Spatial thinking skills and strategies
Spatial thinking is a multifaceted construct, including skills and strategies involved in imagining objects from different angles, visually searching a scene, or picturing transformations of 2-D and 3-D objects (NRC, 2006; Uttal et al., 2013). Students’ success in spatial tasks (i.e., their spatial skills) are important for learning in STEM domains and reliably predict student achievement in STEM (Wai, Lubinski, & Benbow, 2009). In addition to spatial skills, the tendency to approach problems in a spatial way—referred to as spatial strategies or spatial habits of mind—is associated with learning in STEM (DeMers & Vincent, 2007; Kim, 2011; Kim & Bednarz, 2013). Indeed, developing spatial problem solving strategies is an important outcome for science education, above and beyond the development of spatial skills (NRC, 2006). In the present study, we examine the development of these two facets of spatial thinking (i.e., spatial skills and spatial habits of mind) in relation to participation in spatial activities.
Development of spatial thinking
Spatial skills are malleable and develop through dedicated practice, schooling, and activity experiences (Uttal et al., 2013). Because spatial skills improve with training and experience (Uttal et al., 2013), understanding the degree to which spatial skills vary as a function of spatial activity participation is important for improving spatial thinking (Levine, Ratliff, Huttenlocher, & Cannon, 2012; Quaiser-Pohl & Lehmann, 2002; Vander Heyden, Huizinga, & Jolles, 2017). Broadly defined, spatial activities are activities that involve reasoning about qualities of space (e.g., distance, proportion), practicing mental visualization (e.g., imagining spatial layouts or spatial trajectories), and observing the positions of physical objects. These activities can include sports, play activities, artistic endeavors, and technological pursuits.
Participating in spatial activities is positively associated with spatial thinking (Feng, Spence, & Pratt, 2007; Gittler & Gluck, 1998; Pietsch & Jansen, 2012; Nazareth, Herrera, & Pruden, 2013; Terlecki, Newcombe, & Little, 2008; see Dearing et al., 2012 for an exception). As depicted in Fig. 1a, this relation is considered to be bi-directional: participation in spatial activities may improve spatial thinking skills and strategies, and individuals with a greater capacity for spatial thinking may seek out opportunities to engage in spatial activities. Baenninger and Newcombe’s (1989) meta-analysis of the relation between spatial activities and spatial ability in adults revealed this correlation to be modest.
Additional studies in the 30 years since the publication of this meta-analysis have also identified a positive association between spatial activity participation and spatial thinking skills in childhood and adolescence (see Fig. 1b; e.g., Levine et al., 2012; Jirout & Newcombe, 2015; Moreau, Clerc, Mansy-Dannay, & Guerrien, 2012; see Dearing et al., 2012 for an exception). Childhood spatial toys, such as blocks and jigsaw puzzles, provide concrete experience observing, arranging, and discussing the physical location of objects in space (Borriello & Liben, 2018; Verdine et al., 2019). Participating in puzzle and block play has been shown to be positively associated with spatial skills (Jirout & Newcombe, 2015; Levine et al., 2012). Moreover, children participating in block building and spatial play interventions showed benefits above and beyond improvements in active control groups, and provide evidence of a causal relation (Casey et al., 2008; Vander Heyden et al., 2017). Similarly, activities such as building replicas (e.g., model trains), artistic endeavors (e.g., drawing, knitting, needlework), and mechanical activities (e.g., car repair) involve working with representations in two and three dimensions and also promote spatial skill development (Doyle, Voyer, & Cherney, 2012; Newcombe, Bandura, & Taylor, 1983).
Spatial thinking may also be supported by participation in sports such as soccer and basketball, as well as movement-related activities such as dance (Pietsch & Jansen, 2012; Voyer, Nolan, & Voyer, 2000; Weckbacher & Okamoto, 2012). These activities involve reasoning about static and dynamic positioning (Jansen, Ellinger, & Lehmann, 2018; Moreau et al., 2012). A quasi-experimental study found that adolescents taking extended physical education classes performed better on a mental rotation test than adolescents in regular physical education classes (Jansen et al., 2018). This finding is in line with correlational evidence that individuals who regularly practiced sports have better spatial skills than those who do not (Moè, Jansen, & Pietsch, 2018; Pietsch & Jansen, 2012; see Quaiser-Pohl & Lehmann, 2002 for an exception). Not all sports, however, are spatial in nature. For example, training in wrestling improved mental rotation task performance more than training in running (Moreau et al., 2012). Spatial skills are also associated with activities such as playing music (Pietsch & Jansen, 2012), technical activities (Quaiser-Pohl & Lehmann, 2002), and computer experience (Terlecki & Newcombe, 2005).
Spatial activities across development
People can participate in spatial activities across the lifespan, including throughout childhood and adolescence. Assessing with the consistency of spatial activity participation across development (Fig. 1b path A) is an important point of inquiry for educators and policy advocates interested in fostering spatial thinking capabilities. Understanding how and when children and adolescents participate in spatial activities will help us design better activities that are tailored to specific ages. Despite this clear potential for advancement, little is known about the degree to which spatial activity participation is consistent over time. That is, do individuals who participate in spatial activities in childhood continue participating in more spatial activities in adolescence, or do activity preferences change?
We are aware of only two studies that assessed participation in spatial activity participation at multiple points in time (Moè et al., 2018; Robert & Héroux, 2004); however, the focus of these studies was the relationship between activity participation and spatial skills rather than consistency in participation over time. Nonetheless, studies of participation in specific domains of spatial thinking (e.g., sports, blocks, videogames) provide some insight on how activity preferences may evolve over time. Participation in sports during childhood and adulthood are modestly correlated (Perkins, Jacobs, Barber, & Eccles, 2004; Richards, Williams, Poulton, & Reeder, 2007; Telama et al., 2005). Video game use in early adulthood is correlated with videogame play in childhood but displays a curvilinear relationship, with increased use beginning in childhood and peaking in adolescence (Ream, Elliot, & Dunlap, 2013). Research on the selection of gendered activities also suggests a high level of consistency in activity selection across childhood and adolescence, with boys and girls consistently favoring toys that match their own gender (Todd et al., 2017). Thus, while the existing literature points to relative consistency in specific domains of spatial activity participation (i.e., sports, videogames), additional work focused on general patterns of spatial activities is needed. Differences in general activity preferences by gender suggest that such a relationship may function differently for boys and girls, especially in light of the predominance of masculine-gendered spatial activities (Doyle et al., 2012; Lauer, Udelson, Jeon, & Lourenco, 2015).
Gender differences in spatial activities
Gender differences in spatial activity participation is one possible explanation for why gender differences in spatial thinking tend to favor males. There are two general mechanisms that may explain this effect. First, gender differences in spatial thinking may result from gender differences in spatial activity participation (i.e., mean-level differences in spatial activities result in mean-level differences in spatial thinking skills and strategies). Second, gender differences in spatial thinking may result from gender differences in the strength of the relation between spatial activities and spatial thinking (i.e., gender moderates the relation between spatial activities and spatial thinking skills and strategies).
With regard to mean-level differences, males tend to engage more frequently with activities and toys that contain spatial elements than females do (Baenninger & Newcombe, 1995; Cherney & Voyer, 2010; Nazareth et al., 2013; Signorella, Krupa, Jamison, & Lyons, 1986). Gender differences in play and toy preferences emerge in infancy, and male-stereotyped toys tend to be more spatial in nature (Doyle et al., 2012; Lauer et al., 2015). Gendered stereotypes of toys have held over recent decades, and are reflected in the content of children’s rooms (MacPhee & Prendergast, 2019). Despite evidence that boys tend to engage in more spatial activities, it is important to note that not all spatial activities fit this gendered pattern. For instance, Levine et al. (2012) found no gender differences in puzzle play during home observations in childhood. Moreover, in the United States, girls’ participation in sports has been increasing since the introduction of Title IX of the 1972 Education Amendments required equal opportunities for sports participation regardless of sex (Stevenson, 2007).
In addition, gender may moderate the effect of spatial activities such that spatial activities differentially benefit males’ and females’ spatial thinking. Some studies have found that females benefit from spatial activities more than males (Feng et al., 2007; Moè et al., 2018; Quaiser-Pohl & Lehmann, 2002). Researchers have suggested that this effect occurs because males may already receive sufficient support for spatial skills through a variety of experiences, whereas females may require additional spatial experiences to catch up to their male peers (Quaiser-Pohl & Lehmann, 2002; Tzuriel & Egozi, 2010). When considering the quality of puzzle play in children, higher quality play was related to the spatial skills of girls but not boys (Levine et al., 2012). Alternatively, findings from other studies indicate that males benefit from spatial activities more than females (Connor & Serbin, 1977; González-Calero, Cózar, Villena, & Merino, In press; Wong & Yeung, 2019). Researchers hypothesize that this may be due to males engaging with spatial activities in a more spatial way (Wong & Yeung, 2019). For instance, Lego® blocks marketed to girls encourage stereotypically feminine traits (e.g., friendship, beauty), whereas, Lego® blocks marketed to boys promoted more active play (e.g., cars, professions; Reich, Black, & Foliaki, 2018).
However, not all findings support the hypothesis that gender moderates the relation between spatial activities and spatial thinking. (e.g., Jansen et al., 2018; Moreau et al., 2012; Vander Heyden et al., 2017). Results from meta-analyses suggest that males and females benefit similarly from spatial training and spatial activities Baenninger & Newcombe, 1989; Uttal et al., 2013). There is also evidence that retrospective reports of childhood activities correlate with adult spatial skills even after controlling for gender (Doyle et al., 2012). Given these conflicting findings, it is therefore important to examine whether gender moderates the relation between spatial activities and spatial thinking as it unfolds in childhood and adolescence.
Present study
The present study explored three research questions concerning spatial activity participation, and how participation relates to spatial skills and spatial habits of mind. First, Research Question 1 examined the extent to which engagement in spatial activities remains consistent from childhood to adolescence (Fig. 1b path A). That is, does participating in spatial activities as a child predict how frequently an adolescent partakes in spatial activities? Because general activity preferences remain stable (Perkins et al., 2004; Ream et al., 2013; Richards et al., 2007), we anticipated that individuals who participated more frequently in spatial activities during childhood would continue to participate in spatial activities during adolescence.
Research Question 2 examined whether participation in spatial activities at these two developmental stages (i.e., childhood and adolescence) predicts spatial thinking skills and spatial habits of mind (Fig. 1b paths B & C). Individuals who participate in spatial activities tend to score higher on tests of spatial thinking (Doyle et al., 2012; Nazareth et al., 2013), but whether this trend differs based on when in development participation occurs (e.g., childhood or adolescence) is unknown. Thus, we compared the relative impact of participating at different points during development, including possible interactive effects. For instance, it is possible that individuals incur additional benefit from participating in spatial activities in both childhood and adolescence, or that participating in spatial activities during adolescence can make up for a lack of spatial activity participation in childhood. Analyses were conducted separately for spatial skills and spatial habits of mind given that spatial skills and habits of mind are correlated yet distinct facets of spatial thinking (Kim & Bednarz, 2013; NRC, 2006).
Finally, for Research Question 3, we examined whether gender moderated the relations found in Research Questions 1 and 2. In relation to Research Question 1, we investigated whether gender moderated the relation between childhood activities and adolescent activities. General activity participation is most consistent for activities that are gendered, suggesting that stability in spatial activity engagement may vary by gender as well. In relation to Research Question 2, we explored whether the impact of participation in spatial activities during childhood and adolescence on spatial thinking differed by gender. Although debate remains, prior work has provided some evidence that gender may mediate the ameliorating effects of spatial activities on spatial thinking (Levine et al., 2012; Moè et al., 2018; Wong & Yeung, 2019).