Participants
A total of 166 undergraduate students (74 women, 92 men) from a large University in the United States participated in a Psychology 101 study for 2.5 h of course credit. Inclusion criteria included being able to stand for 1.5 h. Participants were randomly assigned to the four conditions after signing informed consents. If they arrived with extremely low expressive English skills, the tester could choose to administer an experimenter-designed language test wherein the participants read a paragraph in English and verbally answered five questions. One hundred and seventy-two students came, but six were dismissed from the study, with credit. Because there was a non-trivial amount of reading in the assignment, it was crucial that participants be able to read and comprehend the English language load. The demographics survey revealed that 27 participants (16%) took the TOEFL test and that 30% were science majors.
Apparati
Two intervention rooms were used. Both had equal-sized large projection surfaces. The first room had a Promethean™ ACTIVBoard with a 78-inch diagonal, the second room had a ceiling-mounted NEC™ M300WS projector that projected onto a white wall with a 78-inch diagonal display. Both projection devices and CPUs connected to the Microsoft Kinect (Version 1 or “Xbox 360”) sensor. In the first two conditions the Kinect sensor was disabled (S&T and Lo-EMB) but visually present.
The Intuous® Wacom Pro multitouch tablet was used to gather the gestures as one of the tests. The one tablet was shared between the two test rooms due to cost. The Wacom is the go-to drawing surface for artists due to its pressure sensitivity. The Pro has a physical size of 19.1 × 12.5 inches; however, the Pro active area (sensitive to finger touch) was 12.8 × 8.0 (i.e., a 15.1-inch diagonal).
Design
The study was a mixed 2 × 4 design. The first factor was time with a pre-test and post-test and the second factor was embodiment/narrative with four conditions. Participants were randomly assigned to one of four conditions via a random number generator. An experimenter worked with a single participant one-on-one. A full session with all the tests took an average of 75 min (the time on task, or “instructed content” lasted on average of 50 min in the first three conditions and 57 min in the final narrative condition). We note that four of the non-native speakers took over 2 h (120 min) to complete all the tests and content.
Every section began with instructional text cards on aspects of the electric field. Participants were asked to read the short cards; however, the cards were also delivered auditorally. Participants could not skip forward with the clicker through the instructional cards until the cards had been heard through. The instructional text was written to be very low embodied, for example, words with agency and emotion were avoided, so the words “push, pull, attract, repel” did not show up, instead, terms like “moves towards” or “moves away from” were used. The instructional text did not vary between conditions. All participants stood in the middle of the room and advanced to new sections with a handheld clicker. In this way, pacing was somewhat under user control. Although they could go back and reread within a text section, they could not skip to entirely new (or old) sections. There were seven sections in the lesson. The manipulation is what happened in between the instructional text cards.
The Manipulated Conditions.
-
(1)
Symbols and Text (S&T). In between the text card sections, the S&T group answered quiz questions that included only text and symbols for equations and questions. Participants read the short multiple choice text-only questions that appeared after each content section. After each text section there were four multiple choice questions designed to reinforce what had just been read and to equate for time between conditions. Thus, no graphics nor simulations were seen or acted upon between sections, participants only answered quiz questions and received feedback after the submission of each answer. We equate this condition to the sort of textbook style of learning prevalent until about a decade ago. In all conditions participants received real-time feedback on submissions.
-
(2)
Low Emb. In the low embodied condition, participants watched animations of simulations that were pre-created (like viewing a video). The participants could start the animations, but they could not actively control the action within the animations. As an example, in the Electron Counter, they watched seven trials of electrons being added or deleted from the counting sphere (behind the GOAL card in Fig. 1). They then saw the sum calculated in real time via moving arrows on the bottom right in the Calculate box. See Fig. 1.
In the low embodied condition, they did not perform the action of moving their hands to “grab” the electrons; they observed an animated hand on screen doing that action. The first three trials were “show trials.” We scaffolded how the simulation worked; the show trials always included at least one error that received feedback. The next four trials were for a score and were view only. Again, the first three conditions (1, 2, and 3) were equated for time.
-
(3)
High EMB. The final two conditions (3 and 4) are both considered high embodied. In condition 3, the Kinect sensor was turned on. The Kinect sensor was present in the experimental rooms in all four conditions, but only activated for conditions 3 and 4. After the instructional text sections, participants were able to physically interact with the seven simulations (described below). As an example, in the Electron Counter, the Kinect read the location of the “highest hand” at 60 Hertz. Using this hand algorithm, it was not necessary to worry about handedness. Participants were told to raise their dominant hand with a clicker and press the button to select electrons from the holding area in the Electron box (see Fig. 2). After viewing three practice trials (similar to condition 2), the participants then took control of the next four trials in which they actively grabbed electrons and created their own atoms. Participants could grab electrons from the bottom left and add electrons into the sphere. Or, if the atom had too many electrons in the nucleus, participants could click and remove electrons from the atom. When participants decided they had added or deleted the correct amount of negative electrons to match the target value, they then selected Calculate with the clicker. A tally was then displayed in Current with a moving arrow that summed up the negative (electrons) and positive (protons) charges to reveal q net. If Current matched the Target value then CORRECT feedback showed up (see video at www.embodied-games.com to clarify the sequence or view the Youtube at https://www.youtube.com/watch?v=eap7vQbMbWQ).
-
(4)
High EMB-Narr (with narrative story line). Condition 4 was the same as the condition 3 except that seven graphic narrative cut scenes (see Fig. 3) were inserted before the simulations. This figure shows the Lightning Master’s lab. A cut scene is a comic-style graphic with text bubbles that appeared and faded; ours were accompanied by music. The total time of display was 418 s (referred to as 7 min hereafter). The cut scenes were displayed after the instructional text and motivated the next simulation. The participant’s point of view (POV) was a first person in the role of an “apprentice to the Lightning Master.” The seven cut scenes are further described in the procedure section.
Procedure
Participants affirmed they could stand for up to 1.5 h, though usually the standing portion only lasted for 50 min. The order of tasks was the same for all four conditions:
-
Participants signed consent forms and were randomly assigned to condition. Based on the few minutes of conversation with the experimenter, participants may have taken the 3-min long English reading test.
-
Content knowledge pre-test – traditional keyboard. This was a non-gesture-based assessment using the keyboard as the input device. See Additional file 1.
-
Content knowledge pre-test – gesture-based. This was a gesture-based assessment that used the Wacom Intuous Pro tablet. See Appendix 1.
-
Intervention – All participants stood in the center of the test room, 5 feet in front of the large display. With a clicker, they were able to advance to sections at their own pace. They were seated after the intervention.
-
Engagement survey – On the computer, participants answered several engagement questions.
-
Content knowledge post-test – Traditional keyboard. Participants took the same pre-test keyboard-based questions.
-
Content knowledge post-test – gesture-based. Participants took the same pre-test Wacom-based questions.
The instructional text
The text on the instructional text cards did not vary between conditions. Participants would silently read and listen to instructional text cards and they could skip backwards to reread within a section. The text was written to be very low embodied, that is, no references were made to the body and no anthropomorphisized expressions were present. After each text section, participants were asked to type in what they learned with open text. Those analyses will be reported elsewhere. The main content concerned charge carried at a distance and the electric field. This is related to Coulomb’s lawFootnote 2; for this study we focused on the proportionality.
The seven simulations
Each of the seven simulations was created in two versions (total = 14): a passive view-only version for condition 2 (Low Embodied) and the manipulable generative version for the two active conditions: conditions 3 (High Embodied) and 4 (High Embodied-Narr). Appendix 2 contains a detailed description of the 14 minigames and their feedback. Below is a shorter description of the low embodied version (A) followed by the high embodied description (B). Figure 4 is a table with seven key images that represent the main screen image for the simulations.
Simulation 1: Atom Builder
To be learned: How to sum charges in an atom
(A) Atom Builder Low Embodied: This simulation served to remind players of the structure of an atom and how charge is measured. In the center of the screen was a slowly spinning nucleus (with protons in red and neutrons in yellow). The goal was to match the target number for valence and an animation either added or deleted electrons to reach the target qnet (displayed in upper left corner). For both the low and high versions of Atom Counter, there were seven trials total.
(B) Atom Counter High Embodied: The Kinect sensor was always in front of the screen in all the conditions. The adding and deleting of electrons was controlled with the player’s highest hand. If the participant held his/her hand over the Electrons box (bottom left of Fig. 2) or the central counting sphere and hit the advance button on the clicker, then the electrons would stop spinning and one electron would glow. The participant was then able to “grab” and move the glowing electron around on the screen. The electron would be released when the participant released the clicker button. This simulation is also described in the introduction section.
Simulation 2: Meter Made
To be learned: How free charges placed near pinned charges reveal the magnitude of the E field, includes dynamic equation
(A) Meter Made – Low Embodied. This simulation was designed to help learners understand that the strength of the electric field (E field) can be assessed with a meter at one point in space. The meter has a charge of +1. The goal is to place the meter, currently filled with question marks in the second image in Fig. 4, so that it will match the Target E field (bottom left of screen), currently 1.000. In the middle of the screen is a pinned charge. The pinned charge will vary in valence and magnitude with each trial. The end game goal is to match the Target E field which reads 1.000. The participant watches the blue and red meter as it moves around the screen to the correct location where the E field is equal to 1.000.
(B) Meter Made – High Embodied. The placement of the meter is controlled by the participant’s highest hand, s/he then presses the clicker button when ready to place the virtual meter on screen. The E field measurement number changes dynamically as the meter is moved. Error feedback was similar to that in the low embodied condition, three trials are allowed before a hint appears. See image number two in Fig. 4.
Simulation 3: Vector Van Gogh
To be learned: Vectors in the E field reveal its magnitude and direction, included dynamic proportionality
(A) Vector Van Gogh – Low Embodied. This simulation was designed to help participants understand the concept of vectors as possessing both magnitude (length of the arrow) and direction (the direction connotes attraction or repulsion). Participants are able to further explore how the strength of the E field can be assessed with pinned and free charges. The participant would watch vectors being drawn from a circular “start point,” a dynamic measurement was displayed under the start point. See image number three in Fig. 4.
(B) Vector van Gogh – High Embodied. The Kinect was used to track the highest hand. The clicker was held in the highest hand. The goal of the high embodied version was for the participant to draw in the air the correct length and direction of the vector. When a participant would start to draw a vector the forward button was held down on the clicker and that button was released when the vector was finished. Similar to the low embodied version, this version also contained two levels of scaffolding; vectors were first animated as show trials, then they were generated (either as a video or by self) and scored.
Simulations 4a and 4b: Push Me Pull U and Mitey Electric Field Hockey
(A) and (B) Push Me Pull U. This served as an observational warm-up to explore vectors associated with two atoms. The dynamic equation in the upper left corner now includes a numerator where q1 is multiplied by q2. The participants would click Activate at the top of the screen and observe how two charged particles would react in a contained space. Both particles would be released from a pinned situation at once and depending on their magnitude and valence, they would either head towards or away from each other. There were four examples.
Simulation 4: Mitey Fields
To be learned: How charges work together to create a non-linear E field
(A) Mitey Fields – Low Embodied Version. Participants observed four simulations in this version. An animation showed how pinned charges could be placed on the screen from the holding spheres below, see the fourth image in Fig. 4. The pinned charge, for example, the q = –5 charge, would be animated up from the lower screen area and placed in the middle of the screen. Once Activate was hit, the resultant E field would carry the blue creature called the “mite” back into a hole. Two errors were modeled as well. The mite always had a charge of +1.
(B) Mitey Fields – High Embodied. In the high embodied version, the participants were able to use their highest hand and the clicker to grab charges from the holding spheres on the bottom of the screen and pin the charges anywhere on the screen. The mite is always charged with +1 so placing the –5 charge behind the mite will make it head straight into the hole. After three errors on-screen hints were given. Videos of all simulation can be seen at the main website, but this game is now a stand-alone one and can be downloaded https://www.embodied-games.com/games/all/mitey-fields.
Simulation 5: Balloon Rub – Friction and Induction
To be learned: Induction via friction
(A) Balloon Rub – Low Embodied. This simulation addressed two important topics. The first topic was friction and it was demonstrated with the classic rubbing of a balloon on one’s hair. To try to mitigate race and gender issues, a stylized artist’s mannequin (avatar or manikin) was used to represent the body on screen. On screen, a yellow balloon was rubbed up and down the side of the avatar’s head to demonstrate how electrons can be stripped from hair (see the fifth image in Fig. 4). As the yellow balloon picked up more electrons the balloon side touching the hair turned to blue, this simulated the balloon becoming charged with electrons from the hair.
The right portion of the screenshot is labeled “Hyper Zoom Camera.” The black strands represent individual hairs and the blue particles are electrons with a charge of –1 each. The second topic of induction was introduced as an animation wherein the avatar pushed the balloon towards the wall and the balloon then stuck to the wall. In Fig. 5, the participant was able to see, subatomically, how the electrons on the balloon surface interacted with the electrons in the wall. In the Hyper Zoom shot, the yellow balloon side is speckled with extra blue electrons, and on the right side (in the wall) the blue electrons are balanced in the neutral wall.
Figure 5 shows the state a few seconds later when the balloon is stuck to the wall. Via induction, the extra electrons on the balloon’s surface have pushed the electrons closest to the surface of the wall a bit further into the wall. The balloon’s negative surface is now strongly attracted to the positive protons near the wall’s surface.
(B) Balloon Rub – High Embodied. In the high embodied version, the Kinect sensor tracked the participant’s right arm movements. Participants faced the screen and sensor, and were instructed to pretend they were rubbing a balloon on their hair. As the participant’s right wrist joint moved up and down, the algorithm gathered the ratio of that movement to map to the velocity of the avatar moving the virtual balloon up and down on screen, i.e. the avatar on screen mimicked the participant’s right arm movements. The velocity of the participant’s balloon rub movement was used to apply force to a physics simulation of hair strands in the Hyper Zoom shot, the hair strands also moved in rhythm to the participants rubbing motion. There was therefore a large degree of agency associated with this simulation. For the second topic of induction, when the participant straightened out his/her right arm, the mannequin’s arm would also straighten out and move the virtual balloon towards the wall. The participant could then leave or retrieve the balloon from the wall.
Simulation 6: Scuff-o-meter
To be learned: How friction can strip electrons from a surface and the potential difference between two charged objects can induce a spark
(A) Low Embodied – Scuff-o-meter. In the low embodied version, the participants watched four animations of a spark occurring between the virtual hand on screen and the silver “glow globe” or spark candle on the right. The glow globe appeared with a different charge in each of the four trials. In the sixth image in Fig. 4, the glow charge is set to q = 10. In the low embodied animation version, the hand on the left side of the screen would animate back and forth rapidly showing that it was picking up electrons via friction (similar to the balloon simulation). The charge on the hand increased with each scuff back and forth. The dynamic formula on screen helped learners to deduce the relationship between the build-up of electrons (the q) and the distance needed for a spark (the r).
(B) Scuff-o-Meter – High Embodied Version. In the high embodied version, the Kinect was used to track the user’s highest hand, as well as the positions of the two knee joints. First, participants were instructed to scuff, that is shuffle, their feet back and forth along a 2-m-long strip of the carpeted room. Participants could see on screen how many electrons they accrued as they scuffed back and forth. They could see electrons accrue both on the virtual hand (via the “q=” label) and as the blue dot electrons increasing in the circles on bottom of the screen (the Scuff-o-meter). When participants decided they had gathered enough electrons to create a spark, they brought their human hand, which was mapped to the virtual hand, towards the virtual glow globe for a spark.
Simulation 7: Dragon Shockra!
To be learned: Charge separation and some of the conditions for lightning
(A) Dragon Shockra – Low Embodied. In the low embodied version, the participants were told that they would see a simulation where pieces of equipment would be “zapped” from a flying dragon, points would be awarded when pieces were knocked off. Participants should “notice the correct conditions” that preceded a lightning strike. To wit, the qnet in the cloud would need to be high enough and the dragon would need to be close enough for a lightning strike. The negative electrons would dynamically accrue in the bottom of the cloud and the charge at the bottom of the cloud was tallied as qnet. See the seventh image in Fig. 4.
This was a “scrolling runner game.” The foreground would scroll to the right and the dragon would appear to fly to the left, towards the cloud. The dragon simulated quasi-random movements. (See Appendix 2 for a further description of all game algorithms.) The dragon had a charge of +1. The r, or distance, of the dragon to the cloud was an important variable that effected when the lightning strike would occur, players were encouraged to watch the interaction between charge and distance. Participants observed the 3-min animation that resulted in the dragon being struck three times. In the view-only condition, trees were also struck; that is, mistakes were also modeled.
(B) Dragon Shockra – High Embodied. As in the previous condition, the cloud location was constrained to move within the top left quadrant of the screen (counted as 100 units vertical from top left corner). The seventh image in Fig. 4 shows the cloud in the far bottom right position. In the high embodied version, the Kinect was used to track the participant’s highest hand. The participant’s hand position controlled cloud location. Once the timer started the three minute countdown, the dragon would automatically “fly” toward the left edge of the screen (begin scrolling). The foregrounded fence and light poles scrolled to the right giving the illusion of the dragon flying. The participants controlled how close the cloud could get to the dragon. The dragon’s flight path was perceived as “quasi-random.” The players deduced they should not simply position the cloud to always be low in the sky, because if the cloud were highly charged and low, it would strike the closest positively charged object. That object would sometimes be a positive tree. Similar to version A, when trees were hit with lightning this was deemed a mistake; the trees would smolder and the cloud reset to a neutral charge wasting game time. The play mechanic was designed so that participants could use their knowledge of Coulomb’s law to be strategic and win more effectively. It was important to not waste too many strikes within the three minute time limit. If players knocked all three pieces of equipment off the dragon before the time limit, the game still continued for the full 3 min to equate for time on task between conditions.
The narrative story line
Now that the simulations have been described, it will be more meaningful to describe the cut scene narratives that preceded each simulation in condition 4, Embodied with Narrative.
-
i.
Before Electron Counter. The Lightning Master is leaving for 1 h but encourages you (the player referred to as the apprentice, but always off screen) to keep working to understand the electric field. After the Master leaves, a mischievous dragon in a cage informs you it is the Master’s birthday and asks to be let out to start decorating for the party. Will you let the dragon out of the cage?
-
ii.
Before Vector van Gogh. The dragon encourages the apprentice to learn as much as possible about vectors because it will help them prepare for the party. For example, to light the glow spheres—that are like candles—you will have to know about sparks and the E field.
-
iii.
Before Meter Made. The dragon encourages the apprentice to understand charges as the knowledge will help get the “vector machine ready.”
-
iv.
Before Push Me-Pull U and Mitey Fields. The dragon is happily flying around the lab and knocks over a glass sphere holding the “mites.” These mites have a charge of +1. The mites need to be captured and returned to another sphere. It is your job to use the E field to guide the blue mites.
-
v.
Before Balloon Induction. The dragon is seen hugging the vector machine with hearts flying out. He reiterates the importance of understanding induction, and encourages you to get back to your studies.
-
vi.
Before Scuff n Spark. The dragon tells you to find a way to put balloons up on the wall as decoration for the upcoming party.
-
vii.
Before Dragon Shockra. The Lightning Master has returned and sees an open window. The Master realizes the dragon has escaped and says, “Don’t worry, this has happened before.” The next scene shows the dragon is out in the sky wreaking havoc as he supercharges all the barns and houses outside in the field. The supercharged dragon must be captured.
Measures
Content knowledge and level of engagement were assessed. Content knowledge was assessed with two different measures given as invariant pre-tests and post-tests. Engagement was measured only at post-intervention.
Content knowledge test: computer version
The Electric Fields Test was created by a team of three physics instructors and was piloted on five age-appropriate participants. The study version is included in Additional file 1. It was administered on Survey Gizmo, only one question appeared at a time. The same version was given at pre-test and post-test with no feedback.
There were 34 items on the test. It started with a simple refresher “fill in the parts of an atom” and ended with complex questions about charge movement. Items were: 14 multiple choice questions, six Cloze tasks that required one or two word responses, and 14 short answer prompts. A rubric was created to score the short answers and scores of 0 to 3 were awarded. As an example for question 21: “Imagine a cloud hovering above the desert. The bottom of the cloud is negatively charged. The surface of the earth is positively charged. Suppose we place a positively charged particle and a negatively charged particle in the air between the cloud and the surface of the earth. What will happen to the negative charge?”
-
3 points = It will move with increasing speed (any word to connote “acceleration”) away from the cloud and towards the earth
-
2 points = move toward the earth and away from the cloud – correct direction only gets 2 points.
-
1 point = Move in one direction – unspecified
-
0 points = incorrect – move towards cloud, not move, or DK (“don’t know”).
The maximum possible score for the test was 102 points. There were no ceiling issues; the participants’ scores were in the range of 7–74.
Content knowledge test: gesture-based Wacom version
One of the research questions concerned whether knowledge gain differences would be seen using an assessment platform based on gestures. The Kinect was not used to gather body movement because only half of the conditions would have been familiarized with that system by post-test. Instead, a large format tablet that was novel for all the participants at that time was chosen, the Wacom™ Intuous Pro (15.1-inch or 38.4-cm active diagonal). To understand the electric field it is crucial to understand vectors and how charged particles move in the field. Our Wacom test focused on how particles move when carried by the E field and contained 11 items. The first three items were simple practice tasks (e.g. draw a vector that is 4 units long).
All participants confirmed they had never used a Wacom before. This is essentially a large tracking pad with great sensitivity to and accuracy for touch. For this test phase, the keyboard was moved to the side and the Wacom was placed on the table beneath the 16-inch diagonal computer monitor. To keep the assessment as haptic and embodied as possible the stylus was not used, instead participants sat and drew with a fingertip on the Wacom surface.
In Fig. 6, the placement of the finger was stylized by the large blue circle, as the finger moved a trail was left behind. The participants viewed their motion results on the computer monitor placed at eye level. So, as the finger moved across the Wacom, users saw a colored line trailing behind the blue circle. Every 100 ms white dots were placed inside the colored line (see Fig. 6).
This is similar to the motion map concept used in Modeling Instruction (Hestenes, 1987). The placement of the white dots is a visual cue for speed. Users should be able to feel if they are accelerating, but the visual feedback of the white dots as a motion map also allowed users to see that when the finger moves faster the dots spread further apart. In Fig. 6, the dots get closer together as the user is slowing down before stopping on the far right. If participants were not satisfied with the line or vector they had produced, they could tap the “reset” button on the bottom left of the screen, otherwise they would tap “submit.” The system also tallied number of resets. After the practice questions, the eight substantive questions were asked and they were worth seven points each (maximum = 56).
To score, expert vectors were created. Figure 7 shows an expert answer to question 6 that required repulsion (the finger-generated red line should move away from the –1 pinned charge). In addition, negative acceleration should be seen the correct answer as the particle moves further from the pinned charge. In this example, 3 points would be awarded for correct direction and 4 points for showing negative acceleration. We see evidence of negative acceleration in Fig. 7 because the white motion map dots get closer together as the free particle (i.e. the finger tip) moves further from the pinned charge.
The scoring schema was devised by two physics instructors and a computer scientist. They settled on a hybrid type of scoring that was partially automated. A random half of the data was also scored by a graduate student who was trained in the scoring, but blind to condition. The last dot point was always thrown out because pilot participants reported they felt obligated to slow down when reaching the edge of the tablet.
A Guided User Interface (GUI) was created to assist the human scorers and software was designed to score where it was possible to automate. The first two constant velocity questions were the easiest to score, the distance between the dots every 100 ms was gathered and variance in the dot trail was calibrated for equal thirds of the trail. If the variance between the three sections (beginning, middle, and end) varied by more than half of the participant’s individual SD, then the movement was not considered constant. For questions 3 to 6 which dealt with negative and positive acceleration, straightforward answers were harder to achieve. Some participants left multiple dots that could just be eyeballed, but some participants were “rapid drawers” and left only five or six usable dots on the screen. Here, the GUI program helped visualize and quantify the items. It was possible to partition the shortest dot trails into even finer bins, down to 40 ms. A rule was set that a minimum of seven dots were needed (this excluded two participants). The trail was then cut in half. The variance in the first half was compared to the second half. However, this was not always a satisfactory method because some participants would demonstrate acceleration closer to the final quarter of the line and we were unable to define a set algorithm to adequately address these idiosyncrasies. The majority of responses could be scored with the algorithm and agreed upon by the second scorer, but the first scorer set aside a pile of “uncertain” dot trails and removed all information on condition. Then two other scorers needed to come to consensus on those trails. Direction was worth three points and presence of acceleration worth four more. Approximately 8% of the acceleration answers were scored this way. Thus, a consensus between the three scorers was needed before a score was entered into the dataset.
Questions 7 and 8 appeared on the same screen during the test so that a direct comparison could be made. There were no dot trails shown as these were vectors. Again, direction was worth 3 points and now magnitude (vector length) was worth the final 4 points. In question 7, the goal was for the participant to draw a vector showing the force on the red charge (the positive ion on the right-hand side) as it was acted upon by the blue charge. We do not care exactly how long the first vector is in question 7, it just needed to be longer than the vector drawn for question 8. The answer to question 8 was scored in the following manner: 3 points for direction, 3 points for the vector being shorter than the one in question 7, and 1 extra point if the vector was exactly one-quarter the length of the first vector drawn in question 7. Figure 8 shows a participant who did this correctly.
Measure-Engagement survey
After the Wacom test, the engagement survey was taken on a computer using the SurveyGizmo package. The first set of questions were Likert-style ranging from 1 (Strongly disagree) to 5 (Strongly agree).
-
1.
I am now more interested in Electric Fields.
-
2.
The activity was boring. (Reserve coded.)
-
3.
I found the activity engaging.
-
4.
I wanted to complete this activity.
-
5.
Overall I found this learning experience to be worth the effort.
The low and high embodied groups were then asked to rank, using 1 through 7, the games they “most enjoyed.” A list of the games was presented and they placed numbers beside the games (simulations).