Altmann, E. M., & Trafton, J. G. (2002). Memory for goals: An activation-based model. Cognitive Science, 26(1), 39–83.
Article
Google Scholar
Altmann, E. M., Trafton, J. G., & Hambrick, D. Z. (2014). Momentary interruptions can derail the train of thought. Journal of Experimental Psychology: General, 143(1), 215. https://doi.org/10.1037/a0030986
Article
Google Scholar
Avery, R. E., Smillie, L. D., & de Fockert, J. W. (2013). The role of working memory in achievement goal pursuit. Acta Psychologica, 144(2), 361–372. https://doi.org/10.1016/j.actpsy.2013.07.012
Article
PubMed
Google Scholar
Balint, B. J., Steenburg, S. D., Lin, H., Shen, C., Steele, J. L., & Gunderman, R. B. (2014). Do telephone call interruptions have an impact on radiology resident diagnostic accuracy? Academic Radiology, 21(12), 1623–1628. https://doi.org/10.1016/j.acra.2014.08.001
Article
PubMed
Google Scholar
Berggren, N., & Eimer, M. (2019). Visual working memory load disrupts the space-based attentional guidance of target selection. British Journal of Psychology, 110(2), 357–371. https://doi.org/10.1111/bjop.12323.
Article
Google Scholar
Brady, T. F., Konkle, T., Alvarez, G. A., & Oliva, A. (2008). Visual long-term memory has a massive storage capacity for object details. Proceedings of the National Academy of Sciences, 105(38), 14325–14329. https://doi.org/10.1073/pnas.0803390105
Article
Google Scholar
Bravo, M. J., & Farid, H. (2009). The specificity of the search template. Attention, Perception, & Psychophysics, 74(1), 124–131.
Article
Google Scholar
Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97(4), 523–547. https://doi.org/10.1037/0033-295X.97.4.523
Article
PubMed
Google Scholar
Bundesen, C., Habekost, T., & Kyllingsbæk, S. (2005). A neural theory of visual attention: Bridging cognition and neurophysiology. Psychological Review, 112(2), 291–328. https://doi.org/10.1037/0033-295X.112.2.291
Article
PubMed
Google Scholar
Carlisle, N. B., Arita, J. T., Pardo, D., & Woodman, G. F. (2011). Attentional templates in visual working memory. Journal of Neuroscience, 31(25), 9315–9322. https://doi.org/10.1523/JNEUROSCI.1097-11.2011
Article
PubMed
Google Scholar
Cowan, N. (1998). Visual and auditory working memory capacity. Trends in Cognitive Sciences, 60(12), 547–552.
Google Scholar
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.
Article
Google Scholar
Drew, T., Williams, L. H., Jones, C. M., & Luria, R. (2018). Neural processing of repeated search targets depends upon the Stimuli: Real world stimuli engage semantic processing and recognition memory. Frontiers in Human Neuroscience, 12, 460.
Article
Google Scholar
Drews, F. A., & Musters, A. (2015). Individual differences in interrupted task performance: One size does not fit all. International Journal of Human Computer Studies, 79, 97–105. https://doi.org/10.1016/j.ijhcs.2015.01.003
Article
Google Scholar
Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433–458. https://doi.org/10.1037/0033-295X.96.3.433
Article
PubMed
Google Scholar
Foroughi, C. K., Werner, N. E., McKendrick, R., Cades, D. M., & Boehm-Davis, D. A. (2016). Individual differences in working-memory capacity and task resumption following interruptions. Journal of Experimental Psychology Learning Memory and Cognition, 42(9), 1480–1488. https://doi.org/10.1037/xlm0000251
Article
Google Scholar
Goldstein, R. R., & Beck, M. R. (2018). Visual search with varying versus consistent attentional templates: Effects on target template establishment, comparison, and guidance. Journal of Experimental Psychology: Human Perception and Performance, 44(7), 1086–1102. https://doi.org/10.1037/xhp0000520.
Article
PubMed
Google Scholar
Hout, M. C., & Goldinger, S. D. (2015). Target templates: The precision of mental representations affects attentional guidance and decision-making in visual search. Attention, Perception, and Psychophysics, 77(1), 128–149. https://doi.org/10.3758/s13414-014-0764-6
Article
Google Scholar
Kohn, L. T., Corrigan, J., & Donaldson, M. S. (2000). To err is human: Building a safer health system. National Academy Press.
Google Scholar
Kunar, M. A., Watson, D. G., Taylor-Phillips, S., & Wolska, J. (2017). Low prevalence search for cancers in mammograms: Evidence using laboratory experiments and Computer Aided Detection. Journal of Experimental Psychology: Applied, 23(4), 369–385. https://doi.org/10.1037/xap0000132
Article
PubMed
Google Scholar
Lavelle, M., Alonso, D., & Drew, T. (2021). Visual working memory plays limited, to no role in encoding distractor objects during visual search. Visual Cognition, 29(5), 288–309.
Article
Google Scholar
Li, S. Y., Blandford, A., Cairns, P., & Young, R. M. (2008). The effect of interruptions on postcompletion and other procedural errors: An account based on the activation-based goal memory model. Journal of Experimental Psychology: Applied, 14(4), 314. https://doi.org/10.1037/a0014397
Article
PubMed
Google Scholar
Lleras, A., Rensink, R. A., & Enns, J. T. (2005). Rapid resumption of interrupted visual search: New insights on the interaction between vision and memory. Psychological Science, 16(9), 684–688. https://doi.org/10.1111/j.1467-9280.2005.01596.x
Article
PubMed
Google Scholar
Malcolm, G. L., & Henderson, J. M. (2009). The effects of target template specificity on visual search in real-world scenes: Evidence from eye movements. Journal of Vision, 9(11), 8–8. https://doi.org/10.1167/9.11.8
Article
PubMed
Google Scholar
Menneer, T., Cave, K. R., & Donnelly, N. (2009). The cost of search for multiple targets: Effects of practice and target similarity. Journal of Experimental Psychology: Applied, 15(2), 125–139. https://doi.org/10.1037/a0015331
Article
PubMed
Google Scholar
Meys, H. L., & Sanderson, P. M. (2013). The effect of individual differences on how people handle interruptions. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 57, 868–872. https://doi.org/10.1177/1541931213571188
Article
Google Scholar
Monk, C. A. (2004). The effect of frequent versus infrequent interruptions on primary task resumption. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 48(3), 295–299. https://doi.org/10.1177/154193120404800304.
Article
Google Scholar
Monk, C. A., Trafton, J. G., & Boehm-Davis, D. A. (2008). The effect of interruption duration and demand on resuming suspended goals. Journal of Experimental Psychology: Applied, 14(4), 299–313. https://doi.org/10.1037/a0014402
Article
PubMed
Google Scholar
Oh, S. H., & Kim, M. S. (2004). The role of spatial working memory in visual search efficiency. Psychonomic Bulletin and Review, 11(2), 275–281. https://doi.org/10.3758/BF03196570
Article
PubMed
Google Scholar
Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., Kastman, E., & Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior Research Methods, 51(1), 195–203. https://doi.org/10.3758/s13428-018-01193-y.
Article
PubMed
PubMed Central
Google Scholar
Reinhart, R. M. G., McClenahan, L. J., & Woodman, G. F. (2016). Attention’s accelerator. Psychological Science, 27(6), 790–798. https://doi.org/10.1177/0956797616636416
Article
PubMed
PubMed Central
Google Scholar
Schmidt, J., & Zelinsky, G. J. (2009). Short article: Search guidance is proportional to the categorical specificity of a target cue. Quarterly Journal of Experimental Psychology, 62(10), 1904–1914. https://doi.org/10.1080/17470210902853530
Article
Google Scholar
Trafton, J. G., Altmann, E. M., Brock, D. P., & Mintz, F. E. (2003). Preparing to resume an interrupted task: effects of prospective goal encoding and retrospective rehearsal. International Journal of Human Computer Studies, 58(5), 583–603. https://doi.org/10.1016/S1071-5819(03)00023-5.
Article
Google Scholar
Trafton, J. G., Altmann, E. M., & Ratwani, R. M. (2011). A memory for goals model of sequence errors. Cognitive Systems Research, 12(2), 134–143. https://doi.org/10.1016/j.cogsys.2010.07.010
Article
Google Scholar
Werner, N. E., Chang, J., Khan, H., Cades, D. M., Boehm-Davis, D. A., & Thi, G. (2011). What makes us resilient to interruptions? Understanding the role of individual differences in resumption. In Proceedings of the human factors and ergonomics society 55th annual meeting (pp. 296–300). https://doi.org/10.1177/1071181311551062
Westbrook, J. I., Woods, A., Rob, M. I., Dunsmuir, W. T. M., & Day, R. O. (2010). Association of Interruptions with an increased risk and severity of medication administration errors. Archives of Internal Medicine, 170(8), 683–690.
Article
Google Scholar
Williams, L. H., & Drew, T. (2017). Distraction in diagnostic radiology: How is search through volumetric medical images affected by interruptions? Cognitive Research: Principles and Implications, 2(1), 12. https://doi.org/10.1186/s41235-017-0050-y
Article
Google Scholar
Williams, L. H., & Drew, T. (2018). Working memory capacity predicts search accuracy for novel as well as repeated targets. Visual Cognition, 26(6), 463–474. https://doi.org/10.1080/13506285.2018.1490370
Article
Google Scholar
Wolfe, J. M., Evans, K. K., Drew, T., Aizenman, A., & Josephs, E. (2016). How do radiologists use the human search engine? Radiation Protection Dosimetry, 169, 24–31. https://doi.org/10.1093/rpd/ncv501
Article
PubMed
PubMed Central
Google Scholar
Woodman, G. F., & Arita, J. T. (2011). Direct electrophysiological measurement of attentional templates in visual working memory. Psychological Science, 22(2), 212–215. https://doi.org/10.1177/0956797610395395
Article
PubMed
Google Scholar
Woodman, G. F., Carlisle, N. B., & Reinhart, R. M. G. (2013). Where do we store the memory representations that guide attention? Journal of Vision, 13(3), 1–17. https://doi.org/10.1167/13.3.1
Article
PubMed
PubMed Central
Google Scholar
Woodman, G. F., & Luck, S. J. (2004). Visual search is slowed when visuospatial working memory is occupied. Psychonomic Bulletin & Review, 11(2), 269–274.
Article
Google Scholar
Woodman, G. F., Luck, S. J., & Schall, J. D. (2007). The role of working memory representations in the control of attention. Cerebral Cortex, 17(1), i118–i124. https://doi.org/10.1093/cercor/bhm065
Article
PubMed
Google Scholar
Yu, J. P. J., Kansagra, A. P., & Mongan, J. (2014). The radiologist’s workflow environment: Evaluation of disruptors and potential implications. Journal of the American College of Radiology, 11(6), 589–593. https://doi.org/10.1016/j.jacr.2013.12.026
Article
PubMed
Google Scholar
Zish, K., Hassanzadeh, S., McCurry, J. M., & Trafton, J. G. (2015). Interruptions can change the perceived relationship between accuracy and confidence. In Proceedings of the human factors and ergonomics society 59th annual meeting (pp. 230–234). https://doi.org/10.1177/1541931215591047