Allcott, H., & Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of Economic Perspectives, 31(2), 211–236.
Article
Google Scholar
Allen, J., Howland, B., Mobius, M., Rothschild, D., & Watts, D. J. (2020). Evaluating the fake news problem at the scale of the information ecosystem. Science Advances, 6(14).
Alves, L., & Wilson, S. (2008). The effects of loneliness on telemarketing fraud vulnerability among older adults. Journal of Elder Abuse & Neglect, 20(1), 63–85.
Article
Google Scholar
Bago, B., Rand, D. G., & Pennycook, G. (2020). Fake news, fast and slow: deliberation reduces belief in false (but not true) news headlines. Journal of Experimental Psychology: General, 1–18.
Batson, C. D., & Schoenrade, P. A. (1991). Measuring religion as quest: 2) reliability concerns. Journal for the Scientific Study of Religion, 30(4), 430–447.
Article
Google Scholar
Brashier, N. M., & Schacter, D. L. (2020). Aging in an era of fake news. Current Directions in Psychological Science, 29(3), 316–323.
Article
PubMed
Google Scholar
Bronstein, M. V., Pennycook, G., Bear, A., Rand, D. G., & Cannon, T. D. (2019). Belief in fake news is associated with delusionality, dogmatism, religious fundamentalism, and reduced analytic thinking. Journal of Applied Research in Memory and Cognition, 8(1), 108–117.
Article
Google Scholar
Büssing, A., Ostermann, T., & Matthiessen, P. F. (2007). Distinct Expressions of Vital Spirituality "The ASP Questionnaire as an Explorative Research Tool". Journal of Religion and Health, 267–286.
Cacioppo, J. T., Petty, R. E., Chuan, F. K., & Rodriguez, R. (1986). Central and peripheral routes to persuasion. An individual difference perspective. Journal of Personality and Social Psychology, 51(5), 1032–1043.
Article
Google Scholar
Cacioppo, J. T., Petty, R. E., & Kao, C. F. (1984). The efficient assessment of need for cognition. Journal of Personality Assessment, 48(3), 306–307.
Article
PubMed
Google Scholar
Carpenter, C. J. (2015). A meta-analysis of the Elm’s argument quality × processing type predictions. Human Communication Research, 41(4), 501–534.
Article
Google Scholar
De Neys, W. (2012). Bias and conflict: A case for logical intuitions. Perspectives on Psychological Science, 7(1), 28–38.
Article
PubMed
Google Scholar
Dias, N., Pennycook, G., & Rand, D. G. (2020). Emphasizing publishers does not effectively reduce susceptibility to misinformation on social media. Harvard Kennedy School Misinformation Review, 1(1).
Ebner, N. C., Ellis, D. M., Lin, T., Rocha, H. A., Yang, H., Dommaraju, S., Soliman, A., Woodard, D. L., Turner, G. R., Spreng, R. N., & Oliveira, D. S. (2020). Uncovering susceptibility risk to online deception in aging. The Journals of Gerontology: Series B Psychological Sciences and Social Sciences, 75(3), 522–533.
Article
Google Scholar
Ebner, N. C., Pehlivanoglu, D., Polk, R., Turner, G. R., & Spreng, R. N. (in press). Aging online: Rethinking the aging decision maker in a digital era. In Y. Hanoch & S. Wood (Eds). A fresh look at fraud: theoretical and applied approaches (behavioral economics and healthy behaviors). (Routledge Taylor Francis).
Evans, J. S. B. T. (2007). Dual-processing accounts of reasoning, judgment, and social cognition. Annual Review of Psychology, 59(1), 255–278.
Article
Google Scholar
Evans, J. S. B. T. (2011). Reasoning is for thinking, not just for arguing. Behavioral and Brain Sciences, 34(2), 77–78.
Article
Google Scholar
Everett, J. A. C. (2013). The 12 item social and economic conservatism scale (SECS). PLoS ONE, 8(12), e82131.
Article
PubMed
PubMed Central
Google Scholar
Ferreira, M. B., Garcia-Marques, L., Sherman, S. J., & Sherman, J. W. (2006). Automatic and controlled components of judgment and decision making. Journal of Personality and Social Psychology.
Frederick, S. (2005). Cognitive reflection and decision making. Journal of Economic Perspectives, 19(4), 25–42.
Article
Google Scholar
Gelman, A., & Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models. . Cambridge University Press.
Google Scholar
Gigerenzer, G. (2007). Gut feelings: The intelligence of the unconscious. . Penguin.
Google Scholar
Gilda, S. (2017). Notice of violation of IEEE publication principles: Evaluating machine learning algorithms for fake news detection. In 2017 IEEE 15th student conference on research and development (SCOReD), (pp. 110–115).
Grilli, M. D., McVeigh, K. S., Hakim, Z. M., Wank, A. A., Getz, S. J., Levin, B. E., Ebner, N. C., & Wilson, R. C. (in press). Is this phishing? Older age is associated with greater difficulty discriminating between safe and malicious emails. Journal of Gerontology: Psychological Sciences.
Grinberg, N., Joseph, K., Friedland, L., Swire-Thompson, B., & Lazer, D. (2019). Fake news on Twitter during the 2016 US presidential election. Science, 363(6425), 374–378.
Article
PubMed
Google Scholar
Guess, A., Nagler, J., & Tucker, J. (2019). Less than you think: Prevalence and predictors of fake news dissemination on Facebook. Asian-Australasian Journal of Animal Sciences, 32(2), 1–9.
Google Scholar
Hakim, Z. M., Ebner, N. C., Oliveira, D. S., Getz, S. J., Levin, B. E., Lin, T., Grilli, M. D., & Wilson, R. C. (2020). The Phishing Email Suspicion Test (PEST) a lab-based task for evaluating the cognitive mechanisms of phishing detection. Behavior Research Methods, 1–11.
Hox, J. J. (2010). Multilevel analysis: Techniques and applications. . Routledge.
Book
Google Scholar
James, B. D., Boyle, P. A., & Bennett, D. A. (2014). Correlates of susceptibility to scams in older adults without dementia. Journal of Elder Abuse & Neglect, 26(2), 107–122.
Article
Google Scholar
Kahneman, D. (2011). Thinking, fast and slow. . Macmillan. https://doi.org/10.2307/1914185.
Book
Google Scholar
Kahneman, D., Slovic, S. P., Slovic, P., & Tversky, A. (1982). Judgment under uncertainty: Heuristics and biases. . Cambridge University Press.
Book
Google Scholar
Klein, G. (2008). Naturalistic decision making. Human Factors: The Journal of the Human Factors and Ergonomics Society, 50(3), 456–460.
Article
Google Scholar
Klein, G. (2015). A naturalistic decision making perspective on studying intuitive decision making. Journal of Applied Research in Memory and Cognition, 4(3), 164–168.
Article
Google Scholar
Lazer, D. M., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., Metzger, M. J., Nyhan, B., Pennycook, G., Rothschild, D., & Schudson, M. (2018). The science of fake news. Science, 359(6380), 1094–1096.
Article
PubMed
Google Scholar
Lin, T., Capecci, D. E., Ellis, D. M., Rocha, H. A., Dommaraju, S., Oliveira, D. S., & Ebner, N. C. (2019). Susceptibility to spear-phishing emails: Effects of internet user demographics and email content. ACM Transactions on Computer-Human Interaction, 26(5), 1–28.
Article
Google Scholar
Luo, M., Hancock, J. T., & Markowitz, D. M. (2020). Credibility perceptions and detection accuracy of fake news headlines on social media: Effects of truth-bias and endorsement cues. Communication Research, 0093650220921321.
Macmillan, N. A., & Creelman, C. D. (2004). Detection theory: A user’s guide. . Psychology Press.
Book
Google Scholar
Maksl, A., Ashley, S., & Craft, S. (2015). Measuring news media literacy. Journal of Media Literacy Education, 6(3), 29–45.
Google Scholar
Mercier, H., & Sperber, D. (2011). Why do humans reason? Arguments for an argumentative theory. Behavioral and Brain Sciences, 34(2), 57–74.
Article
Google Scholar
Murray, L. (2020). National enquirer. Encyclopedia Britannica, 17 Dec. 2013, https://www.britannica.com/topic/National-Enquirer. Retrived July 20, 2020.
Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. Science, 349(6251), aac4716.
Article
Google Scholar
Oshikawa, R., Qian, J., & Wang, W. Y. (2018). A survey on natural language processing for fake news detection. https://arxiv.org/abs/1811.00770.
Pehlivanoglu, D., Lin, T., Chi, K., Perez, E., Polk, R., Cahill, B., Lighthall, N., Ebner, N. C. (2020). News veracity detection among older adults during the COVID-19 pandemic: The role of analytical reasoning, mood, news consumption, and news content. https://doi.org/10.31234/osf.io/3kgq9
Pennycook, G., Fugelsang, J. A., & Koehler, D. J. (2015). Everyday consequences of analytic thinking. Current Directions in Psychological Science, 24(6), 425–432.
Article
Google Scholar
Pennycook, G., & Rand, D. G. (2019a). Fighting misinformation on social media using crowdsourced judgments of news source quality. Proceedings of the National Academy of Sciences of the United States of America, 116(7), 2521–2526.
Article
PubMed
PubMed Central
Google Scholar
Pennycook, G., & Rand, D. G. (2019b). Lazy, not biased: Susceptibility to partisan fake news is better explained by lack of reasoning than by motivated reasoning. Cognition, 188, 39–50.
Article
PubMed
Google Scholar
Pennycook, G., & Rand, D. G. (2020). Who falls for fake news? The roles of bullshit receptivity, overclaiming, familiarity, and analytic thinking. Journal of Personality, 88(2), 185–200.
Article
PubMed
Google Scholar
Petty, R. E., & Cacioppo, J. T. (1986). The elaboration likelihood model of persuasion. In Communication and persuasion: Central and peripheral routes to attitude change (pp. 1–24).
Associated Press. (2019). AP-NORC/USAFacts poll: Americans struggle to ID true facts. AP News. Retrieved from https://apnews.com/article/c762f01370ee4bbe8bbd20f5ddf2adbe
Ratneshwar, S., & Chaiken, S. (1991). Comprehension’s role in persuasion: The case of its moderating effect on the persuasive impact of source cues. Journal of Consumer Research, 18(1), 52–62.
Article
Google Scholar
Schaewitz, L., Kluck, J. P., Klösters, L., & Krämer, N. C. (2020). When is disinformation (in)credible? Experimental findings on message characteristics and individual differences. Mass Communication and Society, 23(4), 484–509.
Article
Google Scholar
Sengpiel, M., & Dittberner, D. (2008). The computer literacy scale (CLS) for older adults-development and validation. Mensch und Computer 2008-Tagungsband.
Silverman, C., Strapagiel, L., Shaban, H., Hall, E., & Singer-Vine, J. (2016). Hyperpartisan Facebook pages are publishing false and misleading information at an alarming rate. Buzzfeed News, 20, 68.
Google Scholar
Stanovich, K. E. (2009). Distinguishing the reflective, algorithmic, and autonomous minds: Is it time for a tri-process theory? In In two minds: Dual processes and beyond. (pp. 55–88).
StataCorp. . (2019). Stata statistical software: Release 16. . StataCorp LP.
Google Scholar
Teunisse, A. K., Case, T. I., Fitness, J., & Sweller, N. (2020). I Should have known better: Development of a self-report measure of gullibility. Personality and Social Psychology Bulletin, 46(3), 408–423.
Article
PubMed
Google Scholar
Vosoughi, S., Roy, D., & Aral, S. (2018). News on-line. Science, 1151, 1146–1151.
Article
Google Scholar
Wood, S., Liu, P.-J.J., Hanoch, Y., Xi, P. M., & Klapatch, L. (2018). Call to claim your prize: Perceived benefits and risk drive intention to comply in a mass marketing scam. Journal of Experimental Psychology: Applied, 24(2), 196–206.
PubMed
Google Scholar
Zebrowitz, L. A., Ward, N., Boshyan, J., Gutchess, A., & Hadjikhani, N. (2018). Older adults’ neural activation in the reward circuit is sensitive to face trustworthiness. Cognitive, Affective and Behavioral Neuroscience, 18(1), 21–34.
Article
PubMed
Google Scholar