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Abstract 

Vehicle automation is becoming more prevalent. Understanding how drivers use this technology and its safety 
implications is crucial. In a 6–8 week naturalistic study, we leveraged a hybrid naturalistic driving research design 
to evaluate driver behavior with Level 2 vehicle automation, incorporating unique naturalistic and experimental 
control conditions. Our investigation covered four main areas: automation usage, system warnings, driving demand, 
and driver arousal, as well as secondary task engagement. While on the interstate, drivers were advised to engage 
Level 2 automation whenever they deemed it safe, and they complied by using it over 70% of the time. Interestingly, 
the frequency of system warnings increased with prolonged use, suggesting an evolving relationship between drivers 
and the automation features. Our data also revealed that drivers were discerning in their use of automation, opting 
for manual control under high driving demand conditions. Contrary to common safety concerns, our data indicated 
no significant rise in driver fatigue or fidgeting when using automation, compared to a control condition. Addition-
ally, observed patterns of engagement in secondary tasks like radio listening and text messaging challenge existing 
assumptions about automation leading to dangerous driver distraction. Overall, our findings provide new insights 
into the conditions under which drivers opt to use automation and reveal a nuanced behavioral profile that emerges 
when automation is in use.

Key findings 

• Drivers were less likely to use automation when roadway demands were higher.
• Secondary task engagements did not alarmingly change with automation usage (i.e., we only observed 

an increase in radio listening with Automation-L2).
• Automation usage alarms increased over time suggesting that drivers adopt a more relaxed interaction strategy 

with practice.
• The use of automation did not, by itself, increase fatigue or fidgeting. Rather, drivers used automation when they 

were already at risk of fatigue (i.e., during situations of low driving demand).
• Naturalistic Driving Research may benefit from true experimental control, especially in cases where driver behav-

ior is contextually dependent (e.g., drivers may choose to use Automation only when they feel it is safe to do so).
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Introduction
The rapid development and widespread availability of 
automated vehicles has sparked considerable interest 
in understanding their impact on driver behavior and 
safety. Automated vehicles hold promise for improving 
transportation safety, mobility, sustainability, and over-
all quality of life for billions of drivers worldwide. Vehi-
cle automation intends to enhance safety by eliminating 
human error, which accounts for a considerable portion 
of traffic deaths in the United States (Iden & Shappell, 
2006). It may also provide mobility solutions for those 
unable to drive due to age or disability (Alessandrini, 
2015) and significantly reduce highway and city conges-
tion (Makridis et al., 2018; Sener & Zmud, 2019). How-
ever, developing vehicle automation involves numerous 
challenges with many degrees of freedom (Musk, 2021), 
therefore many automakers have taken small and incre-
mental steps toward full autonomy over time.

To classify these steps and characterize the role of the 
driver at each stage of technological development, the 
Society of Automotive Engineers (SAE) has defined six 
levels of vehicle automation that gradually transition 
from full manual control (Level 0) to complete vehicle 
autonomy (Level 5). Level 1 automation is common-
place and entails Adaptive Cruise Control and Lane Keep 
Assist, which offer brake/acceleration and steering assis-
tance to the driver. When Adaptive Cruise Control and 
Lane Keep Assist technologies are used simultaneously, 
these features form Level 2 partial automation (SAE, 
2018). Level 2 partially automated vehicles are increas-
ingly common on the roadways and are the focus of the 
current study. Herein, we often use the shorthand term 
Automation-L2 to refer to vehicles with Level 2 automa-
tion (e.g., simultaneous activation of Adaptive Cruise 
Control and Lane Keep Assist).

Under Level 2 partial vehicle automation, the driver 
must remain vigilant and continue to monitor the vehi-
cle should the technology fail and the driver need to 
resume manual control. In this sense, the role of the 
driver shifts from being an active controller of the vehi-
cle (as is typical in manual driving) to a passive moni-
tor of the automated system (Endsley, 2017b). There is 
concern that this shared role may lead to safety issues 
related to driver attention and vigilance such that the 
monotony of automated driving may increase the likeli-
hood for a driver to disengage with the driving environ-
ment. Decades of research on automation suggest this 
shared responsibility between the human and vehicle 
may negatively impact safety because it does not fully 
remove driver vigilance and oversight requirements, 
possibly resulting in driver fatigue, increases in sec-
ondary task engagement, and other unintended con-
sequences. However, much of this research relies on 

driving simulations (e.g., Forster et  al., 2019; Greenlee 
et al., 2018; Zangi et al., 2022),  leaving real-world test-
ing outcomes inconclusive and raising questions about 
the generalizability of these findings.

To address the critical research gaps in our under-
standing of vehicle automation, the current on-road 
study employs a hybrid research design that combines 
both naturalistic and experimental elements. Partici-
pants drove one of five commercially available Level 2 
vehicles for 6 to 8 weeks on their daily work commute 
while their behavior was recorded via video cameras 
mounted in the vehicle. Once a week, participants were 
instructed not to use automation. This gave us a con-
trol group to compare to the other days of the week, 
when participants were allowed to use automation. This 
innovative approach allowed for a more comprehensive 
investigation of how drivers interact with and adapt to 
vehicle automation systems in real-world scenarios.

The study explores four key considerations of human-
automation interactions—the effect of familiarity on 
driver willingness to use automation, the effect of 
familiarity on proper use of the automated technology, 
the effect of automation on driver arousal and fatigue, 
and the effect of automation on secondary task engage-
ment. By examining these factors, we aim to provide 
valuable insights into the safety concerns associated 
with automation use. Next, we explore each of these 
four considerations in lower-level vehicle automation 
usage and pose questions which are addressed in this 
research.

Automation usage
Research suggests that drivers’ familiarity and experi-
ence with automation technologies such as Adaptive 
Cruise Control or Lane Keep Assist may influence usage 
patterns (Beggiato et  al., 2015; Larsson, 2012).  Initially, 
drivers may be hesitant to use automation due to lack of 
understanding or concerns about reliability. As they gain 
experience, they may become more comfortable and pro-
ficient. However, it is unclear how increased proficiency 
affects usage. Dunn et al. (2021) propose that experience 
with automation changes behavior through operational 
phases, but this has not been experimentally confirmed 
and likely depends on the driver’s perception of control, 
usefulness, and reliability (Parasuraman & Riley, 1997).

To investigate the relationship between practice and 
vehicle automation usage, we observed drivers interact-
ing with a Level 2 vehicle over a 6- to 8-week period. This 
design allowed us to examine two interrelated questions 
pertaining to automation usage and provide insight into 
the operational phases hypothesis proposed by Dunn 
et al. (2021):
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• Automation Usage Q1 – Does experience with auto-
mation change the frequency with which drivers acti-
vate the automation?

• Automation Usage Q2 – How does the re-engagement 
time (after disengagement) change with practice?

System warnings and driving demand
Automation warnings occur for various reasons but are 
often related to driver state monitoring. These warn-
ings arise when drivers fail to maintain sufficient steer-
ing torque or keep their eyes on the forward roadway. 
These warnings typically involve visual, auditory, and 
tactile cues such as vibrations through the steering wheel 
and seat. The specific types of warnings, their activa-
tion methods, and their intended messages to drivers 
vary depending on the vehicle’s automation system and 
capabilities.

Research suggests that driver acceptance of system 
warnings is often low (Xu et al., 2021) and is influenced 
by factors such as the driver’s experience and familiar-
ity with the technology, as well as the perceived reliabil-
ity and usefulness of the automation (Abe & Richardson, 
2004; Large et  al., 2017). Changes in the frequency of 
system warnings may result from changes in a driver’s 
understanding of the warning cause, intent, and severity.

Warnings are also occasionally issued to request that 
drivers take over steering control due to poor driving 
conditions that the automation is not designed to handle. 
Although automated systems can function in challenging 
conditions, they are not currently intended for situations 
requiring extra driver caution and vigilance, such as in 
inclement weather or constructions zones. The road-fac-
ing camera used in this research allowed us to code vari-
ous types of poor conditions.

The frequency of system alarms and the continued use 
of vehicle automation in poor driving conditions reflect 
automation control strategies and the extent to which 
drivers remain functionally vigilant to the driving task 
(Fridman et  al., 2019). This research addresses two dis-
tinct but interrelated questions:

• Warnings & Demand Q1 – Does the frequency of sys-
tem warnings change over time?

• Warnings & Demand Q2 – Does the frequency of 
automation use change during poor conditions?

Automation and driver arousal—measured 
through fatigue and fidgeting
The relationship between Level 2 partial vehicle auto-
mation and arousal is complex and not fully resolved. 
Several research studies using driving simulations have 

found that automation use leads to an increase in driver 
passive fatigue, caused by under-arousal and boredom 
(Ahlström et al., 2021; Arefnezhad et al., 2022; Desmond 
& Hancock, 2000; Matthews et  al., 2019). However, the 
controlled nature of these research designs often limits 
the types of natural countermeasures that drivers may 
employ to combat fatigue and under-arousal. For exam-
ple, research has shown that secondary task interactions 
may, in some cases, protect against fatigue that arises 
during the use of automation (Feldhütter et  al., 2019; 
Schömig et  al., 2015), leading some to suggest second-
ary task use as a countermeasure for automation-related 
fatigue (Vogelpohl et  al., 2019). However, complex sec-
ondary tasks can also distract from the driving task and 
result in slow resumption of vehicle control during a 
takeover request (Louw et  al., 2015; Merat et  al., 2014). 
Because this research on driver fatigue during automa-
tion use has primarily been conducted in simulators, it 
remains unclear if these findings can be extrapolated to 
real-world scenarios.

Fidgeting is defined by the Oxford Dictionary as mak-
ing small movements, especially of the hands and feet, 
through nervousness or impatience. Research suggests 
that fidgeting is highly associated with mind wandering 
and inattention (Carriere et  al., 2013) and is sometimes 
viewed as a distracting secondary task (Hasan et  al., 
2022). Fidgeting behaviors may therefore be indicative 
of a driver countermeasure to combat fatigue or bore-
dom and a potential precursor to passive fatigue. Based 
on these definitions and findings, fidgeting behavior may 
serve as an indirect measure of driving task engagement, 
with lower rates of fidgeting suggesting higher driving 
engagement or potential fatigue, and higher rates of fidg-
eting suggesting lower driving engagement and possible 
mind wandering.

To investigate the link between Level 2 automation use 
and arousal, video recordings of participants’ faces and 
hands were used to determine the frequency of fatigue 
and fidgeting behaviors:

• Fatigue & Fidgeting Q1—How do visual signs of driver 
fatigue relate to Level 2 automation use?

• Fatigue & Fidgeting Q2—How do visual signs of driver 
fidgeting relate to Level 2 automation use?

Secondary task engagement
Roadside observations of drivers suggest that they 
engage in non-driving related secondary tasks up to 
32% of the time (Huisingh et  al., 2015). With recent 
technological developments allowing for vehicle-
phone pairing, voice control, and heads-up technol-
ogy interactions, it is likely that this number is both 
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underreported and growing. Behavioral analyses using 
the SHRP2 naturalistic driving dataset suggest that 
observable distractions are prevalent in 52% of normal 
baseline driving (Dingus et al., 2016). While the preva-
lence of handheld phone use for talking by drivers has 
gradually decreased, the prevalence of handheld device 
manipulation for activities such as texting and internet 
use has increased (NHTSA, 2021).

Several studies have indicated that drivers are more 
likely to engage in secondary tasks when vehicle automa-
tion is active (De Winter et al., 2014; Dunn et al., 2021; 
Endsley, 2017a; Naujoks et al., 2016; Reagan et al., 2021). 
Drivers are also able to more efficiently complete second-
ary tasks with automation than when manually driving 
(He & Donmez, 2019). The primary concern with second-
ary task engagements during automation use is that they 
reduce the driver’s ability to safely monitor the automa-
tion through a diversion of visual and cognitive resources 
(Gaspar & Carney, 2019) and decrease a driver’s ability to 
quickly resume full control of the vehicle (see Morales-
Alvares et al., 2020 for review). A second concern is that 
the driver may develop automation-induced complacency 
over time. Results in two naturalistic driving studies ana-
lyzed by Dunn et  al. (2021) suggest that driver compla-
cency and willingness to engage in secondary tasks may 
develop through a series of phases. In the first phase, the 
learning phase, drivers become acquainted with the auto-
mation, including learning about its potential uses and 
limitations. During this phase, drivers may not fully trust 
the automation and may be unwilling to engage in tasks 
that are outside of their normal behavior.

However, as experience with the automation grows, 
drivers are suggested to transition into an integration 
phase (Saad et al., 2004), indicated by an increased will-
ingness to divert attention from the roadway and toward 
secondary tasks. The existence of this type of phased 
learning has not, however, been demonstrated in a sin-
gle study, and it is unclear whether this theory accurately 
characterizes the evolution of secondary task behaviors 
with automation use in the real world.

The current study adapted the secondary task coding 
scheme developed by Strayer et  al. (2017), where each 
observable secondary task was coded by the type of task 
(e.g., texting, talking, etc.), mode of interaction (visual 
manual vs auditory vocal), and interface modality (cell 
phone vs vehicle interface). Each of these behaviors was 
coded over time, allowing us to address several interre-
lated questions:

• Secondary Task Engagement Q1—How does the fre-
quency of secondary task use (non-driving related) 
change during Level 2 automation compared to Level 
0 manual driving over time?

• Secondary Task Engagement Q2—How does the fre-
quency of task type, mode of interaction (voice versus 
manual), and interface (cell phone versus In-Vehicle 
Information System [IVIS]) change during Level 2 
automation compared to Level 0 manual driving?

Naturalistic and experimental driving approaches
The naturalistic driving approach, originally developed by 
the Virginia Tech Transportation Institute (Neale et  al., 
2005) and now used by researchers worldwide (Eenink 
et al., 2014; Fitch et al., 2013; Fridman et al., 2019), uses 
cameras placed in participant vehicles to passively collect 
video recordings of drivers during their normal use of the 
vehicle. This approach allows researchers to observe driv-
ing behavior as it occurs in real-world scenarios, while 
allowing drivers to act naturally.

Naturalistic driving research generates a continuous 
stream of video which can be challenging to transfer, 
catalog, and analyze. To help manage this complexity, 
several approaches have been developed to both iden-
tify events of interest and suitable sections of video to 
code for baseline behavior. In most cases, critical events 
are identified either through high-g events (Klauer 
et  al., 2010) or through some form of machine learning 
(Fridman et  al., 2017). Baseline driving epochs are then 
selected to match as closely as possible to the event of 
interest, with the exception that the event of interest is 
not found in the selected baseline video.

An innovative approach to sifting through naturalis-
tic video data was employed by Fitch et al. (2013). They 
focused on coding an array of driver performance met-
rics both in the presence and absence of cell phone use. 
To establish a comparative baseline, epochs of driver 
performance were extracted from the 30-s window pre-
ceding any phone use. These epochs served as quasi-
controls, enabling the researchers to gauge the extent to 
which cell phone usage disrupted conventional driving 
behaviors. Although this methodology does not offer the 
rigidity of a true experimental control design—given that 
participants had the freedom to choose when to engage 
with their phones—it provided a well-matched samples 
approach that was instrumental in isolating the effects of 
phone use on driving performance.

The validity of analytical techniques in naturalistic 
driving research hinges on a complex interplay of factors, 
most notably the contextual nature of the driver behav-
iors in question and the fidelity between baseline and 
event epochs. Specifically, if a behavior—such as auto-
mation usage—is environmentally contingent (i.e., driv-
ers engage in it only under perceived safe conditions), 
it becomes crucial to ensure a precise contextual match 
between the baseline and event epochs. Any deviation 
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in this respect can introduce confounding variables that 
compromise the study’s validity and risk misinterpreta-
tion of the results. The absence of true experimental con-
trols in naturalistic studies presents inherent challenges 
in establishing causal relationships (Carsten, Kircher, & 
Jamson, 2012). Experimentally controlled evaluations of 
driver performance (e.g., Laboratory research) are com-
monly used to gain insights into the potential safety con-
cerns that may arise with vehicle automation. Within 
the driving domain, these come in several variations 
that range from simple tracking tasks (Strayer & John-
ston, 2001) to complex scenario mock-ups using highly 
instrumented vehicles on climate-controlled test tracks 
(Gibson, 2015; Tan et al., 1998). The primary strength of 
tight experimental control is that it allows researchers to 
manipulate a single factor while holding all other factors 
constant. Unlike with the naturalistic driving approach, 
the performance baseline is often an identical or near-
identical scenario. This allows for confident statements 
about causality. The challenge with these types of stud-
ies is generalizability, as naturalism is often sacrificed for 
control and observed behavior may not generalize to the 
real-world.

In this within-subjects study, participants’ behaviors 
were compared under two conditions: when they chose 
to use Level 2 automation and when they were instructed 
not to use it. Unlike the other research questions that will 
be addressed separately, analyses contrasting the experi-
mental control condition with the naturalistic observa-
tions thread through the entirety of our study.

The current study
The current study expands on previous research in 
several keyways. First, all vehicles in the study were 
equipped with advanced driver-assistance systems that 
meet the SAE definition of Level 2 automation. Prior 
research has often used a mixture of Level 1 and Level 
2 vehicles (e.g., Dunn et  al., 2021). Second, through the 
introduction of a unique experimental control, this study 
was designed to systematically control environmental 
differences that could influence automation use, such 
as varying road conditions, weather, traffic density, and 
infrastructure. This is a unique and important manipula-
tion that, to our knowledge, has never been done before. 
Finally, the current study tracks novice users for longer 
periods than previous studies, which will allow for in-
depth analysis of how behavior change as drivers become 
more familiar with advanced driver assistance systems. 
Through this novel experimental design, this study seeks 
to answer each of the various questions posed above 
related to driver usage and engagement during Level 2 
automated driving.

Methods
The video data analyzed and presented in this manuscript 
form a subset of a larger research effort (see Fig. 1), which 
includes a 6–8-week naturalistic observation period 
(reported here), survey data collection (see Sanbonmatsu 
et  al., 2023), and two 5-h on-road performance evalu-
ations (see McDonnell et  al., 2023). Additional details 
about the unique methods employed in each part of the 
project can be found in their respective reports. In this 
manuscript, we focus on the methods specific to the 6–8-
week Naturalistic Driving portion of the larger research 
effort (see Fig. 1).

Participants
Participants in this study (N = 30, 12 females, 18 males) 
ranged in age from 18 to 55 (M = 35.73, SD = 9.34) and 
were recruited through online advertisements. For the 
6–8-week naturalistic portion of the experiment, par-
ticipants received an average compensation of $300. 
Eligibility criteria included having a valid U.S. driver’s 
license, no at-fault accidents within the past two years 
(verified by driving records obtained through the Univer-
sity of Utah Division of Risk Management), and no prior 
experience with Level 2 automation. Participants were 
required to have a daily work commute of at least 20 min 
(40 min round trip) on a major local interstate and were 
instructed to use vehicle automation as often as they felt 
comfortable.

Materials
Vehicles: This study used five commercially available 
vehicles equipped with Level 2 automation: 2018 Tesla 
Model 3 AWD/Long Range with Autopilot, 2017 Tesla 
Model S with Autopilot, 2018 Cadillac CT6 with Super-
cruise, 2018 Volvo XC90 Momentum with Pilot Assist, 
and 2019 Nissan Rogue SL Premium with ProPILOT 
Assist. The distribution of participants that tested in each 
vehicle was as follows: eight in the Tesla Model S, six in 
the Tesla Model 3, one in the Cadillac CT6, six in the 
Nissan Rogue, and nine in the Volvo XC90. Participants 

Fig. 1 Research design overview
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were randomly assigned to a vehicle based on vehicle 
availability at the time of participant enrollment.

Cameras: Rosco-developed Dual-Vision XC4 cameras 
were installed under each vehicle’s rear-view mirror. The 
cameras offered a view of both the forward roadway and 
the vehicle interior using a fish-eye lens. Additionally, 
an auxiliary camera captured either the screen behind 
the steering wheel or the screen between the front seats, 
depending on the location of vehicle state icons indicat-
ing automation status (see Fig. 2). Video data was stored 
on Rosco and Transcend brand SD cards, and the cam-
eras automatically started and stopped recording when 
the vehicle was turned on or off.

Video Coding: Videos were processed for analysis using 
BORIS (Friard & Gamba, 2016). BORIS enabled coders to 
pre-specify activities of interest and then perform frame-
by-frame video playback to mark the beginning and end 
of each behavior. Summary results for each coded video 
were output to.csv formatted files, with each line in the 
file containing details about individual observations, such 
as the behavior, location within the video, and start and 
stop times of the coded behavior (see Fig. 3).

Procedure
In the initial experimental session, participants under-
went comprehensive training comprising verbal, writ-
ten, and video instructions on using vehicle automation. 
They also participated in a 1-h on-road practice session 
with real-time feedback and guidance on the automation. 
After which they completed an on-road performance 
evaluation both with and without automation. After fin-
ishing Experimental Session 1, participants received one 
of the five research vehicles, which they agreed to use on 
weekdays for commuting to and from work, not allowing 
other people inside, and operating the vehicle according 
to the law. Participants were encouraged to use vehicle 
automation on interstate segments of their commute 
as often as they felt comfortable. They used the vehicle 
on workdays for 6–8  weeks (subject to scheduling con-
straints related to the final evaluation) before completing 
the final experimental session and returning the vehi-
cle (for more details on Experimental Sessions 1 and 2, 
see McDonnell et al., 2023). The 6–8 Weeks Naturalistic 
Driving observation period is the focus of this research 
report (See Fig. 1). Experimental Control Day. A unique 

Fig. 2 Camera view of forward road, driver face, and vehicle dash

Fig. 3 Example BORIS video coding output file



Page 7 of 19Cooper et al. Cognitive Research: Principles and Implications            (2023) 8:71  

component of this research is that each week, one ran-
domly selected day was designated as an experimental 
control day, during which participants were instructed 
not to use vehicle automation the following day (See 
Fig.  4 Automation: NO). Control days were chosen at 
random and reassigned if they coincided with adverse 
weather unlike other drives that week. Videos from these 
days were coded and included in the analyses under the 
Experimental Control condition (see Fig. 4).

Naturalistic day Due to the large volume of video data 
collected during daily commutes, we selected and coded 
only one day each week from the remaining days (Auto-
mation: YES in Fig. 4). This day was chosen at random, 
with the constraint that its weather closely matched that 
of the Experimental Control Day (e.g., if it was sunny on 
the control day, the Naturalistic Day was also sunny). 
Instances of automation use during this day were coded 
and analyzed under the Automation-L2 condition, while 
instances in which participants elected to drive manually 
were coded and analyzed under the Naturalistic Control 
condition (see Fig. 4).

Data handling protocol
Video handling and selection After the 6–8 weeks of nat-
uralistic driving, participants completed the final experi-
mental session and returned their vehicles (c.f., Fig.  1). 
SD video cards were then removed from the vehicle cam-
eras and processed for analysis. Videos were continuously 
recorded within participants’ vehicles during daylight 
hours. However, our analysis was confined to segments 
of the video stream that captured interstate travel dur-
ing the participants’ commutes, specifically along major 
interstates within and surrounding the Salt Lake Valley 
(e.g., I-80, I-15, I-215). Prior to uploading and saving the 
videos, files were cleaned to eliminate all non-commute 
driving on the regional interstates. Furthermore, video 
files were combined into AM and PM commutes for each 
day. Cleaned video files capturing highway driving during 
AM and PM commutes were uploaded to a secure server 
for analysis.

Video blinding To minimize potential bias among cod-
ers, several procedures were implemented to blind them 

to the experimental condition present in the videos. This 
primarily involved a two-pass approach to video coding, 
wherein all behaviors except the state of automation were 
coded during the first pass. Automation indicators were 
obscured during video playback using strips of painter’s 
tape positioned on the monitor. During the second pass, 
the tape was removed, and the automation state was 
recorded and integrated into the record. All other indi-
cators of the experimental condition were eliminated, 
including file labels and other electronic data, until the 
final completion of each participant record, after which 
condition information was reintegrated.

Video coder training Video reduction took place over 
approximately 1.5  years, involving several different 
reductionists. To ensure coding consistency, new reduc-
tionists underwent a three-week peer-to-peer training 
focused on coding quality and consistency, established 
through redundant coding and regular checks of inter-
rater reliability.

Additional steps were taken to further ensure coding 
consistency. First, with each new participant, reduction-
ists group-coded video from at least one drive, allowing 
them to determine if any unique or challenging behav-
ior was likely to arise from the participant and to reach 
a consensus on how to handle such behavior if observed. 
Second, at least one video was group-coded each week, 
regardless of whether it was from a new participant. This 
strategy led to a target of 40% of all videos being redun-
dantly coded. Finally, inter-rater reliability was con-
tinuously assessed using an Excel-generated script and 
BORIS’s kappa score generator. An acceptable kappa 
score on the unaggregated raw coding was set to 0.6, 
which, when collapsed by coded task, led to scores above 
0.9. If significant differences were found between obser-
vations, reductionists would review the video as a group 
to identify and correct discrepancies.

Videos were generally coded in real-time, but reduc-
tionists often had to rewatch complex sections to accu-
rately code the start and stop of overlapping behaviors. 
This demanding process required significant focused 
attention, so reductionists were encouraged to take 
breaks as needed to maintain high performance levels.

Video coding rubric A comprehensive and systematic 
coding scheme was developed to capture various par-
ticipant behaviors, resulting in a video coding diction-
ary to guide video reduction. This dictionary included 
clear definitions of all behaviors of interest and examples 
of each behavior. To address the four sets of questions 
posed by this research, the following coding scheme was 
developed:

• Automation Usage – Instances of automation 
engagement and disengagement were coded using 

Fig. 4 Automation and Control conditions. In the Automation: 
YES condition participants selected when to use automation 
(Automation-L2) and when to drive manually (Naturalistic Control). 
In the Automation: NO condition participants were instructed 
not to use automation
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the instrument-facing camera that captured an image 
of the screen displaying automation state. The use of 
automation activation controls served as a redundant 
marker of automation use and helped to disambigu-
ate system state when icon visibility was poor.

• System Warnings and Driving Demand – System 
warnings were marked as discrete events in the data 
file. Driving demand was operationalized as the 
sum of concurrent Poor Conditions present, with 
Low demand including no poor conditions, Moder-
ate demand including one poor condition, and High 
demand including two or more poor conditions. Poor 
conditions were defined as weather, traffic, construc-
tion, emergency vehicles, or other events that could 
adversely affect driving.

• Driver Arousal – Fatigue and fidgeting behaviors 
were coded as continuous events, meaning that the 
coders marked the start and stop times of each spe-
cific behavior. For fatigue, this included marking 
the beginning and end of visible signs of sleepiness, 
such as yawning, heavy eyelids, and nodding heads. 
For fidgeting, this included identifying the start and 
stop times of body movements lasting more than 3 
s, such as touching the face, neck, head/hair, or mov-
ing hands to and from the steering wheel. Addition-
ally, reaching and grabbing, and eating and drinking 
behaviors were grouped into fidgeting.

• Secondary Task Engagement – This was a compre-
hensive class of behaviors, and detailed data were 
collected on each instance. Five core distracting 
activities were defined: Text Messaging, Calling and 
Dialing, Radio Listening, Navigation, and Video 
Interaction. Each of these activities was coded for 
modality of interaction, which included Visual-Man-
ual or Auditory-Vocal, and interface, which included 
Cell Phone or In-Vehicle-Information-System (IVIS). 
For each trip (AM or PM commute), the coders 
recorded the start and stop times of these distract-
ing activities, capturing the frequency and duration 
of each behavior. This allowed for a detailed analysis 
of distraction and inattention on a trip-by-trip basis, 
as well as for the entire day’s drive. Furthermore, an 
aggregate measure was used to provide an overall 
assessment of secondary task engagement by sum-
ming all secondary task interactions across the vari-
ous activities.

Statistical analysis
BORIS provided a.csv file as output for each coded video, 
listing details for each behavior in separate columns with 
one row per behavior. To analyze this data, we generated 
several R scripts that converted outputs into a time-series 

format, with behaviors organized in columns, time rep-
resented by each row, and a binary task state indicator 
listed in each column. Organized in this structure, we 
were able to combine and collapse behaviors as required 
for various analyses. Transformations were primarily car-
ried out using base R (R Core Team, 2022) and packages 
within the tidyverse (Wickham et al., 2019).

To account for sources of non-independence in the 
data (i.e., repeated measures within each participant) and 
allow for missing data, we analyzed our data with linear 
mixed-effects models using the lmer function found in 
the lmerTest library (Kuznetsova et al., 2017). Participant 
ID and the AM/PM drive indicator were included in all 
models as random intercepts, and, where appropriate, 
Session and Condition were input as predictor variables 
(see bulleted list below). Outcome variables were dictated 
by the specific question and included Fatigue, Fidgeting, 
Secondary Task, etc., as described in the video coding 
rubric. Likelihood ratio tests were run using the ANOVA 
function in the stats package to test the significance of 
all effects, and pairwise comparisons were run using the 
contrasts function of the lmerTest library. Significance 
levels for all analyses were set at p < 0.05, p < 0.01, and 
p < 0.001, indicated by one *, two **, or three ***, respec-
tively in the figures and tables that follow.

Predictor Variables of interest were:

• Session – fixed continuous factor. This was the 
numerical indicator of week (e.g., 1, 2, 3, etc.). Ses-
sion was handled as a continuous fixed factor for all 
relevant analyses but treated as discrete for plotting 
purposes.

• Condition – fixed discrete factor with 3 levels. The 
"Automation: Yes" day provided two levels of Con-
dition, which were Automation L2 and Naturalis-
tic Control. The "Automation: No" day provided the 
third level of Condition, which was Experimental 
Control. Condition was also entered as a discrete 
fixed effect in relevant models.

• Subject – random discrete factor. This was the simple 
subject identifier. Subject was modeled as a random 
intercept in all analyses.

• AMPM – random discrete factor. Simple identifier of 
the AM or PM drives (e.g., the morning and evening 
commutes for each participant). AM_PM was also 
entered as a random slope in all analyses.

Results
Data overview
Video Record. We obtained video results from 30 partici-
pants, resulting in a total of 670 videos (353 Naturalistic, 
317 Baseline). Within the baseline day, 26 of the vid-
eos contained instances of automation use, indicating a 
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misunderstanding of the task for that day. These videos 
were excluded from the analysis, leaving 291 baseline 
videos. For each of the weeks 1–8, the following number 
of subjects were available to code: 26, 30, 30, 28, 27, 22, 
17, and 12. Of the 670 available videos, 308 were double-
coded, 76 were triple-coded, and 4 were coded by 4 dif-
ferent reductionists. In total, 1060 coding records were 
entered into the analysis. Results from redundantly coded 
videos were averaged together.

By coding only 1 Naturalistic and 1 Experimental Con-
trol Day per week, we obtained 297 total hours of coded 
video, with just over half collected during Naturalistic 
driving (161  h). Overall, participants used automation 
between 25 and 99% of the time during the Naturalistic 
observation period, resulting in 124 h of video where par-
ticipants engaged Level 2 automation.

Automation usage
This research aimed to address two questions related to 
driver usage of Level 2 automation over time:

• Automation Usage Q1 – Does experience with auto-
mation change the frequency with which drivers acti-
vate the automation?

• Automation Usage Q2 – How does the re-engagement 
time (after disengagement) change with practice?

To address these questions, we generated a mixed-
effects model that treated usage frequency and reengage-
ment time as outcome measures, with Week as a fixed 
effect and Subject and AM/PM drives as random effects. 
Re-engagement time was quantified as the amount of 
time between disengagement of Level 2 automation and 
the participant actively re-engaging it, reflecting a differ-
ence score that would be expected to decrease over time 
if practice influenced reengagement.

Regarding the first question (Automation Usage Q1), 
results indicated that Week did not significantly predict 

usage frequency, F(1,309) = 1.88, p = 0.17 (see Fig.  5). 
Similarly, results also failed to show a significant effect of 
Week on reengagement time, F(1, 284) = 0.10, p = 0.753 
(Automation Usage Q2). Together, these findings suggest 
that participants maintained a similar level and interac-
tion pattern of automation use throughout the 6–8 weeks 
of observation, evident in both their usage frequency 
over time and automation reengagement time.

System warnings and driving demand
Two questions related to the misuse and unintended con-
sequences of Level 2 automation use were explored:

• Warnings & Demand Q1 – Does the frequency of sys-
tem warnings change over time?

• Warnings & Demand Q2 – Does the frequency of 
automation use change during poor conditions?

Regarding the first question (Warnings & Demand Q1), 
system warnings occurred when drivers either failed to 
apply sufficient tension to the steering wheel (Tesla, Nis-
san, Volvo), or failed to maintain their eyes on the for-
ward roadway (Cadillac). A mixed effects model was 
generated that treated system warning frequency as the 
outcome measure with Week as a fixed effect and Sub-
ject and AM/PM drives as random effects. Of those par-
ticipants that experienced warnings, the range of warning 
frequencies was 0.03–1.93 per minute. Results indicated 
that for these participants, warning frequencies increased 
during the observation period, F(1, 423) = 9.84, p = 0.002, 
suggesting that as drivers became more comfortable with 
automation, they modified their attention to the driving 
task (see Fig. 6).

To address the second question (Warnings & 
Demand Q2), we looked at the relationship between 
driving demand, as coded by the number of poor condi-
tions that were present in the driving environment, and 
the use of automation. The poor conditions analyzed 

Fig. 5 Level 2 Automation Usage by Week
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included traffic impairing driving speed, weather (rain, 
snow, ice, or fog), road construction, emergency vehi-
cles, and other outside influences affecting driving. 
Among these, traffic impairing driving speed was the 
most common poor condition observed. It is important 
to note that poor weather conditions can cause the sys-
tem to disengage; however, in practice, this was rarely 
observed.

Results indicated that as the demand of the driving 
task increased from Low to Moderate to High, the prev-
alence of automation use decreased (F(2, 1072) = 9.93, 
p < 0.001). These results suggest that drivers were aware 
of roadway demand and were less likely to use Level 2 
automation when the roadway demands were higher 
(see Fig. 6).

Automation and driver arousal—measured 
through fatigue and fidgeting
Two classes of observable behaviors related to driver 
arousal were coded in the video to address the follow-
ing research questions:

• Fatigue & Fidgeting Q1—How do visual signs of driver 
fatigue relate to Level 2 automation use?

• Fatigue & Fidgeting Q2—How do visual signs of driver 
fidgeting relate to Level 2 automation use?

For each question, three linear mixed effects models 
were generated with either Fatigue or Fidgeting behav-
iors treated as the outcome measure. Week, Condition, 
and Week by Condition were treated as fixed effects, 
while Subject and AM/PM drives were treated as random 
effects. Instead of using a single model with all the pre-
dictors included, three separate models were conducted 
for each predictor (Week, Condition, and Week X Con-
dition) to reduce complexity and provide a clearer inter-
pretation of the individual effects. Pairwise comparisons 
were completed on the effect of Condition (Automation-
L2, Experimental Control, and Naturalistic Control) to 
determine how the different conditions affected fatigue 
and arousal.

Regarding the first question (Fatigue & Fidgeting Q1), 
we found a main effect of Condition on Fatigue (see 
Table  1). Pairwise comparisons indicated that Fatigue 
was higher in the Automation-L2 condition than in the 
Naturalistic Control condition. However, it did not dif-
fer between the Automation-L2 condition and the 
Experimental Control condition (See Table 2 and Fig. 7). 
In other words, when we compared fatigue levels in 

Fig. 6 Automated System Warnings by Week (left panel) and Automation use by Driving Demand (right panel)

Table 1 Main effects of linear mixed effects models predicting fatigue and fidgeting

The significant comparisons are indicated with asterisks such that p < .05*, p < .01** and p < .001***

Main effects Condition Week Condition × Week

Fatigue F(2, 882) = 3.84, p = .022* F(1, 901) = 1.12, p = .290 F(2, 878) = 0.27, p = .764

Fidgeting F(2, 868) = 11.8, p < .000*** F(1, 894) = 10.8, p = .001*** F(2, 865) = 0.54, p = .583
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scenarios where drivers chose to use automation (Auto-
mation-L2) with those where drivers opted not to use 
automation (Naturalistic Control), we observed higher 
fatigue levels with automation use. However, in cases 
where drivers were specifically instructed not to use 
automation (Experimental Control), there was no signifi-
cant difference in fatigue levels compared to using auto-
mation (Automation-L2).

As for the second question (Fatigue & Fidgeting Q2), 
we found both main effects of Condition and Week on 
Fidgeting behaviors (see Table  1). Again, pairwise com-
parisons indicated that the interpretation of Fidgeting 
behavior depended on the type of Control that was used 
(see Table 2 and Fig. 7). Drivers fidgeted relatively more 
during Automation-L2 use compared to the Naturalistic 
Control condition but showed no relative difference in 
fidgeting behaviors when compared to the Experimental 

Control condition. The effect of Fidgeting over Week 
was more straightforward; fidgeting behaviors increased 
throughout the observation period (see Table  1 and 
Fig. 8).

In summary, we observed a relative increase in Fatigue 
and Fidgeting in the Automation-L2 condition compared 
to the Naturalistic Control condition. Fidgeting behavior 
was also found to increase over the 6–8  weeks of study 
participation. However, when compared to the Experi-
mental Control condition, neither Fatigue nor Fidgeting 
appeared to be affected by automation use. These results 
indicate that an additional, unidentified factor could 
influence the decision to use automation, and this fac-
tor might also be linked to increased levels of fatigue and 
fidgeting behaviors.

Secondary task engagement
Two classes of observable behaviors related to secondary 
task engagement were used to address the following sets 
of questions on driver secondary task engagements dur-
ing Level 2 automation use:

• Secondary Task Engagement Q1—How does the fre-
quency of secondary task use (non-driving related) 
change during Level 2 automation compared to Level 
0 manual driving over time?

• Secondary Task Engagement Q2—How does the fre-
quency of task type, mode of interaction (voice versus 
manual), and interface (cell phone versus In-Vehicle 
Information System [IVIS]) change during Level 2 
automation compared to Level 0 manual driving?

To address these questions, several distinct second-
ary task behaviors were coded, including Radio Listen-
ing, Text Messaging, Phone Conversation, Navigation, 
and Video Interaction. Additionally, an aggregate of 

Table 2 Pairwise comparisons from linear mixed effect models 
predicting fatigue and fidgeting, by condition collapsed across 
week

The significant comparisons are indicated with asterisks such that p < .05*, p < 
.01** and p < .001***

Pairwise comparisons t ratio df p value

Fatigue Automation-L2 vs. experimental 
control

− 1.38 879 .353

Automation-L2 vs. naturalistic control − 2.77 876 .016*

Experimental control vs. naturalistic 
control

1.35 878 .368

Fidgeting Automation-L2 vs. experimental 
control

2.27 874 .060

Automation-L2 vs. naturalistic control − 2.60 873 .026*

Experimental control vs. naturalistic 
control

4.84 874 .000***

Fig. 7 Driver Arousal: Fatigue and Fidgeting – by Condition collapsed 
across week. The three significant pairwise comparisons are indicated 
with asterisks such that p < .05*, p < .01** and  p < .001***

Fig. 8 Significant effect of Fidgeting by Week. The Y axis, observable 
percent, indicates the percentage of fidgeting behavior at any 
given moment within a drive
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all secondary task usage was created (Task Aggre-
gate), which represents the sum of all secondary task 
interactions.

Regarding the first question (Secondary Task Engage-
ment Q1), results indicated a main effect of Condition on 
the Task Aggregate, Radio Listening, and Text Messaging 
tasks, while the effect of Week was significant on the Task 
Aggregate and Text Messaging Tasks (See Table  3 and 
Fig. 9). Notably, instances of texting were suppressed dur-
ing the first week and much higher thereafter, which by 
itself may account for the apparent learning effect across 
week on this measure. Pairwise comparisons of the Task 
Aggregate showed that greater secondary task engage-
ment was observed in the Automation-L2 condition 
compared to the Naturalistic Control condition, but not 
the Experimental Control condition; both controls dif-
fered from each other (See Table 4 and Fig. 10). Pairwise 
comparisons of the Radio Listening task indicated that it 
was more common in the Automation-L2 condition than 
either of the control conditions. Finally, Text Messaging 
was found to be more common in the Automation-L2 
condition than in the Naturalistic Control condition. A 
Condition x Week interaction was also observed on the 
Navigation task; however, because neither of the main 

effects of Condition and Week were significant, the inter-
pretation of this interaction is unclear.

To address the second set of questions (Secondary 
Task Engagement Q2), we collapsed all tasks accord-
ing to their modality of interaction (either Auditory 
Vocal or Visual Manual). This grouped all secondary 
task interactions that occurred either through the vehi-
cle interface or through a secondary device such as a 
smartphone. Results indicated no significant effects 
of Condition but a main effect of Week on the Task 
Aggregate (see Table 5 and Fig. 11). Thus, irrespective 
of the condition, drivers were more likely to engage 
in secondary Visual Manual Tasks with each week of 
vehicle use. Data were then collapsed according to the 
interface (either Smartphone or Vehicle IVIS). Results 
indicated a main effect of Condition on Vehicle IVIS 
use (see Table  5), but pairwise comparisons failed to 
indicate any significant contrasts (see Table 6). Results 
also showed a main effect of Week on Smartphone 
interactions, with Smartphone interactions significantly 
increasing during each week of the study (Fig.  11). 
Taken together, these findings indicate that drivers 
increased their Visual Manual interactions with their 
smartphones with each week of the study, but the driv-
ing Condition, either with or without Automation-L2, 

Table 3 Main effects of linear mixed effects models predicting secondary task behaviors

The significant comparisons are indicated with asterisks such that p < .05*, p < .01** and p < .001***

Main Effects Condition Week Condition x Week

Task Aggregate F(2, 873) = 15.6, p < .000*** F(1, 883) = 12.8, p < .000*** F(1, 869) = 1.18, p = .031

Radio Listening F(2, 872) = 9.59, p < .000*** F(1, 883) = 0.14, p = .712 F(2, 868) = 0.24, p = .786

Text Messaging F(2, 871) = 3.27, p = .038* F(1, 878) = 10.7, p = .001*** F(2, 868) = 0.23, p = .796

Phone Conversation F(2, 873) = 1.00, p = .334 F(1, 894) = 2.86, p = .091 F(2, 870) = 0.33, p = .719

Navigation F(2, 871) = 0.35, p = .705 F(1, 880) = 0.84, p = .359 F(2, 868) = 4.93, p = .007**

Video Watching F(2, 872) = 0.33, p = .717 F(1, 882) = 0.05, p = .823 F(2, 868) = 0.03, p = .969

Fig. 9 Secondary Task Engagement – significant effects of Task Aggregate and Text Messaging by Week. The Y axis indicates the percentage of time 
that any of the tasks were active. In the case of the Task Aggregate, the observable percentages over 100 indicate that that on average more than 1 
task was active at any given time
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Table 4 Pairwise comparisons from linear mixed effect models predicting secondary task behaviors by condition collapsed across 
week

The significant comparisons are indicated with asterisks such that p < .05*, p < .01** and p < .001***

Pairwise comparisons t ratio df p value

Task Automation-L2 vs. Experimental Control − 1.47 872 .308

Automation-L2 vs. Naturalistic Control − 5.41 872 .000***

Experimental Control vs. Naturalistic Control − 5.41 872 .000***

Radio Automation-L2 vs. Experimental Control − 2.61 872 .025*

Automation-L2 vs. Naturalistic Control − 4.35 872 .000***

Experimental Control vs. Naturalistic Control 1.67 872 .218

Texting Automation-L2 vs. Experimental Control − 1.14 872 .492

Automation-L2 vs. Naturalistic Control − 2.55 871 .029*

Experimental Control vs. Naturalistic Control 1.38 872 .352

Phone Conversation Automation-L2 vs. Experimental Control 1.43 874 .325

Automation-L2 vs. Naturalistic Control .371 873 .927

Experimental Control vs. Naturalistic Control 1.07 873 .534

Navigation Automation-L2 vs. Experimental Control − .822 872 .689

Automation-L2 vs. Naturalistic Control − .277 872 .959

Experimental Control vs. Naturalistic Control − .551 872 .846

Video Automation-L2 vs. Experimental Control .264 872 .962

Automation-L2 vs. Naturalistic Control − .542 872 .851

Experimental Control vs. Naturalistic Control .798 872 .704

Fig. 10 Secondary Task Engagement – pairwise comparisons for Condition, collapsed across Week. Significant contrasts were observed in the Task 
Aggregate, Radio Listening, and Text Messaging tasks, these are indicated by asterisks such that p < .05*, p < .01**, p < .001***. The Y axis indicates 
the percentage of time that any of the tasks were active. In the case of the Task Aggregate, the observable percentages over 100 indicate 
that that on average more than 1 task was active at any given time
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did not seem to affect the findings. In other words, as 
drivers gained familiarity with their vehicles, they were 
more inclined to engage in secondary tasks, regardless 
of whether automation was active.

Discussion
The primary aim of this research was to better under-
stand driver behavior when using Level 2 vehicle auto-
mation. This research was designed to fill key gaps in 

the scientific literature using a unique approach that 
combined aspects of naturalistic driving research and 
controlled experimental research. Video data was col-
lected and analyzed on 30 drivers, each of whom drove 
one of 5 partially automated (SAE Level 2) instru-
mented research vehicles for 6–8  weeks. Critically, 
participants were instructed not to use automation 
on one day each week (the experimental control day). 
This experimental control was compared with a more 

Table 5 Main effects of linear mixed effects models predicting different modalities of secondary task behaviors

The significant comparisons are indicated with asterisks such that p < .05*, p < .01** and p < .001***

Main effects Condition Week Condition x Week

Auditory verbal F(2, 878) = 1.71, p = .181 F(1, 890) = 0.17, p = .681 F(2, 874) = 0.37, p = .691

Visual manual F(2, 871) = 2.86, p = .058 F(1, 880) = 15.4, p < 000*** F(2, 868) = 0.28, p = .755

Smartphone F(2, 871) = 2.29, p = 0.10 F(1, 880) = 16.3, p < 000*** F(2, 868) = 0.10, p = .909

Vehicle IVIS F(2, 877) = 3.45, p = .032* F(1, 902) = 000, p = .982 F(2, 873) = .435, p = .648

Fig. 11 Significant main effects of Week on the Visual Manual and Smartphone secondary task engagements

Table 6 Pairwise comparisons from linear mixed effect models predicting different modalities of secondary task behaviors by 
condition collapsed across week

The significant comparisons are indicated with asterisks such that p < .05*, p < .01** and p < .001***

Pairwise Comparisons t ratio df p value

Auditory Verbal Automation-L2 vs. Experimental Control 1.15 882 .483

Automation-L2 vs. Naturalistic Control − 0.69 878 .769

Experimental Control vs. Naturalistic Control 1.83 880 .160

Visual Manual Automation-L2 vs. Experimental Control − 0.72 872 .750

Automation-L2 vs. Naturalistic Control − 2.34 872 .051

Experimental Control vs. Naturalistic Control 1.58 872 .254

Smartphone Automation-L2 vs. Experimental Control − 0.58 872 .834

Automation-L2 vs. Naturalistic Control − 2.08 872 .095

Experimental Control vs. Naturalistic Control 1.47 872 .305

Vehicle IVIS Automation-L2 vs. Experimental Control − 0.58 872 .834

Automation-L2 vs. Naturalistic Control − 2.08 872 .095

Experimental Control vs. Naturalistic Control 1.47 872 .305
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traditional naturalistic control condition where, for one 
reason or another, participants chose not to use auto-
mation even though it was available to them. Driver 
behavior in each of the two control conditions was 
then contrasted with behavior observed during Level 2 
automation use. Analyses presented in this manuscript 
center on four topical research areas: Level 2 auto-
mation usage patterns, system warnings and driving 
demand, driver arousal as measured with fatigue and 
fidgeting, and secondary task engagement. Results from 
this hybrid research approach provide data that both 
bolster and challenge previous findings in each of these 
areas.

Automation Usage. In this study, drivers used Level 
2 vehicle automation more than 70% of the time, a 
rate that remained fairly consistent over the 6–8 week 
observation period. It’s worth noting that this high level 
of automation use may not be representative of general 
usage patterns as participants were not only encour-
aged to use automation when they felt comfortable but 
were also required to have a daily commute of at least 
40 min each way to qualify for the study. Additionally, 
sections of each commute that were not on controlled 
access highways were not coded. Interestingly, these 
usage trends align well with findings from Stapel et al. 
(2022), who reported a 57–63% rate of Level 2 automa-
tion use on highways, sustained over a 12-week obser-
vation period. This consistent rate of automation use 
across both studies suggests that drivers may remain 
comfortable with these system’s performance, their 
monitoring requirements, and any potential driving 
benefits they may have offered.

System Warnings and Driving Demand. Across the 
6–8  weeks of automation use, we observed an increase 
in the frequency of system warnings as drivers become 
more experienced with the Level 2 vehicle automation. 
While the cause of this increase was not clear, the finding 
suggests an increased comfort with the automation and a 
tendency toward a more relaxed automation monitoring 
strategy over time. Warnings were found to vary widely 
between individuals. Some drivers rarely, if ever, expe-
rienced warnings while others received several warn-
ings per minute and treated them as if they were simply 
a nuisance that could quickly be quieted through gentle 
pressure on the steering wheel or a glance to the forward 
roadway.

Poor conditions related to weather, traffic, construc-
tion, emergency vehicles, or other events that would 
reasonably be expected to adversely affect driving were 
coded and aggregated to form a measure of driving 
demand. We characterized demand as low if no poor con-
ditions were present, moderate if one poor condition was 
present, and high if two or more poor conditions were 

present. We then evaluated the relationship between 
driving demand and the use of Level 2 vehicle automa-
tion. Results indicated that drivers were less likely to use 
vehicle automation when driving demands were higher. 
This suggests that drivers were aware of changes in road-
way demand and were more likely to use automation 
when it was safer to do so. This finding echoes research 
by Fitch et al. (2015) who reported that drivers engaged 
in secondary tasks less frequently as the demand of the 
driving task increased. This sensitivity to roadway con-
ditions, influencing when drivers choose to engage with 
automation or undertake secondary tasks, is a key insight 
that may reconcile the observed differences between the 
experimental and naturalistic control conditions in this 
research.

Driver Arousal—Fatigue and Fidgeting. As previously 
discussed, a major safety concern with the use of Level 
2 vehicle automation is that it may lead to an increase 
in driver fatigue. Findings on this were mixed (c.f., 
Figs.  7). When contrasting the fatigue observed in the 
Automation-L2 condition with the Experimental Con-
trol condition, we found that automation use did not 
increase either fatigue or fidgeting behaviors. However, 
an increase in fatigue was observed when comparing 
the Automation-L2 condition with the Naturalistic Con-
trol condition (in which the participant opted to drive 
manually). Additionally, a decrease in fidgeting was also 
observed when comparing the Automation-L2 condi-
tion with the Naturalistic Control condition. However, 
if we just consider results from the stronger Experimen-
tal Control, we see no difference in fatigue or fidgeting 
related to Automation-L2 usage. Overall, these findings 
imply that the observed fatigue associated with Automa-
tion-L2 usage may stem more from the timing of when 
drivers opt to use automation, rather than being a direct 
consequence of automation itself.

The finding that automation was and was not associ-
ated with fatigue and fidgeting when using the strong 
Experimental Control adds an interesting nuance to the 
literature and reinforces the importance of including a 
strong and valid control condition in research designs. 
Automation is often singled out as the cause of fatigue 
in popular videos where drivers are seen to be sleeping 
as the vehicle drives itself. While this is clearly danger-
ous, it is not clear from a single case whether these driv-
ers would have done the same under manual control and 
possibly driven off the road. If this were known, we might 
conclude that the automation prevented a fatigue-related 
crash. The answer to the question of whether automa-
tion does or does not lead to driver fatigue hinges on 
the follow-up question: compared to what? Compared 
to a strong experimental control, these data suggest that 
automation may not lead to levels of fatigue suggested 
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by online videos and some prior research (ABC, 2023; 
Vogelpohl et al., 2019; Lu et al., 2021).

Secondary Task Engagement. One of the most reported 
findings related to automation use is that it leads to an 
increase in the frequency of non-driving related second-
ary task engagement. This is a significant safety concern 
for lower-level automated vehicles (Level 1, Level 2, and 
to a lesser extent Level 3), as secondary task use has been 
shown to reduce a driver’s ability to take over vehicle 
control quickly and safely when required. We also found 
patterns of increased secondary task use with automa-
tion. Again, however, the nature and potential severity 
of these findings depended on which control condition 
is used for the comparison. When using the stronger 
Experimental Control, our results indicated that drivers 
were more likely to listen to the radio when automation 
was engaged, which, based on our prior work, is not a 
significant safety concern (Strayer et al., 2013). However, 
when compared to the Naturalistic Control condition, an 
increase in Text Messaging and the Task Aggregate (the 
sum of all secondary task interactions) is also seen. Taken 
together, these findings indicate several notable second-
ary task trends, but again, they do not show the con-
cerning increase in distracting behaviors that some have 
suggested occurs with vehicle automation.

Contrasts between Experimental and Naturalistic 
Controls. The strength of naturalistic research is that it 
eschews experimental intervention in favor of natural-
istic observation. However, two major limitations of the 
naturalistic method make it a poor approach to resolve 
the behavioral profile associated with automation use. 
The first limitation is that drivers may selectively choose 
when to engage in secondary tasks for reasons that are 
important but not, perhaps, obvious. This is especially 
problematic with automation as drivers are likely to use 
automation only when they feel it is appropriate. The 
selection of baseline events from the remaining drives 
is therefore confounded by the fact that drivers may feel 
that they are unsuitable for automation use. The second 
limitation of uncontrolled naturalistic designs for evalua-
tion of automation use is that they often, but not always, 
rely on the use of machine vision to automatically detect 
vehicle states. While these approaches have improved 
greatly, they require significant training data to imple-
ment and are sensitive to visual noise. The hybrid design 
implemented in this research resolves both issues.

Functional Vigilance. We found that drivers in the 
Experimental Control condition exhibited a behavioral 
profile that was markedly different from that observed 
in the Naturalistic Control condition. Given that driv-
ers were, in each case, driving without automation, this 
finding begs the question: What differed? In most cases, 
variable means in the Experimental Control fell between 

the Automation-L2 and Naturalistic Control conditions 
(e.g., Fatigue, the secondary Task Aggregate, Radio Lis-
tening, and Text Messaging). But in the case of Fidgeting, 
we found the most fidgeting in the Experimental Control 
condition when drivers were not allowed to use automa-
tion. If we also consider the finding that automation use 
was lower when driving demands were higher, then one 
compelling explanation for these findings is that driving 
demand may mediate the relationship between automa-
tion use and secondary task engagements such that driv-
ers may be less likely to use automation and less likely 
to engage in secondary tasks when driving demands are 
higher. Additionally, the observation that variable means 
from the Experimental Control condition often fell 
between those from the Automation-L2 and Naturalistic 
Control conditions fits with the fact that driving demand 
was experimentally controlled to be comparable in the 
Automation: YES (Automation-L2 + Naturalistic Con-
trol) and the Automation: No days (Experimental Con-
trol) (see Fig. 4). Overall, these results are consistent with 
the hypothesis that drivers maintain a level of functional 
vigilance when using automation that allows them to nat-
urally slip in and out of automation as roadway demands 
change (Fridman et al., 2017).

Behavioral Adaptation. Our findings, when interpreted 
through the lens of the three-phase model of Advanced 
Driver-Assistance Systems operations proposed by 
Dunn et al. (2019), suggest a notable behavioral adapta-
tion among drivers. This adaptation is evidenced by an 
increase in the frequency of system warnings over the 
6–8 week observation period. This trend aligns well with 
the "post-novelty operational phase" of the model, indi-
cating that drivers, upon becoming more familiar with 
Level 2 vehicle automation, are actively testing its capa-
bilities and limitations. The escalation in system warn-
ings could signify a maturation in understanding the 
system’s boundaries, which is consistent with a learning 
curve associated with the usage of advanced driver assis-
tance systems.

In terms of secondary task engagement, an upward 
trend was observed in both the Task Aggregate and Text 
Messaging metrics. This increase, however, did not show 
a significant interaction with the Condition (Automa-
tion-L2, Experimental Control, Naturalistic Control), 
suggesting that the elevated engagement in secondary 
tasks may not be directly linked to an over-reliance on 
the automation system. Rather, it may reflect a broader 
trend of participants growing increasingly comfortable 
with multitasking in the vehicles, irrespective of the pres-
ence of automation features. It is noteworthy that the 
frequency of texting behavior was exceptionally low dur-
ing the initial week of participation, which alone could 
account for the progressive increase in texting behavior 
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that was observed over time. Without this suppression, 
texting rates appear to have remained stable throughout 
the period of observation. Similarly, an increase in visual-
manual interactions with smartphones was noted, which 
also lacked a significant interaction with the Condition 
conditions. This absence of a differential effect suggests 
that the rise in secondary tasks does not necessarily orig-
inate from the use of automation and aligns with behav-
iors observed under non-automated conditions.

Overall, the data indicate a pattern of behavioral 
adaptation in response to Level 2 vehicle automation, 
which appears to be functional in nature rather than 
indicative of problematic over-reliance. These findings 
contribute to our understanding of how drivers adapt 
to automated systems over time and underscore the 
importance of considering such adaptation when evalu-
ating the safety implications of Level 2 automated driv-
ing systems.

Limitations. This study offers important insights into 
driver behavior during Level 2 automation, however, 
there are several limitations that should be acknowl-
edged. The sample size of 30 participants may not rep-
resent the broader population of drivers. While the 
study aimed to recruit a diverse group of participants, 
a larger sample would allow for a more accurate rep-
resentation of the general population and increase the 
generalizability of the findings. Furthermore, the study 
duration of 6–8  weeks may not be sufficient to fully 
understand the long-term effects of Level 2 automa-
tion on driver behavior. It is likely that driver behav-
ior continues to evolve as they become more familiar 
with and reliant on the technology. Future research 
should explore longer observation periods to better 
understand how drivers adapt to automation over time. 
Lastly, the potential for the Hawthorne effect should 
also be considered. Participants were aware that they 
were part of a study, and they were aware that they were 
being monitored by video camera. While often brushed 
aside in relevance, naturalistic video observation is 
potentially invasive and having cameras in the research 
vehicles may have influenced driver behavior during the 
observation period. It is possible that drivers may have 
behaved more cautiously or differently than they would 
have under normal, unobserved circumstances.
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