar
LePine, J. A. (2003). Team adaptation and postchange performance: Effects of team composition in terms of members’ cognitive ability and personality. Journal of Applied Psychology, 88(1), 27–39. https://doi.org/10.1037/0021-9010.88.1.27
Article
Google Scholar
LePine, J. A., Hollenbeck, J. R., Ilgen, D. R., & Hedlund, J. (1997). Effects of individual differences on the performance of hierarchical decision-making teams: Much more than g. Journal of Applied Psychology, 82(5), 803.
Article
Google Scholar
Lorenzo-Seva, U., & ten Berge, J. M. F. (2006). Tucker’s congruence coefficient as a meaningful index of factor similarity. Methodology, 2(2), 57–64. https://doi.org/10.1027/1614-2241.2.2.57
Article
Google Scholar
Lou, Y., Abrami, P. C., Spence, J. C., Poulsen, C., Chambers, B., & d’Apollonia, S. (1996). Within-class grouping: A meta-analysis. Review of Educational Research, 66(4), 423–458.
Article
Google Scholar
Mathieu, J. E., Maynard, M. T., Rapp, T., & Gilson, L. (2008). Team effectiveness 1997–2007: A review of recent advancements and a glimpse into the future. Journal of Management, 34(3), 410–476. https://doi.org/10.1177/0149206308316061
Article
Google Scholar
Mayo, A., & Woolley, A. W. (2017). Field evidence for collective intelligence in business unit performance. Academy of Management Annual Meeting Proceedings, 2017(1), 1–1. https://doi.org/10.5465/AMBPP.2017.14672abstract
Article
Google Scholar
McGrath, J. E. (1984). Groups: Interaction and performance. Englewood Cliffs, N.J. : Prentice-Hall, c1984.
McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37(1), 1–10.
Article
Google Scholar
McGrew, K. S., LaForte, E. M., & Schrank, F. A. (2014). Technical Manual: Woodcock-Johnson IV. Riverside Publishing Company.
Nagar, Y. (2016). Essays on Collective Intelligence.
Neisser, U., Boodoo, G., Bouchard, J. T. J., Boykin, A. W., Brody, N., Ceci, S., Halpern, D. F., Loehlin, J. C. P. R., Sternberg, R. J., & Urbina, S. (1996). Intelligence: knowns and unknowns. The American Psychologist, 2, 77.
Article
Google Scholar
Pashler, H., & Harris, C. R. (2012). Is the replicability crisis overblown? Three arguments examined. Perspectives on Psychological Science, 7(6), 531–536. https://doi.org/10.1177/1745691612463401
Article
PubMed
Google Scholar
Popper, K. R. (2002). The logic of scientific discovery. [Electronic resource]. London ; New York : Routledge, 2002.
Radcliffe, K., Lyson, H. C., Barr-Walker, J., & Sarkar, U. (2019). Collective intelligence in medical decision-making: A systematic scoping review. BMC Medical Informatics and Decision Making, 19(1), 158. https://doi.org/10.1186/s12911-019-0882-0
Article
PubMed
PubMed Central
Google Scholar
Raven, J. (2000). The Raven’s Progressive Matrices: Change and Stability over Culture and Time. Cognitive Psychology, 41(1), 1–48. https://doi.org/10.1006/cogp.1999.0735
Article
PubMed
Google Scholar
Raven, J. C. (1998). Raven’s progressive matrices and vocabulary scales. Psychological Corporation.
Google Scholar
Rogers, R., Strudler, K., & Baltaxe, D. (2019). Collective intelligence and selecting the NCAA men’s basketball tournaments. Journal of Creative Communications, 14(1), 69–77. https://doi.org/10.1177/0973258618822849
Article
Google Scholar
Rohde, T. E., & Thompson, L. A. (2007). Predicting academic achievement with cognitive ability. Intelligence, 35(1), 83–92.
Article
Google Scholar
Rosenthal, R. (1979). An introduction to the file drawer problem. Psychological Bulletin, 86, 638–641.
Article
Google Scholar
Rosenthal, J. A. (1996). Qualitative descriptors of strength of association and effect size. Journal of Social Service Research, 21(4), 37–59. https://doi.org/10.1300/J079v21n04_02
Article
Google Scholar
Rosenthal, R., & Rosnow, R. L. (2008). Essentials of behavioral research: Methods and data analysis. McGraw-Hill.
Runsten, P. (2017). Team intelligence: The foundations of intelligent organizations-a literature review. Stockholm School of Economics.
Salminen, J. (2012). Collective intelligence in humans: A literature review. 2012-04-16.
Schmidt, F. L., & Hunter, J. E. (1981). Employment testing: Old theories and new research findings. American Psychologist, 36(10), 1128.
Article
Google Scholar
Schmidt, F. L., & Hunter, J. E. (1998). The validity and utility of selection methods in personnel psychology: Practical and theoretical implications of 85 years of research findings. Psychological Bulletin, 2, 262.
Article
Google Scholar
Schmidt, F. L., & Hunter, J. E. (2004). General mental ability in the world of work: Occupational attainment and job performance. Journal of Personality and Social Psychology, 1, 162.
Article
Google Scholar
Schmidt, F. L., Oh, I.-S., & Shaffer, J. A. (2016). The validity and utility of selection methods in personnel psychology: Practical and theoretical implications of 100 years of research findings. SSRE (under Review, Author’s Personal Copy Obtained via ResearchGate).
Schneider, W. J., & McGrew, K. S. (2018). The Cattell–Horn–Carroll theory of cognitive abilities. Contemporary Intellectual Assessment: Theories, Tests, and Issues, 4th Ed., 73–163.
Sears, D. A., & Reagin, J. M. (2013). Individual versus collaborative problem solving: Divergent outcomes depending on task complexity. Instructional Science, 41(6), 1153–1172. https://doi.org/10.1007/s11251-013-9271-8
Article
Google Scholar
Silberzahn, R., Uhlmann, E. L., Martin, D. P., Anselmi, P., Aust, F., Awtrey, E., Bahník, Š, Bai, F., Bannard, C., Bonnier, E., Carlsson, R., Cheung, F., Christensen, G., Clay, R., Craig, M. A., Dalla Rosa, A., Dam, L., Evans, M. H., Flores Cervantes, I., & Nosek, B. A. (2018). Many analysts, one data set: Making transparent how variations in analytic choices affect results. Advances in Methods and Practices in Psychological Science, 1(3), 337–356. https://doi.org/10.1177/2515245917747646
Article
Google Scholar
Spearman, C. (1904). “General intelligence”, objectively determined and measured. The American Journal of Psychology, 15(2), 201–292. https://doi.org/10.2307/1412107
Article
Google Scholar
Spearman, C. (1927). The abilities of man: Their nature and measurement. Macmillan and Co.
Google Scholar
Stanley, T. D., Carter, E. C., & Doucouliagos, H. %J P. bulletin. (2018). What meta-analyses reveal about the replicability of psychological research.
Steiner, I. D. (1972). Group Processes and Productivity. Academic Press.
Google Scholar
Sterne, J. A., Sutton, A. J., Ioannidis, J. P., Terrin, N., Jones, D. R., Lau, J., Carpenter, J., Rücker, G., Harbord, R. M., & Schmid, C. H. (2011). Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials., 343, d4002.
Google Scholar
Stewart, G. L. (2006). A meta-analytic review of relationships between team design features and team performance. Journal of Management, 32(1), 29–55. https://doi.org/10.1177/0149206305277792
Article
Google Scholar
Steyvers, M., & Miller, B. (2015). Cognition and collective intelligence. MIT Press, Cambridge, Massachusetts, USA.
Google Scholar
Surowiecki, J. (2005). The wisdom of crowds. Anchor.
Tulsky, D., Zhu, J., & Ledbetter, M. F. (1997). WAIS-III / WMS-III Technical Manual. The Psychological Corporation.
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1–48.
Article
Google Scholar
Wiernik, B. M., & Dahlke, J. A. (2020). Obtaining unbiased results in meta-analysis: The importance of correcting for statistical artifacts. Advances in Methods and Practices in Psychological Science, 3(1), 94–123. https://doi.org/10.1177/2515245919885611
Article
Google Scholar
Wonderlic, E. F. (1992). Manual of the Wonderlic personnel test. Wonderlic and Associates Inc.
Google Scholar
Woolley, A. W., & Aggarwal, I. (2017). Collective intelligence and group learning. In L. Argote and J. M. Levine (Eds.), The Oxford Handbook of Group and Organizational Learning (pp. 1–25). Oxford University Press.
Woolley, A. W., Chabris, C. F., Pentland, A., Hashmi, N., & Malone, T. W. (2010). Evidence for a collective intelligence factor in the performance of human groups. Science, 330(6004), 686–688.
Article
Google Scholar
Woolley, A. W., & Fuchs, E. (2011). PERSPECTIVE—collective intelligence in the organization of science. Organization Science, 22(5), 1359–1367.
Article
Google Scholar
Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: lessons from machine learning. Perspectives on Psychological Science, 12(6), 1100–1122. https://doi.org/10.1177/1745691617693393
Article
PubMed
PubMed Central
Google Scholar