Aro, A. R. (2000). False-positive findings in mammography screening induces short-term distress—Breast cancer-specific concern prevails longer. European Journal of Cancer, 36, 1089–1097.
PubMed
Google Scholar
Azavedo, E., Zackrisson, S., Mejàre, I., & Heibert Arnlind, M. (2012). Is single reading with computer-aided detection (CAD) as good as double reading in mammography screening? A systematic review. BMC Medical Imaging, 12, 22. https://doi.org/10.1186/1471-2342-12-22
Article
PubMed
PubMed Central
Google Scholar
Castellino, R. A. (2005). Computer aided detection (CAD): An overview. Cancer Imaging, 5(1), 17–19.
PubMed
PubMed Central
Google Scholar
Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71.
Google Scholar
Croskerry, P. (2002). Achieving quality in clinical decision making: Cognitive strategies and detection of bias. Academic Emergency Medicine, 9(11), 1184–1204.
PubMed
Google Scholar
Drew, T., Guthrie, J., & Reback, I. (2020). Worse in real life: An eye-tracking examination of the cost of CAD at low prevalence. Journal of Experimental Psychology: Applied, 26(4), 659–670.
PubMed
Google Scholar
Drew, T., Cunningham, C., & Wolfe, J. M. (2012). When and why might a computer-aided detection (CAD) system interfere with visual search? An eye-tracking study. Academic Radiology, 19, 1260–1267.
PubMed
PubMed Central
Google Scholar
Drew, T., Võ, M. L., & Wolfe, J. M. (2013). The invisible gorilla strikes again: sustained inattentional blindness in expert observers. Psychological Science, 24(9), 1848–1853. https://doi.org/10.1177/0956797613479386.
Du-Crow, E., Astley, S. M., & Hulleman, J. (2019). Is there a safety-net effect with computer-aided detection? Journal of Medical Imaging, 7, 1.
Google Scholar
Egglin, T. K. P., & Feinstein, A. R. (1996). Context bias: A problem in diagnostic radiology. Journal of the American Medical Association, 276, 1752–1755.
PubMed
Google Scholar
Ethell, S. C., & Manning, D. (2001). Effects of prevalence on visual search and decision making in fracture detection. Proceedings of SPIE, 4324, 249–257.
Google Scholar
Evans, K. K., Birdwell, R. L., & Wolfe, J. M. (2013). If you don’t find it often, you often don’t find it: Why some cancers are missed in breast cancer screening. PloS one, 8(5), e64366.
PubMed
PubMed Central
Google Scholar
Evans, K. K., Georgian-Smith, D., Tambouret, R., Birdwell, R. L., & Wolfe, J. M. (2013b). The gist of the abnormal: Above-chance medical decision making in the blink of an eye. Psychonomic Bulletin & Review, 20(6), 1170–1175.
Google Scholar
Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.
Google Scholar
Fenton, J. J., Abraham, L., Taplin, S. H., et al. (2011). Breast Cancer Surveillance Consortium. Effectiveness of computer-aided detection in community mammography practice. Journal National Cancer Institute, 103(15), 1152–1161.
Google Scholar
Fenton, J. J., Taplin, S. H., Carney, P. A., et al. (2007). Influence of computer-aided detection on performance of screening mammography. New England Journal of Medicine, 356(14), 1399–1409.
Google Scholar
Fleck, M. S., & Mitroff, S. R. (2007). Rare targets are rarely missed in correctable search. Psychological Science, 18(11), 943–947.
PubMed
Google Scholar
Freer, T. W., & Ulissey, M. J. (2001). Screening mammography with computer-aided detection: Prospective study of 12,860 patients in a community breast screening center. Radiology, 220, 781–786.
PubMed
Google Scholar
Gilbert, F. J., Astley, S. M., Gillan, M. G., Agbaje, O. F., Wallis, M. G., James, J., Boggis, C. R., & Duffy, S. W. (2008). the CADET II Group: Single reading with computer-aided detection for screening mammography. New England Journal of Medicine, 359, 1675–1684.
Google Scholar
Green, D. M., & Swets, J. A. (1967). Signal detection theory and psychophysics. Wiley.
Google Scholar
Guerriero, C., Gillan, M. G. C., Cairns, J., Wallis, M. G., & Gilbert, F. J. (2011). Is computer aided detection (CAD) cost effective in screening mammography? A model based on the CADET II study. BMC Health Services Research, 11, 11. https://doi.org/10.1186/1472-6963-11-11
Article
PubMed
PubMed Central
Google Scholar
Gur, D., Rockette, H. E., Armfield, D. R., Blachar, A., Bogan, J. K., et al. (2003). Prevalence effect in a laboratory environment. Radiology, 228, 10–14.
PubMed
Google Scholar
Heath, M., Bowyer, K., Kopans, D., Kegelmeyer, W. P., Moore, R., Chang, K., & MunishKumaran, S. (1998). Digital mammography. In Proceedings of the fourth international workshop on digital mammography (pp. 457–460). Kluwer Academic Publishers.
Heath, M., Bowyer, K., Kopans, D., Moore, R., & Kegelmeyer, W.P. (2001). In Yaffe, M. J. (Ed.) Proceedings of the fifth international workshop on digital mammography (pp. 212–218). Medical Physics Publishing, ISBN 1-930524-00-5.
Horowitz, T. S. (2017). Prevalence in visual search: From the clinic to the lab and back again. Japanese Psychological Research, 59(2), 65–108. https://doi.org/10.1111/jpr.12153
Article
Google Scholar
Houssami, N., Given-Wilson, R., & Ciatto, S. (2009). Early detection of breast cancer: Overview of the evidence on computer-aided detection in mammography screening. Journal of Medical Imaging and Radiation Oncology, 53(2), 171–176. https://doi.org/10.1111/j.1754-9485.2009.02062.x
Article
PubMed
Google Scholar
Hupse, R., Samulski, M., Lobbes, M. B., Mann, R. M., Mus, R., et al. (2013). Computer-aided detection of masses at mammography: Interactive decision support versus prompts. Radiology, 266, 123–129.
PubMed
Google Scholar
Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature reviews. Neuroscience, 2(3), 194–203. https://doi.org/10.1038/35058500.
James, J. J., Gilbert, F. J., Wallis, M. G., Gillan, M. G., Astley, S. M., Boggis, C. R., Agbaje, O. F., Brentnall, A. R., & Duffy, S. W. (2010). Mammographic features of breast cancers at single reading with computer-aided detection and at double reading in a large multicenter prospective trial of computer-aided detection: CADET II. Radiology, 256(2), 379–386.
PubMed
Google Scholar
Jarosz, A. F., & Wiley, J. (2014). What are the odds? A practical guide to computing and reporting bayes factors. Journal of Problem Solving, 7, 2–9.
Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford University Press.
Google Scholar
Kassin, S., Dror, I. E., & Kukucha, J., (2013). The forensic confirmation bias: Problems, perspectives, and proposed solutions. Journal of Applied Research in Memory and Cognition, 2(1), 42–52.
Kunar, M. A., Flusberg, S. J., & Wolfe, J. M. (2008). Time to guide: Evidence for delayed attentional guidance in contextual cueing. Visual Cognition, 16, 804–825.
PubMed
PubMed Central
Google Scholar
Kunar, M. A., Rich, A. N., & Wolfe, J. M. (2010). Spatial and temporal separation fails to counteract the effects of low prevalence in visual search. Visual Cognition, 18, 881–897.
PubMed
PubMed Central
Google Scholar
Kunar, M. A., Watson, D. G., Taylor-Phillips, S., & Wolska, J. (2017a). Low prevalence search for cancers in mammograms: Evidence using laboratory experiments and computer aided detection. Journal of Experimental Psychology: Applied, 23, 369–385.
PubMed
Google Scholar
Kunar, M. A., Watson, D. G., Tsetsos, K., & Chater, N. (2017b). The influence of attention on value integration. Attention, Perception & Psychophysics, 79, 1615–1627.
Google Scholar
Kunar, M. A., Watson, D. G., & Taylor-Phillips, S. (2021). Double reading reduces miss errors in low prevalence search. Journal of Experimental Psychology: Applied, 27(1), 84–101.
PubMed
Google Scholar
Kundel, H. L. (1982). Disease prevalence and radiological decision making. Investigative Radiology, 17(1), 107–109.
PubMed
Google Scholar
Lehman, C. D., Wellman, R. D., Buist, D. S. M., Kerlikowske, K., Tosteson, A. N. A., & Miglioretti, D. L. (2015). Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Internal Medicine, 175(11), 1828–1837. https://doi.org/10.1001/jamainternmed.2015.5231
Article
PubMed
PubMed Central
Google Scholar
Macmillan, N. A., & Creelman, C. D. (2005). Detection theory: A user’s guide (2nd ed.). Cambridge University Press.
Google Scholar
Macmillan, N. A., & Kaplan, H. L. (1985). Detection theory analysis of group data: Estimating sensitivity from average hit and false-alarm rates. Psychological Bulletin, 98, 185–199.
Mitroff, S. R., & Biggs, A. T. (2014). The ultra-rare-item effect: Visual search for exceedingly rare items is highly susceptible to error. Psychological Science, 25(1), 284–289. https://doi.org/10.1177/0956797613504221
Article
PubMed
Google Scholar
Olsson-Collentine, A., van Assen, M. A. L. M., & Hartgerink, C. H. J. (2019). The prevalence of marginally significant results in psychology over time. Psychological Science, 30(4), 576–586. https://doi.org/10.1177/0956797619830326.
Pang, D., Bleetman, A., Bleetman, D., & Wynne, M. (2017). The foreign body that never was: The effects of confirmation bias. British Journal of Hospital Medicine, 78(6), 350–351.
PubMed
Google Scholar
Peltier, C., & Becker, M. W. (2016). Decision processes in visual search as a function of target prevalence. Journal of Experimental Psychology: Human Perception and Performance., 42, 1466–1476.
PubMed
Google Scholar
Rich, A. N., Kunar, M. A., Van Wert, M. J., Hidalgo-Sotelo, B., Horowitz, T. S., & Wolfe, J. M. (2008). Why do we miss rare targets? Exploring the boundaries of the low prevalence effect. Journal of Vision, 8(15), 1–17.
PubMed
Google Scholar
Russell, N., & Kunar, M. A. (2012). Color and spatial cueing in low prevalence visual search. The Quarterly Journal of Experimental Psychology, 65, 1327–1344.
PubMed
Google Scholar
Sato, M., Kawai, M., Nishino, Y., Shibuya, D., Ohuchi, N., & Ishibashi, T. (2014). Cost-effectiveness analysis for breast cancer screening: Double reading versus single + CAD reading. Breast Cancer (Tokyo, Japan), 21(5), 532–541. https://doi.org/10.1007/s12282-012-0423-5
Article
Google Scholar
Sellier, A. L., Scopelliti, I., & Morewedge, C. K. (2019). Debiasing training improves decision making in the field. Psychological Science, 30(9), 1371–1379. https://doi.org/10.1177/0956797619861429
Article
PubMed
Google Scholar
Theeuwes, J. (2004). Top-down search strategies cannot override attentional capture. Psychonomic Bulletin & Review, 11, 65–70.
Google Scholar
Tschan, F., Semmer, N. K., & Gurtner, A. (2009). Explicit reasoning, confirmation bias, and illusory transactive memory: A simulation study of group medical decision making. Small Group Research, 40(3), 271–300.
Google Scholar
Van Wert, M. J., Horowitz, T. S., & Wolfe, J. M. (2009). Even in correctable search, some types of rare targets are frequently missed. Attention, Perception & Psychophysics, 71(3), 541–553.
Google Scholar
Wagenmakers, E.-J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Selker, R., Gronau, Q. F., Dropmann, D., Boutin, B., Meerhoff, F., Knight, P., Raj, A., van Kesteren, E.-J., van Doorn, J., Šmíra, M., Epskamp, S., Etz, A., Matzke, D., … Morey, R. D. (2018b). Bayesian inference for psychology. Part II: Example applications with JASP. Psychonomic Bulletin & Review, 25, 58–76.
Google Scholar
Wagenmakers, E.-J., Marsman, M., Jamil, T., Ly, A., Verhagen, A. J., Love, J., Selker, R., Gronau, Q. F., Šmíra, M., Epskamp, S., Matzke, D., Rouder, J. N., & Morey, R. D. (2018a). Bayesian inference for psychology. Part I: Theoretical advantages and practical ramifications. Psychonomic Bulletin & Review, 25, 35–57.
Google Scholar
Watson, D. G., & Humphreys, G. W. (1997). Visual marking: Prioritizing selection for new objects by top-down attentional inhibition of old objects. Psychological Review, 104(1), 90–122.
PubMed
Google Scholar
Wolfe, J. M. (2021). Guided search 6.0: An updated model of visual search. Psychonomic Bulletin & Review, 1, 12. https://doi.org/10.3758/s13423-020-01859-9
Article
Google Scholar
Wolfe, J. M., Evans, K. K., Drew, T., Aizenman, A., & Josephs, E. (2016). How do radiologists use the human search engine? Radiation Protection Dosimetry, 169, 24–31. https://doi.org/10.1093/rpd/ncv501
Article
PubMed
PubMed Central
Google Scholar
Wolfe, J. M., Horowitz, T. S., & Kenner, N. M. (2005). Rare items often missed in visual search. Nature, 435, 439–440.
PubMed
PubMed Central
Google Scholar
Wolfe, J. M., Horowitz, T. S., Ven Wert, M. J., Kenner, N. M., Place, S. S., & Kibbi, N. (2007). Low target prevalence is a stubborn source of errors in visual search tasks. Journal of Experimental Psychology, 136(4), 623–638.
PubMed
Google Scholar
Wolfe, J. M., & VanWert, M. J. (2010). Varying target prevalence reveals two, dissociable decision criteria in visual search. Current Biology, 20, 121–124.
PubMed
Google Scholar