Agelink van Rentergem, J. A., de Vent, N. R., Schmand, B. A., Murre, J. M. J., Staaks, J. P. C., ANDI Consortium, & Huizenga, H. M. (2020). The factor structure of cognitive functioning in cognitively healthy participants: A meta-analysis and meta-analysis of individual participant data. Neuropsychology Review, 30(1), 51–96. https://doi.org/10.1007/s11065-019-09423-6
Agelinkvan Rentergem, J. A., de Vent, N. R., Schmand, B. A., et al. (2020). The factor structure of cognitive functioning in cognitively healthy participants: A meta-analysis and meta-analysis of individual participant data. Neuropsychology Review, 30, 51–96. https://doi.org/10.1007/s11065-019-09423-6
Article
Google Scholar
Allen, R., McGeorge, P., Pearson, D. G., & Milne, A. (2006). Multiple-target tracking: A role for working memory? Quarterly Journal of Experimental Psychology, 59(6), 1101–1116. https://doi.org/10.1080/02724980543000097
Article
Google Scholar
Alvarez, G. A. (2011). Representing multiple objects as an ensemble enhances visual cognition. Trends in Cognitive Sciences, 15(3), 122–131. https://doi.org/10.1016/j.tics.2011.01.003
Article
PubMed
Google Scholar
Amer, T., Ngo, K. W. J., & Hasher, L. (2017). Cultural differences in visual attention: Implications for distraction processing. British Journal of Psychology, 108(2), 244–258. https://doi.org/10.1111/bjop.12194
Article
PubMed
Google Scholar
Arora, S., Lawrence, M. A., & Klein, R. M. (2020). The attention network test database: ADHD and cross-cultural applications. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2020.00388
Article
PubMed
PubMed Central
Google Scholar
Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), Psychology of learning and motivation (Vol. 8, pp. 47–89). Academic Press. https://doi.org/10.1016/S0079-7421(08)60452-1
Chapter
Google Scholar
Balestrieri, E., Ronconi, L., & Melcher, D. (2019). Shared resources between visual attention and visual working memory are allocated through rhythmic sampling. BioRxiv. https://doi.org/10.1101/567602
Article
Google Scholar
Barch, D. M., Carter, C. S., Arnsten, A., Buchanan, R. W., Cohen, J. D., Geyer, M., Green, M. F., Krystal, J. H., Nuechterlein, K., Robbins, T., Silverstein, S., Smith, E. E., Strauss, M., Wykes, T., & Heinssen, R. (2009). Selecting paradigms from cognitive neuroscience for translation into use in clinical trials: Proceedings of the third CNTRICS meeting. Schizophrenia Bulletin, 35(1), 109–114. https://doi.org/10.1093/schbul/sbn163
Article
PubMed
Google Scholar
Bates, M. E., & Lemay, E. P. (2004). The d2 test of attention: Construct validity and extensions in scoring techniques. Journal of the International Neuropsychological Society, 10(3), 392–400. https://doi.org/10.1017/S135561770410307X
Article
PubMed
Google Scholar
Bettencourt, K. C., Michalka, S. W., & Somers, D. C. (2011). Shared filtering processes link attentional and visual short-term memory capacity limits. Journal of Vision. https://doi.org/10.1167/11.10.22
Article
PubMed
Google Scholar
Bilder, R. M., & Reise, S. P. (2019). Neuropsychological tests of the future: How do we get there from here? The Clinical Neuropsychologist, 33(2), 220–245. https://doi.org/10.1080/13854046.2018.1521993
Article
PubMed
Google Scholar
Brickenkamp, R., & Zillmer, E. (1998). The d2 test of attention. Hogrefe & Huber Publishers.
Google Scholar
Bricolo, E., Gianesini, T., Fanini, A., Bundesen, C., & Chelazzi, L. (2002). Serial attention mechanisms in visual search: A direct behavioral demonstration. Journal of Cognitive Neuroscience, 14(7), 980–993. https://doi.org/10.1162/089892902320474454
Article
PubMed
Google Scholar
Brown, L. A. (2016). Spatial-sequential working memory in younger and older adults: Age predicts backward recall performance within both age groups. Frontiers in Psychology, 7, 1514–1514. https://doi.org/10.3389/fpsyg.2016.01514
Article
PubMed
PubMed Central
Google Scholar
Browne, M. W., & Cudeck, R. (2016). Alternative ways of assessing model fit. Sociological Methods & Research. https://doi.org/10.1177/0049124192021002005
Article
Google Scholar
Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97(4), 523.
Article
PubMed
Google Scholar
Carter, C. S., & Barch, D. M. (2007). Cognitive neuroscience-based approaches to measuring and improving treatment effects on cognition in schizophrenia: The CNTRICS initiative. Schizophrenia Bulletin, 33(5), 1131–1137. https://doi.org/10.1093/schbul/sbm081
Article
PubMed
PubMed Central
Google Scholar
Carter, O. L., Burr, D. C., Pettigrew, J. D., Wallis, G. M., Hasler, F., & Vollenweider, F. X. (2005). Using psilocybin to investigate the relationship between attention, working memory, and the serotonin 1A and 2A receptors. Journal of Cognitive Neuroscience, 17(10), 1497–1508. https://doi.org/10.1162/089892905774597191
Article
PubMed
Google Scholar
Cavanagh, P., & Alvarez, G. A. (2005). Tracking multiple targets with multifocal attention. Trends in Cognitive Sciences, 9(7), 349–354. https://doi.org/10.1016/j.tics.2005.05.009
Article
PubMed
Google Scholar
Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 9(2), 233–255. https://doi.org/10.1207/S15328007SEM0902_5
Article
Google Scholar
Chong, S. C., & Evans, K. K. (2011). Distributed versus focused attention (count vs estimate): Distributed versus focused attention. Wiley Interdisciplinary Reviews: Cognitive Science, 2(6), 634–638. https://doi.org/10.1002/wcs.136
Article
PubMed
Google Scholar
Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A Taxonomy of external and internal attention. Annual Review of Psychology, 62(1), 73–101. https://doi.org/10.1146/annurev.psych.093008.100427
Article
PubMed
Google Scholar
Corsi, P. (1972). Memory and the medial temporal region of the brain. Unpublished doctoral dissertation.
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. The Behavioral and Brain Sciences, 24(1), 87–114; discussion 114–85.
Crowe, S. F. (1998). The differential contribution of mental tracking, cognitive flexibility, visual search, and motor speed to performance on parts A and B of the trail making test. Journal of Clinical Psychology, 54(5), 585–591. https://doi.org/10.1002/(SICI)1097-4679(199808)54:5%3c585::AID-JCLP4%3e3.0.CO;2-K
Article
PubMed
Google Scholar
Cunningham, J. E. A., Jones, S. A. H., Eskes, G. A., & Rusak, B. (2018). Acute sleep restriction has differential effects on components of attention. Frontiers in Psychiatry. https://doi.org/10.3389/fpsyt.2018.00499
Article
PubMed
PubMed Central
Google Scholar
d’Ardenne, K., Savage, C., Small, D., Vainik, U., & Luke E. Stoeckel, P. (2019). Core neuropsychological measures for obesity and diabetes trials project workshop report (Version 2). https://doi.org/10.31232/osf.io/7jygx
Della Sala, S., Gray, C., Baddeley, A., Allamano, N., & Wilson, L. (1999). Pattern span: A tool for unwelding visuo–spatial memory. Neuropsychologia, 37(10), 1189–1199. https://doi.org/10.1016/S0028-3932(98)00159-6
Article
PubMed
Google Scholar
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193–222.
Article
PubMed
Google Scholar
Drew, T., Horowitz, T. S., Wolfe, J. M., & Vogel, E. K. (2011). Delineating the neural signatures of tracking spatial position and working memory during attentive tracking. The Journal of Neuroscience, 31(2), 659–668. https://doi.org/10.1523/JNEUROSCI.1339-10.2011
Article
PubMed
PubMed Central
Google Scholar
Drew, T., Horowitz, T. S., Wolfe, J. M., & Vogel, E. K. (2012). Neural measures of dynamic changes in attentive tracking load. Journal of Cognitive Neuroscience, 24(2), 440–450. https://doi.org/10.1162/jocn_a_00107
Article
PubMed
Google Scholar
Drew, T., & Vogel, E. K. (2008). Neural measures of individual differences in selecting and tracking multiple moving objects. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 28(16), 4183–4191. https://doi.org/10.1523/JNEUROSCI.0556-08.2008
Article
Google Scholar
Emrich, S. M., Lockhart, H. A., & Al-Aidroos, N. (2017). Attention mediates the flexible allocation of visual working memory resources. Journal of Experimental Psychology: Human Perception and Performance, 43(7), 1454–1465. https://doi.org/10.1037/xhp0000398
Article
PubMed
Google Scholar
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception and Psychophysics, 16(1), 143–149. https://doi.org/10.3758/BF03203267
Article
Google Scholar
Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14(3), 340–347. https://doi.org/10.1162/089892902317361886
Article
PubMed
Google Scholar
Fortenbaugh, F. C., DeGutis, J., Germine, L., Wilmer, J. B., Grosso, M., Russo, K., & Esterman, M. (2015). Sustained attention across the life span in a sample of 10,000 dissociating ability and strategy. Psychological Science, 26(9), 1497–1510. https://doi.org/10.1177/0956797615594896
Article
PubMed
Google Scholar
Foti, M., Lo Buono, V., Corallo, F., Palmeri, R., Bramanti, P., & Marino, S. (2017). Neuropsychological assessment in migraine patients: A descriptive review on cognitive implications. Neurological Sciences, 38(4), 553–562. https://doi.org/10.1007/s10072-017-2814-z
Article
PubMed
Google Scholar
Fougnie, D., & Marois, R. (2006). Distinct capacity limits for attention and working memory: Evidence from attentive tracking and visual working memory paradigms. Psychological Science: A Journal of the American Psychological Society/APS, 17(6), 526–534. https://doi.org/10.1111/j.1467-9280.2006.01739.x
Article
Google Scholar
Fougnie, D., & Marois, R. (2011). What limits working memory capacity? Evidence for modality-specific sources to the simultaneous storage of visual and auditory arrays. Journal of Experimental Psychology. Learning. Memory. and Cognition. https://doi.org/10.1037/a0024834
Article
PubMed
Google Scholar
Germine, L., Nakayama, K., Duchaine, B. C., Chabris, C. F., Chatterjee, G., & Wilmer, J. B. (2012). Is the Web as good as the lab? Comparable performance from Web and lab in cognitive/perceptual experiments. Psychonomic Bulletin & Review, 19(5), 847–857. https://doi.org/10.3758/s13423-012-0296-9
Article
Google Scholar
Germine, L., Reinecke, K., & Chaytor, N. S. (2019). Digital neuropsychology: Challenges and opportunities at the intersection of science and software. The Clinical Neuropsychologist, 33(2), 271–286. https://doi.org/10.1080/13854046.2018.1535662
Article
PubMed
Google Scholar
Gold, J. M., Fuller, R. L., Robinson, B. M., Braun, E. L., & Luck, S. J. (2007). Impaired top–down control of visual search in schizophrenia. Schizophrenia Research, 94(1–3), 148–155. https://doi.org/10.1016/j.schres.2007.04.023
Article
PubMed
Google Scholar
Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences, 109(28), 11116. https://doi.org/10.1073/pnas.1200196109
Article
Google Scholar
Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665–668. https://doi.org/10.1038/nature07246
Article
PubMed
Google Scholar
Hartshorne, J. K., & Germine, L. T. (2015). When does cognitive functioning peak? The asynchronous rise and fall of different cognitive abilities across the life span. Psychological Science, 26(4), 433–443. https://doi.org/10.1177/0956797614567339
Article
PubMed
Google Scholar
Helmstaedter, C., Kurthen, M., Lux, S., Reuber, M., & Elger, C. E. (2003). Chronic epilepsy and cognition: A longitudinal study in temporal lobe epilepsy. Annals of Neurology, 54(4), 425–432. https://doi.org/10.1002/ana.10692
Article
PubMed
Google Scholar
Heuer, A., & Schubö, A. (2016). The focus of attention in visual working memory: protection of focused representations and its individual variation. PLoS ONE, 11(4), e0154228. https://doi.org/10.1371/journal.pone.0154228
Article
PubMed
PubMed Central
Google Scholar
Holcombe, A. O., Chen, W.-Y., & Howe, P. D. L. (2014). Object tracking: Absence of long-range spatial interference supports resource theories. Journal of Vision, 14(6), 1–1. https://doi.org/10.1167/14.6.1
Article
PubMed
Google Scholar
Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179–185. https://doi.org/10.1007/BF02289447
Article
PubMed
Google Scholar
Horowitz, T. S., Choi, W. Y., Horvitz, J. C., Côté, L. J., & Mangels, J. A. (2006). Visual search deficits in Parkinson’s disease are attenuated by bottom-up target salience and top-down information. Neuropsychologia, 44(10), 1962–1977. https://doi.org/10.1016/j.neuropsychologia.2006.01.037
Article
PubMed
Google Scholar
Horowitz, T. S., Suls, J., & Treviño, M. (2018). A call for a neuroscience approach to cancer-related cognitive impairment. Trends in Neurosciences, 41(8), 493–496. https://doi.org/10.1016/j.tins.2018.05.001
Article
PubMed
Google Scholar
Horowitz, T. S., Treviño, M., Gooch, I. M., & Duffy, K. A. (2019). Understanding the profile of cancer-related cognitive impairments: A critique of meta-analyses. JNCI: Journal of the National Cancer Institute. https://doi.org/10.1093/jnci/djz100
Article
PubMed
PubMed Central
Google Scholar
Howe, P. D. L., Cohen, M. A., Pinto, Y., & Horowitz, T. S. (2010). Distinguishing between parallel and serial accounts of multiple object tracking. Journal of Vision, 10(8), 11. https://doi.org/10.1167/10.8.11
Article
PubMed
Google Scholar
Howieson, D. (2019). Current limitations of neuropsychological tests and assessment procedures. The Clinical Neuropsychologist, 33(2), 200–208. https://doi.org/10.1080/13854046.2018.1552762
Article
PubMed
Google Scholar
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. https://doi.org/10.1080/10705519909540118
Article
Google Scholar
Huang, L., Mo, L., & Li, Y. (2012). Measuring the interrelations among multiple paradigms of visual attention: An individual differences approach. Journal of Experimental Psychology: Human Perception and Performance, 38(2), 414–428. https://doi.org/10.1037/a0026314
Article
PubMed
Google Scholar
Huang, L., & Pashler, H. (2007). A Boolean map theory of visual attention. Psychological Review, 114(3), 599.
Article
PubMed
Google Scholar
Jaeger, J. (2018). Digit symbol substitution test. Journal of Clinical Psychopharmacology, 38(5):513–519.
Article
PubMed
PubMed Central
Google Scholar
Jenkins, V., Shilling, V., Deutsch, G., Bloomfield, D., Morris, R., Allan, S., Bishop, H., Hodson, N., Mitra, S., & Sadler, G. (2006). A 3-year prospective study of the effects of adjuvant treatments on cognition in women with early stage breast cancer. British Journal of Cancer, 94(6), 828.
Article
PubMed
PubMed Central
Google Scholar
Jewsbury, P. A., Bowden, S. C., & Duff, K. (2017). The Cattell–Horn–Carroll model of cognition for clinical assessment. Journal of Psychoeducational Assessment, 35(6), 547–567. https://doi.org/10.1177/0734282916651360
Article
Google Scholar
Jóhannesson, O. I., Kristjánsson, Á., & Thornton, I. M. (2017). Are foraging patterns in humans related to working memory and inhibitory control? Japanese Psychological Research, 59(2), 152–166. https://doi.org/10.1111/jpr.12152
Article
Google Scholar
Jones, S. A. H., Butler, B. C., Kintzel, F., Johnson, A., Klein, R. M., & Eskes, G. A. (2016). Measuring the performance of attention networks with the dalhousie computerized attention battery (DalCAB): Methodology and reliability in healthy adults. Frontiers in Psychology, 7, 823. https://doi.org/10.3389/fpsyg.2016.00823
Article
PubMed
PubMed Central
Google Scholar
Jones, S. A. H., Butler, B., Kintzel, F., Salmon, J. P., Klein, R. M., & Eskes, G. A. (2015). Measuring the components of attention using the Dalhousie computerized attention battery (DalCAB). Psychological Assessment, 27(4), 1286–1300. https://doi.org/10.1037/pas0000148
Article
PubMed
Google Scholar
Jorgenson, T. D., Pornprasertmanit, S., Schoemann, A. M., & Rosseel, Y. (2019). semTools: Useful tools for structural equation modeling (0.5–2) [R]. https://CRAN.R-project.org/package=semTools
Kessels, R. P. C. (2019). Improving precision in neuropsychological assessment: Bridging the gap between classic paper-and-pencil tests and paradigms from cognitive neuroscience. The Clinical Neuropsychologist, 33(2), 357–368. https://doi.org/10.1080/13854046.2018.1518489
Article
PubMed
Google Scholar
Khvostov, V. A., & Utochkin, I. S. (2019). Independent and parallel visual processing of ensemble statistics: Evidence from dual tasks. Journal of Vision, 19(9), 3–3. https://doi.org/10.1167/19.9.3
Article
PubMed
Google Scholar
Klauer, K. C., & Zhao, Z. (2004). Double dissociations in visual and spatial short-term memory. Journal of Experimental Psychology General, 133(3), 355–381. https://doi.org/10.1037/0096-3445.133.3.355
Article
PubMed
Google Scholar
Kristjánsson, T., Thornton, I. M., Chetverikov, A., & Kristjánsson, Á. (2020). Dynamics of visual attention revealed in foraging tasks. Cognition, 194, 104032. https://doi.org/10.1016/j.cognition.2019.104032
Article
PubMed
Google Scholar
Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–281. https://doi.org/10.1038/36846
Article
PubMed
Google Scholar
Luria, R., Balaban, H., Awh, E., & Vogel, E. K. (2016). The contralateral delay activity as a neural measure of visual working memory. Neuroscience & Biobehavioral Reviews, 62, 100–108. https://doi.org/10.1016/j.neubiorev.2016.01.003
Article
Google Scholar
MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4(1), 84.
Article
Google Scholar
MacLeod, J. W., Lawrence, M. A., McConnell, M. M., Eskes, G. A., Klein, R. M., & Shore, D. I. (2010). Appraising the ANT: Psychometric and theoretical considerations of the attention network test. Neuropsychology, 24(5), 637–651. https://doi.org/10.1037/a0019803
Article
PubMed
Google Scholar
Macmillan, N. A., & Creelman, C. D. (2005). Detection theory: A user’s guide. Lawrence Erlbaum Associates.
Google Scholar
Makovski, T., Sussman, R., & Jiang, Y. V. (2008). Orienting attention in visual working memory reduces interference from memory probes. Journal of Experimental Psychology. Learning, Memory, and Cognition, 34(2), 369–380.
Article
PubMed
Google Scholar
Marcopulos, B., & Łojek, E. (2019). Introduction to the special issue: Are modern neuropsychological assessment methods really “modern”? Reflections on the current neuropsychological test armamentarium. The Clinical Neuropsychologist, 33(2), 187–199. https://doi.org/10.1080/13854046.2018.1560502
Article
PubMed
Google Scholar
Masuda, T., & Nisbett, R. E. (2001). Attending holistically versus analytically: Comparing the context sensitivity of Japanese and Americans. Journal of Personality and Social Psychology, 81(5), 922–934. https://doi.org/10.1037/0022-3514.81.5.922
Article
PubMed
Google Scholar
Mazza, V., & Caramazza, A. (2015). Multiple object individuation and subitizing in enumeration: A view from electrophysiology. Frontiers in Human Neuroscience. https://doi.org/10.3389/fnhum.2015.00162
Article
PubMed
PubMed Central
Google Scholar
McFall, R. M. (2005). Theory and utility-Key themes in evidence-based assessment: Comment on the special section. Psychological Assessment, 17(3):312–323.
Article
PubMed
Google Scholar
McFall, R. M., & Townsend, J. T. (1998). Foundations of psychological assessment: Implications for cognitive assessment in clinical science. Psychological Assessment, 10(4), 316.
McGrew, K. S., & Schneider, W. J. (2018). CHC theory revised: A visual graphic summary of Schneider and McGrew’s 2018 CHC Update Chapter. 45.
McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37(1), 1–10. https://doi.org/10.1016/j.intell.2008.08.004
Article
Google Scholar
Meade, T., Manolios, N., Cumming, S. R., Conaghan, P. G., & Katz, P. (2018). Cognitive impairment in rheumatoid arthritis: A systematic review. Arthritis Care & Research, 70(1), 39–52. https://doi.org/10.1002/acr.23243
Article
Google Scholar
Merkle, E. C., & You, D. (2020). nonnest2: Tests of non-nested models (0.5–4) [R]. https://CRAN.R-project.org/package=nonnest2
Merkle, E. C., You, D., & Preacher, K. J. (2016). Testing nonnested structural equation models. Psychological Methods, 21(2), 151–163. https://doi.org/10.1037/met0000038
Article
PubMed
Google Scholar
Mirsky, A. F., Anthony, B. J., Duncan, C. C., Ahearn, M. B., & Kellam, S. G. (1991). Analysis of the elements of attention: A neuropsychological approach. Neuropsychology Review, 2(2), 109–145. https://doi.org/10.1007/BF01109051
Article
PubMed
Google Scholar
Misdraji, E. L., & Gass, C. S. (2010). The trail making test and its neurobehavioral components. Journal of Clinical and Experimental Neuropsychology, 32(2), 159–163. https://doi.org/10.1080/13803390902881942
Article
PubMed
Google Scholar
Moran, R., Zehetleitner, M., Liesefeld, H. R., Müller, H. J., & Usher, M. (2016). Serial vs. parallel models of attention in visual search: Accounting for benchmark RT-distributions. Psychonomic Bulletin & Review, 23(5), 1300–1315. https://doi.org/10.3758/s13423-015-0978-1
Article
Google Scholar
Mundfrom, D. J., Shaw, D. G., & Ke, T. L. (2005). Minimum sample size recommendations for conducting factor analyses. International Journal of Testing, 5(2), 159–168. https://doi.org/10.1207/s15327574ijt0502_4
Article
Google Scholar
Nelson, W. L., & Suls, J. (2013). New approaches to understand cognitive changes associated with chemotherapy for non-central nervous system tumors. Journal of Pain and Symptom Management, 46(5), 707–721. https://doi.org/10.1016/j.jpainsymman.2012.11.005
Article
PubMed
Google Scholar
O’Hearn, K., Hoffman, J. E., & Landau, B. (2010). Developmental profiles for multiple object tracking and spatial memory: Typically developing preschoolers and people with Williams syndrome. Developmental Science, 13(3), 430–440. https://doi.org/10.1111/j.1467-7687.2009.00893.x
Article
PubMed
PubMed Central
Google Scholar
Oh, S.-H., & Kim, M.-S. (2004). The role of spatial working memory in visual search efficiency. Psychonomic Bulletin & Review, 11(2), 275–281. https://doi.org/10.3758/BF03196570
Article
Google Scholar
Oksama, L., & Hyönä, J. (2008). Dynamic binding of identity and location information: A serial model of multiple identity tracking. Cognitive Psychology, 56(4), 237–283. https://doi.org/10.1016/j.cogpsych.2007.03.001
Article
PubMed
Google Scholar
Parasuraman, R., Warm, J. S., & See, J. E. (1998). Brain systems of vigilance. In The attentive brain (pp. 221–256). The MIT Press.
Parsons, T. D., & Duffield, T. (2019). National Institutes of Health initiatives for advancing scientific developments in clinical neuropsychology. The Clinical Neuropsychologist, 33(2), 246–270. https://doi.org/10.1080/13854046.2018.1523465
Article
PubMed
Google Scholar
Partington, J. E., & Leiter, R. G. (1949). Partington’s pathways test. The Psychological Service Center Bulletin, 1(2), 9–20.
Google Scholar
Pashler, H. (1988). Familiarity and visual change detection. Perception & Psychophysics, 44(4), 369–378. https://doi.org/10.3758/BF03210419
Article
Google Scholar
Passell, E., Dillon, D. G., Baker, J. T., Vogel, S. C., Scheuer, L. S., Mirin, N. L., & Germine, L. (2019). Digital cognitive assessment: Results from the TestMyBrain NIMH research domain criteria (RDoC) Field Test Battery Report.
Peters, B., Rahm, B., Czoschke, S., Barnes, C., Kaiser, J., & Bledowski, C. (2018). Sequential whole report accesses different states in visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(4), 588–603. https://doi.org/10.1037/xlm0000466
Article
PubMed
Google Scholar
Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13(1), 25–42.
Article
PubMed
Google Scholar
Praß, M., & de Haan, B. (2019). Multi-target attention and visual short-term memory capacity are closely linked in the intraparietal sulcus. Human Brain Mapping. https://doi.org/10.1002/hbm.24618
Article
PubMed
PubMed Central
Google Scholar
Preacher, K. J., & MacCallum, R. C. (2002). Exploratory factor analysis in behavior genetics research: Factor recovery with small sample sizes. Behavior Genetics, 32(2), 153–161. https://doi.org/10.1023/A:1015210025234
Article
PubMed
Google Scholar
Price, L. R., Tulsky, D., Millis, S., & Weiss, L. (2002). Redefining the factor structure of the wechsler memory scale-III: Confirmatory factor analysis with cross-validation. Journal of Clinical and Experimental Neuropsychology, 24(5), 574–585. https://doi.org/10.1076/jcen.24.5.574.1013
Article
PubMed
Google Scholar
Pylyshyn, Z. W. (1989). The role of location indexes in spatial perception: A sketch of the FINST spatial-index model. Cognition, 32, 65–97.
Article
PubMed
Google Scholar
Pylyshyn, Z. W. (2001). Visual indexes, preconceptual objects, and situated vision. Cognition, 80(1–2), 127–158.
Article
PubMed
Google Scholar
Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision, 3(3), 179–197.
Article
PubMed
Google Scholar
R Core Team. (2020). R: A language and environment for statistical computing. http://www.R-project.org/
Rabin, L. A., Paolillo, E., & Barr, W. B. (2016). Stability in test-usage practices of clinical neuropsychologists in the United States and Canada over a 10-year period: A follow-up survey of INS and NAN members. Archives of Clinical Neuropsychology, 31(3), 206–230. https://doi.org/10.1093/arclin/acw007
Article
PubMed
Google Scholar
Reitan, R. M. (1971). Trail making test. Manual for administration and scoring. Reitan Neuropsychology Laboratory.
Google Scholar
Revelle, W. (2018). psych: Procedures for personality and psychological research (1.8.12) [R]. Northwestern University. https://CRAN.R-project.org/package=psych
Reynolds, M. R., Ingram, P. B., Seeley, J. S., & Newby, K. D. (2013). Investigating the structure and invariance of the Wechsler Adult Intelligence Scales, Fourth edition in a sample of adults with intellectual disabilities. Research in Developmental Disabilities, 34(10), 3235–3245. https://doi.org/10.1016/j.ridd.2013.06.029
Article
PubMed
Google Scholar
Robertson, I. H., Manly, T., Andrade, J., Baddeley, B. T., & Yiend, J. (1997). `Oops!’: Performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia, 35(6), 747–758. https://doi.org/10.1016/S0028-3932(97)00015-8
Article
PubMed
Google Scholar
Roper, Z. J. J., & Vecera, S. P. (2014). Visual short-term memory load strengthens selective attention. Psychonomic Bulletin & Review, 21(2), 549–556. https://doi.org/10.3758/s13423-013-0503-3
Article
Google Scholar
Rosenberg, M., Noonan, S., DeGutis, J., & Esterman, M. (2013). Sustaining visual attention in the face of distraction: A novel gradual-onset continuous performance task. Attention, Perception, & Psychophysics, 75(3), 426–439. https://doi.org/10.3758/s13414-012-0413-x
Article
Google Scholar
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(1), 1–36. https://doi.org/10.18637/jss.v048.i02
Article
Google Scholar
Salthouse, T. A. (2011). What cognitive abilities are involved in trail-making performance? Intelligence, 39(4), 222–232. https://doi.org/10.1016/j.intell.2011.03.001
Article
PubMed
PubMed Central
Google Scholar
Sánchez-Cubillo, I., Perianez, J., Adrover-Roig, D., Rodriguez-Sanchez, J., Rios-Lago, M., Tirapu, J., & Barcelo, F. (2009). Construct validity of the trail making test: Role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. Journal of the International Neuropsychological Society, 15(3), 438–450.
Sandry, J., & Ricker, T. J. (2020). Prioritization within visual working memory reflects a flexible focus of attention. Attention, Perception, & Psychophysics, 82(6), 2985–3004. https://doi.org/10.3758/s13414-020-02049-4
Article
Google Scholar
Sardiwalla, Y., Eskes, G., Bernard, A., George, R. B., & Schmidt, M. (2019). Assessing the feasibility of using the Dalhousie computerized attention battery to measure postoperative cognitive dysfunction in older patients. Journal of Perioperative Practice, 29(10), 328–336. https://doi.org/10.1177/1750458918808163
Article
PubMed
Google Scholar
Schmidt, M., Trueblood, W., Merwin, M., & Durham, R. L. (1994). How much do ‘attention’ tests tell us? Archives of Clinical Neuropsychology, 9(5), 383–394. https://doi.org/10.1093/arclin/9.5.383
Article
PubMed
Google Scholar
Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84(1), 1–66.
Article
Google Scholar
Scholl, B. J. (2009). What have we learned about attention from multiple object tracking (and vice versa). Computation, Cognition, and Pylyshyn, 49–78.
Shelton, J. T., Elliott, E. M., Hill, B. D., Calamia, M. R., & Gouvier, W. D. (2009). A comparison of laboratory and clinical working memory tests and their prediction of fluid intelligence. Intelligence, 37(3), 283. https://doi.org/10.1016/j.intell.2008.11.005
Article
PubMed
PubMed Central
Google Scholar
Sohlberg, M. M., & Mateer, C. A. (1989). Introduction to cognitive rehabilitation: Theory and practice. Guilford Press.
Skogsberg, K., Grabowecky, M., Wilt, J., Revelle, W., Iordanescu, L., & Suzuki, S. (2015). A relational structure of voluntary visual-attention abilities. Journal of Experimental Psychology: Human Perception and Performance, 41(3), 761–789. https://doi.org/10.1037/a0039000
Article
PubMed
Google Scholar
Souza, A. S., & Oberauer, K. (2017). The contributions of visual and central attention to visual working memory. Attention, Perception, & Psychophysics, 79(7), 1897–1916. https://doi.org/10.3758/s13414-017-1357-y
Article
Google Scholar
Srisurapanont, M., Suttajit, S., Eurviriyanukul, K., & Varnado, P. (2017). Discrepancy between objective and subjective cognition in adults with major depressive disorder. Scientific Reports, 7(1), 3901.
Article
PubMed
PubMed Central
Google Scholar
Sternberg, S. (1966). High-speed scanning in human memory. Science (new York, NY), 153(736), 652–654.
Article
Google Scholar
Thompson, B. (2004). Exploratory and confirmatory factor analysis: Understanding concepts and applications (pp. x, 195). American Psychological Association. https://doi.org/10.1037/10694-000
Thornton, I. M., & Horowitz, T. S. (2020). MILO mobile: An iPad App to measure search performance in multi-target sequences. I-Perception, 11(3), 2041669520932587. https://doi.org/10.1177/2041669520932587
Article
PubMed
PubMed Central
Google Scholar
Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136.
Article
PubMed
Google Scholar
Trick, L. M., Mutreja, R., & Hunt, K. (2012). Spatial and visuospatial working memory tests predict performance in classic multiple-object tracking in young adults, but nonspatial measures of the executive do not. Attention, Perception, & Psychophysics, 74(2), 300–311. https://doi.org/10.3758/s13414-011-0235-2
Article
Google Scholar
Tullo, D., Faubert, J., & Bertone, A. (2018). The characterization of attention resource capacity and its relationship with fluid reasoning intelligence: A multiple object tracking study. Intelligence, 69, 158–168. https://doi.org/10.1016/j.intell.2018.06.001
Article
Google Scholar
Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent? Journal of Memory and Language, 28(2), 127–154. https://doi.org/10.1016/0749-596X(89)90040-5
Article
Google Scholar
Utochkin, I. S., & Vostrikov, K. O. (2017). The numerosity and mean size of multiple objects are perceived independently and in parallel. PLoS ONE, 12(9), e0185452. https://doi.org/10.1371/journal.pone.0185452
Article
PubMed
PubMed Central
Google Scholar
Vicari, S., Bellucci, S., & Carlesimo, G. A. (2003). Visual and spatial working memory dissociation: Evidence from Williams syndrome. Developmental Medicine and Child Neurology, 45(4), 269–273.
Article
PubMed
Google Scholar
Vives, M., López-Navarro, E., García-Campayo, J., & Gili, M. (2015). Cognitive impairments and depression: A critical review. Actas Españolas De Psiquiatría, 43(5), 187–193.
PubMed
Google Scholar
Vul, E., Frank, M., Tenenbaum, J., & Alvarez, G. A. (2009). Explaining human multiple object tracking as resource-constrained approximate inference in a dynamic probabilistic model. Advances in Neural Information Processing Systems, 22. http://books.nips.cc/papers/files/nips22/NIPS2009_0980.pdf
Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica, 57(2), 307–333. https://doi.org/10.2307/1912557
Article
Google Scholar
Wechsler, D. (1997). Wechsler Adult Intelligence Scale—Third edition (WAIS-III). Psychological Corporation.
Williams, M., Pouget, P., Boucher, L., & Woodman, G. F. (2013). Visual-spatial attention aids the maintenance of object representations in visual working memory. Memory & Cognition, 41(5), 698–715. https://doi.org/10.3758/s13421-013-0296-7
Article
Google Scholar
Wilmer, J., Martini, P., Germine, L., & Nakayama, K. (2016). Multiple object tracking predicts math potential. Journal of Vision, 16(12), 421–421. https://doi.org/10.1167/16.12.421
Article
Google Scholar
Wolfe, J. M. (2021). Guided search 6.0: An updated model of visual search. Psychonomic Bulletin & Review. https://doi.org/10.3758/s13423-020-01859-9
Article
Google Scholar
Woodman, G. F., & Luck, S. J. (1999). Electrophysiological measurement of rapid shifts of attention during visual search. Nature. http://schneider.lrdc.pitt.edu/P2465/Readings/Woodman_1999.PDF
Woodman, G. F., & Luck, S. J. (2004). Visual search is slowed when visuospatial working memory is occupied. Psychonomic Bulletin & Review, 11(2), 269–274. https://doi.org/10.3758/BF03196569
Article
Google Scholar
Yantis, S., & Jonides, J. (1990). Abrupt visual onsets and selective attention: Voluntary versus automatic allocation. Journal of Experimental Psychology. Human Perception and Performance, 16(1), 121–134.
Article
PubMed
Google Scholar
Zelazo, P. D., Anderson, J. E., Richler, J., Wallner-Allen, K., Beaumont, J. L., & Weintraub, S. (2013). II. NIH toolbox cognition battery (CB): Measuring executive function and attention: nih toolbox cognition battery (CB). Monographs of the Society for Research in Child Development, 78(4), 16–33. https://doi.org/10.1111/mono.12032
Article
PubMed
Google Scholar