Aretz, A. J., & Wickens, C. D. (1992). The mental rotation of map displays. Human Performance, 5(4), 303–328. https://doi.org/10.1207/s15327043hup0504.
Article
Google Scholar
Bause, I. M., Brich, I. R., Wesslein, A.-K., & Hesse, F. W. (2018). Using technological functions on a multi-touch table and their affordances to counteract biases and foster collaborative problem solving. International Journal of Computer-Supported Collaborative Learning, 13(1), 7–33. https://doi.org/10.1007/s11412-018-9271-4.
Article
Google Scholar
Bethell-Fox, C. E., & Shepard, R. N. (1988). Mental rotation: Effects of stimulus complexity and familiarity. Journal of Experimental Psychology: Human Perception and Performance, 14(1), 12–23.
Google Scholar
Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, 94(2), 115–147. https://doi.org/10.1037/0033-295X.94.2.115.
Article
PubMed
Google Scholar
Burnett, S. A. (1986). Sex-related differences in spatial ability: Are they trivial? American Psychologist, 41(9), 1012–1014. https://doi.org/10.1037/0003-066X.41.9.1012.
Article
Google Scholar
Cahill, M. C., & Carter, R. C. (1976). Color code size for searching displays of different density. Human Factors: The Journal of Human Factors and Ergonomics Society, 18(3), 273–280. https://doi.org/10.1177/001872087601800308.
Article
Google Scholar
Carter, R. C. (1982). Visual search with color. Journal of Experimental Psychology: Human Perception and Performance, 8(1), 127–136. https://doi.org/10.1037/0096-1523.8.1.127.
Article
PubMed
Google Scholar
Cattaneo, Z., Postma, A., & Vecchi, T. (2007). The picture superiority effect in working memory for spatial and temporal order. Psychologia, 50, 102–109.
Article
Google Scholar
Christ, R. E. (1975). Review and analysis of color coding research for visual displays. Human Factors: The Journal of the Human Factors and Ergonomics Society, 17(6), 542–570. https://doi.org/10.1177/001872087501700602.
Article
Google Scholar
Cleveland, W. S., & McGill, R. (1984). Graphical perception: Theory, experimentation, and application to the development of graphical methods. Journal of the American Statistical Association, 79(387), 531–554.
Article
Google Scholar
Cohen, J. (1969). Statistical power analysis for the behavioral sciences. Erlbaum. http://www.utstat.toronto.edu/~brunner/oldclass/378f16/readings/CohenPower.pdf
Collins, D. W., & Kimura, D. (1997). A large sex difference on a two-dimensional mental rotation task. Behavioral Neuroscience, 111(4), 845–849. https://doi.org/10.1037/0735-7044.111.4.845.
Article
PubMed
Google Scholar
Conrad, J., Shah, A. H., Divino, C. M., Schluender, S., Gurland, B., Shlasko, E., & Szold, A. (2006). The role of mental rotation and memory scanning on the performance of laparoscopic skills: A study on the effect of camera rotational angle. Surgical Endoscopy and Other Interventional Techniques, 20(3), 504–510. https://doi.org/10.1007/s00464-005-0363-7.
Article
PubMed
Google Scholar
Cooper, L. A. (1975). Mental rotation of random two-dimensional shapes. Cognitive Psychology, 7(1), 20–43. https://doi.org/10.1016/0010-0285(75)90003-1.
Article
Google Scholar
Cooper, L. A., & Podgorny, P. (1976). Mental transformations and visual comparison processes: Effects of complexity and similarity. Journal of Experimental Psychology: Human Perception and Performance, 2(4), 503–514. https://doi.org/10.1037/0096-1523.2.4.503.
Article
PubMed
Google Scholar
Cooper, L. A., & Shepard, R. N. (1973). Chronometric studies of the rotation of mental images. Visual Information Processing: Proceedings. https://doi.org/10.1111/j.1467-9280.1993.tb00468.x.
Article
Google Scholar
Corballis, M. C., & McLaren, R. (1984). Winding one’s Ps and Qs: Mental rotation and mirror-image discrimination. Journal of Experimental Psychology: Human Perception and Performance, 10(2), 318–327. https://doi.org/10.1037//0096-1523.10.2.318.
Article
PubMed
Google Scholar
Dambacher, M., Haffke, P., Groß, D., & Hübner, R. (2016). Graphs versus numbers: How information format affects risk aversion in gambling. Judgment and Decision Making, 11(3), 223–242.
Google Scholar
Dietz, P., & Leigh, D. (2001). DiamondTouch. In Proceedings of the 14th annual ACM symposium on user interface software and technology-UIST ’01, January 2001, 219. https://doi.org/10.1145/502348.502389
Diwadkar, V. A., & McNamara, T. P. (1997). Viewpoint dependence in scene recognition. Psychological Science, 8(4), 302–307. https://doi.org/10.1111/j.1467-9280.1997.tb00442.x.
Article
Google Scholar
Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity contents. Perception & Psychophysics, 54(6), 716–732.
Google Scholar
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143–149. https://doi.org/10.3758/BF03203267.
Article
Google Scholar
Eriksen, C. W., & Schultz, D. W. (1979). Information processing in visual search: A continuous flow conception and experimental results. Perception & Psychophysics, 25(4), 249–263. https://doi.org/10.3758/BF03198804.
Article
Google Scholar
Evergreen, S. D. H. (2017). Effective data visualization. . Sage.
Google Scholar
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007) G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.
Article
PubMed
Google Scholar
Fisher, R. A. (1935). The design of experiments. . Hafner Press.
Google Scholar
Gauthier, I., Hayward, W. G., Tarr, M. J., Anderson, A. W., Skudlarski, P., & Gore, J. C. (2002). BOLD activity during mental rotation and viewpoint-dependent object recognition. Neuron, 34(1), 161–171. https://doi.org/10.1016/s0896-6273(02)00622-0.
Article
PubMed
Google Scholar
Haroz, S., Kosara, R., & Franconeri, S. L. (2015). ISOTYPE visualization. In Proceedings of the 33rd annual ACM conference on human factors in computing systems-CHI ’15, 1191–1200. https://doi.org/10.1145/2702123.2702275
Hayward, W. G., & Williams, P. (2000). Viewpoint dependence and object discriminability. Psychological Science, 11(1), 7–12. https://doi.org/10.1111/1467-9280.00207.
Article
PubMed
Google Scholar
Heil, M., & Jansen-Osmann, P. (2008). Sex differences in mental rotation with polygons of different complexity: Do men utilize holistic processes whereas women prefer piecemeal ones? Quarterly Journal of Experimental Psychology, 61(5), 683–689. https://doi.org/10.1080/17470210701822967.
Article
Google Scholar
Hertzog, C., & Rypma, B. (1991). Age differences in components of mental-rotation task performance. Bulletin of the Psychonomic Society, 29(2), 209–212. https://doi.org/10.3758/BF03335237.
Article
Google Scholar
Higgins, S. E., Mercier, E. M., Burd, E., & Hatch, A. (2011). Multi-touch tables and the relationship with collaborative classroom pedagogies: A synthetic review. International Journal of Computer-Supported Collaborative Learning, 6(4), 515–538. https://doi.org/10.1007/s11412-011-9131-y.
Article
Google Scholar
Higgins, S. E., Mercier, E. M., Burd, E., & Joyce-Gibbons, A. (2012). Multi-touch tables and collaborative learning. British Journal of Educational Technology, 43(6), 1041–1054. https://doi.org/10.1111/j.1467-8535.2011.01259.x.
Article
Google Scholar
Hintzman, D. L., O’Dell, C. S., & Arndt, D. R. (1981). Orientation in cognitive maps. Cognitive Psychology, 13(2), 149–206. https://doi.org/10.1016/0010-0285(81)90007-4.
Article
PubMed
Google Scholar
Hochberg, J., & Gellman, L. (1977). The effect of landmark features on mental rotation times. Memory & Cognition, 5(1), 23–26. https://doi.org/10.3758/BF03209187.
Article
Google Scholar
Jenkins, J. R., Neale, D. C., & Deno, S. L. (1967). Differential memory for picture and word stimuli 1. Journal of Educational Psychology, 88(5), 303–307.
Article
Google Scholar
Jolicoeur, P. (1990). Orientation congruency effects on the identification of disoriented shapes. Journal of Experimental Psychology: Human Perception and Performance, 16(2), 351–364. https://doi.org/10.1037/0096-1523.16.2.351.
Article
PubMed
Google Scholar
Jones, B., & Anuza, T. (1982). Effects of sex, handedness, stimulus and visual field on “Mental rotation.” Cortex, 18(4), 501–514. https://doi.org/10.1016/S0010-9452(82)80049-X.
Article
PubMed
Google Scholar
Just, M. A., & Carpenter, P. A. (1985). Cognitive coordinate systems: Accounts of mental rotation and individual differences in spatial ability. Psychological Review, 92(2), 137–172.
Article
PubMed
Google Scholar
Khooshabeh, P., Hegarty, M., & Shipley, T. F. (2013). Individual differences in mental rotation. Experimental Psychology, 60(3), 164–171. https://doi.org/10.1027/1618-3169/a000184.
Article
PubMed
Google Scholar
Kolers, P. A. (1968). The recognition of geometrically transformed text. Perception & Psychophysics, 3(1-B), 57–64. https://doi.org/10.3758/BF03212713.
Article
Google Scholar
Kopp, B., Mattler, U., & Rist, F. (1994). Selective attention and response competition in schizophrenic patients. Psychiatry Research, 53(2), 129–139. https://doi.org/10.1016/0165-1781(94)90104-X.
Article
PubMed
Google Scholar
Koriat, A., & Norman, J. (1985). Reading rotated words. Journal of Experimental Psychology: Human Perception and Performance, 11(4), 490–508.
PubMed
Google Scholar
Lin, S., Fortuna, J., Kulkarni, C., Stone, M., & Heer, J. (2013). Selecting semantically-resonant colors for data visualization. Computer Graphics Forum, 32(3 Part 4), 401–410. https://doi.org/10.1111/cgf.12127.
Article
Google Scholar
Lyons, L. (2009). Designing opportunistic user interfaces to support a collaborative museum exhibit. In Proceedings of the 9th international conference on computer supported collaborative learning (Vol. 1, pp. 375–384).
Maisto, A. A., & Queen, D. E. (1992). Memory for pictorial information and the picture superiority effect. Educational Gerontology, 18(2), 213–223. https://doi.org/10.1080/0360127920180207.
Article
Google Scholar
Marr, D. (2010). Vision: A computational investigation into the human representation and processing of visual information. . MIT Press.
Book
Google Scholar
Marr, D., & Nishihara, H. K. (1978). Representation and recognition of the spatial organization of three-dimensional shapes. Proceedings of the Royal Society of London. Series B. Biological Sciences, 200(1140), 269–294. https://doi.org/10.1098/rspb.1978.0020.
Article
PubMed
Google Scholar
McBride, D. M., & Dosher, B. A. (2002). A comparison of conscious and automatic memory processes for picture and word stimuli: A process dissociation analysis. Consciousness and Cognition, 11(3), 423–460. https://doi.org/10.1016/S1053-8100(02)00007-7.
Article
PubMed
Google Scholar
Meyerhoff, H. S., Jardine, N., Stieff, M., Hegarty, M., & Franconeri, S. (2021). Visual ZIP files: Viewers beat capacity limits by compressing redundant features across objects. Journal of Experimental Psychology: Human Perception and Performance, 47(1), 103–115. https://doi.org/10.1037/xhp0000879.
Article
PubMed
Google Scholar
Meyerhoff, H. S., Papenmeier, F., & Huff, M. (2017). Studying visual attention using the multiple object tracking paradigm: A tutorial review. Attention, Perception, & Psychophysics, 79(5), 1255–1274. https://doi.org/10.3758/s13414-017-1338-1.
Article
Google Scholar
Montello, D. R. (1991). Spatial orientation and the angularity of urban routes. Environment and Behavior, 23(1), 47–69. https://doi.org/10.1177/0013916591231003.
Article
Google Scholar
Montello, D. R. (2010). You are where? The function and frustration of You-Are-Here (YAH) maps. Spatial Cognition & Computation, 10(2–3), 94–104. https://doi.org/10.1080/13875860903585323.
Article
Google Scholar
Moritz, J., Meyerhoff, H. S., & Schwan, S. (2020). Control over spatial representation format enhances information extraction but prevents long-term learning. Journal of Educational Psychology, 112(1), 148–165. https://doi.org/10.1037/edu0000364.
Article
Google Scholar
Neurath, O. (1936). International picture language: The first rules of isotype. Kegan Paul, Trench, Trubner and Co. http://d-nb.info/979083761
Neurath, O., & Odgen, C. K. (1937). Basic isotype. Kegan Paul, Trench Trubner and Co. http://d-nb.info/973406224
Nothelfer, C., Gleicher, M., & Franconeri, S. L. (2017). Redundant encoding strengthens segmentation and grouping in visual displays of data. Journal of Experimental Psychology: Human Perception and Performance, 43(9), 1667–1676. https://doi.org/10.1037/xhp0000314.
Article
PubMed
Google Scholar
Palmer, S. E., Brooks, J. L., & Nelson, R. (2003). When does grouping happen? Acta Psychologica, 114(3), 311–330. https://doi.org/10.1016/j.actpsy.2003.06.003.
Article
PubMed
Google Scholar
Palmer, S. E., Rosch, E., & Chase, P. (1981). Canonical perspective and the perception of objects. In J. Long & A. Baddeley (Eds.), Attention and performance. (Vol. 9, pp. 135–151). Erlbaum.
Google Scholar
Peirce, J. W. (2007). PsychoPy—Psychophysics software in Python. Journal of Neuroscience Methods, 162(1–2), 8–13. https://doi.org/10.1016/j.jneumeth.2006.11.017.
Article
PubMed
PubMed Central
Google Scholar
Peirce, J. W. (2008). Generating stimuli for neuroscience using PsychoPy. Frontiers in Neuroinformatics, 2(January), 1–8. https://doi.org/10.3389/neuro.11.010.2008.
Article
Google Scholar
Peissig, J. J., & Tarr, M. J. (2007). Visual object recognition: Do we know more now than we did 20 years ago? Annual Review of Psychology, 58(1), 75–96. https://doi.org/10.1146/annurev.psych.58.102904.190114.
Article
PubMed
Google Scholar
Peters, M., Lehmann, W., Takahira, S., Takeuchi, Y., & Jordan, K. (2006). Mental rotation test performance in four cross-cultural samples (N = 3367): Overall sex differences and the role of academic program in performance. Cortex, 42(7), 1005–1014. https://doi.org/10.1016/S0010-9452(08)70206-5.
Article
PubMed
Google Scholar
Quaiser-Pohl, C. (2003). The mental cutting test “Schnitte” and the picture rotation test—Two new measures to assess spatial ability. International Journal of Testing, 3(3), 219–231. https://doi.org/10.1207/S15327574IJT0303_2.
Article
Google Scholar
Ramakers, R., Vanacken, D., Luyten, K., Coninx, K., & Schöning, J. (2012). Carpus. In Proceedings of the 25th annual ACM symposium on user interface software and technology-UIST ’12, 35. https://doi.org/10.1145/2380116.2380123
Rensink, R. A. (2017). The nature of correlation perception in scatterplots. Psychonomic Bulletin & Review, 24, 776–797. https://doi.org/10.3758/s13423-016-1174-7.
Article
Google Scholar
Rensink, R. A., & Baldridge, G. (2010). The perception of correlation in scatterplots. Computer Graphics Forum, 29(3), 1203–1210. https://doi.org/10.1111/j.1467-8659.2009.01694.x.
Article
Google Scholar
Risko, E. F., Medimorec, S., Chisholm, J., & Kingstone, A. (2014). Rotating with rotated text: A natural behavior approach to investigating cognitive offloading. Cognitive Science, 38(3), 537–564. https://doi.org/10.1111/cogs.12087.
Article
PubMed
Google Scholar
Rogers, Y., Lim, Y.-K., Hazlewood, W. R., & Marshall, P. (2009). Equal opportunities: Do shareable interfaces promote more group participation than single user displays? Human–Computer Interaction, 24(1–2), 79–116. https://doi.org/10.1080/07370020902739379.
Article
Google Scholar
Rüsseler, J., Scholz, J., Jordan, K., & Quaiser-Pohl, C. (2005). Mental rotation of letters, pictures, and three-dimensional objects in German dyslexic children. Child Neuropsychology, 11(6), 497–512. https://doi.org/10.1080/09297040490920168.
Article
PubMed
Google Scholar
Semrud-Clikeman, M., Fine, J. G., Bledsoe, J., & Zhu, D. C. (2012). Gender differences in brain activation on a mental rotation task. International Journal of Neuroscience, 122(10), 590–597. https://doi.org/10.3109/00207454.2012.693999.
Article
PubMed
Google Scholar
Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701–703. https://doi.org/10.1126/science.171.3972.701.
Article
PubMed
Google Scholar
Shor, R. E. (1971). Symbol processing speed differences and symbol interference effects in a variety of concept domains. The Journal of General Psychology, 85(2), 187–205. https://doi.org/10.1080/00221309.1971.9920672.
Article
PubMed
Google Scholar
Standing, L. (1973). Learning 10000 pictures. Quarterly Journal of Experimental Psychology, 25(2), 207–222. https://doi.org/10.1080/14640747308400340.
Article
PubMed
Google Scholar
Stieff, M. (2007). Mental rotation and diagrammatic reasoning in science. Learning and Instruction, 17(2), 219–234. https://doi.org/10.1016/j.learninstruc.2007.01.012.
Article
Google Scholar
Tang, A., Tory, M., Po, B., Neumann, P., & Carpendale, S. (2006). Collaborative coupling over tabletop displays. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems-CHI ’06, January 2006, 1181. https://doi.org/10.1145/1124772.1124950
Tapley, S. M., & Bryden, M. P. (1977). An investigation of sex differences in spatial ability: Mental rotation of three-dimensional objects. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 31(3), 122–130. https://doi.org/10.1037/h0081655.
Article
Google Scholar
Tarampi, M. R., Heydari, N., & Hegarty, M. (2016). A tale of two types of perspective taking. Psychological Science, 27(11), 1507–1516. https://doi.org/10.1177/0956797616667459.
Article
PubMed
Google Scholar
Tarr, M. J. (1995). Rotating objects to recognize them: A case study on the role of viewpoint dependency in the recognition of three-dimensional objects. Psychonomic Bulletin & Review, 2(1), 55–82.
Article
Google Scholar
Tarr, M. J., & Bülthoff, H. H. (1998). Image-based object recognition in man, monkey and machine. Cognition, 67(1–2), 1–20. https://doi.org/10.1016/S0010-0277(98)00026-2.
Article
PubMed
Google Scholar
Tarr, M. J., & Pinker, S. (1989). Mental rotation and orientation-dependence in shape recognition. Cognitive Psychology, 21(2), 233–282. https://doi.org/10.1016/0010-0285(89)90009-1.
Article
PubMed
Google Scholar
Treisman, A. M. (1986). Features and objects in visual processing. Scientific American, 255(5), 114–125.
Article
Google Scholar
Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136. https://doi.org/10.1016/0010-0285(80)90005-5.
Article
PubMed
Google Scholar
Varriale, V., van der Molen, M. W., & De Pascalis, V. (2018). Mental rotation and fluid intelligence: A brain potential analysis. Intelligence, 69, 146–157. https://doi.org/10.1016/j.intell.2018.05.007.
Article
Google Scholar
Whitehouse, A. J. O., Maybery, M. T., & Durkin, K. (2006). The development of the picture-superiority effect. British Journal of Developmental Psychology, 24(4), 767–773. https://doi.org/10.1348/026151005X74153.
Article
Google Scholar
Wolfe, J. M., & Horowitz, T. S. (2004). What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience, 5(6), 495–501. https://doi.org/10.1038/nrn1411.
Article
PubMed
Google Scholar
Wolfe, J. M., & Horowitz, T. S. (2017). Five factors that guide attention in visual search. Nature Human Behaviour, 1(3), 1–8. https://doi.org/10.1038/s41562-017-0058.
Article
Google Scholar
Xu, Y., & Franconeri, S. L. (2015). Capacity for visual features in mental rotation. Psychological Science, 26(8), 1241–1251. https://doi.org/10.1177/0956797615585002.
Article
PubMed
Google Scholar
Yuille, J. C., & Steiger, J. H. (1982). Nonholistic processing in mental rotation: Some suggestive evidence. Perception & Psychophysics, 31(3), 201–209.
Article
Google Scholar