Abudarham, N., Shkiller, L., & Yovel, G. (2019). Critical features for face recognition. Cognition. https://doi.org/10.1016/j.cognition.2018.09.002
Article
PubMed
Google Scholar
Adamo, S. H., Cox, P. H., Kravitz, D. J., & Mitroff, S. R. (2019). How to correctly put the “subsequent” in subsequent search miss errors. Attention, Perception, and Psychophysics, 81(8), 2648–2657. https://doi.org/10.3758/s13414-019-01802-8
Article
Google Scholar
Alenezi, H. M., Bindemann, M., Fysh, M. C., & Johnston, R. A. (2015). Face matching in a long task: Enforced rest and desk-switching cannot maintain identification accuracy. PeerJ. https://doi.org/10.7717/peerj.1184
Article
PubMed
PubMed Central
Google Scholar
Balsdon, T., Summersby, S., Kemp, R. I., & White, D. (2018). Improving face identification with specialist teams. Cognitive Research: Principles and Implications, 3, 25. https://doi.org/10.1186/s41235-018-0114-7
Article
Google Scholar
Bate, S., Bennetts, R., Hasshim, N., Portch, E., Murray, E., Burns, E., & Dudfield, G. (2019). The limits of super recognition: An other-ethnicity effect in individuals with extraordinary face recognition skills. Journal of Experimental Psychology: Human Perception and Performance. https://doi.org/10.1037/xhp0000607
Article
PubMed
Google Scholar
Bate, S., & Dudfield, G. (2019). Subjective assessment for super recognition: An evaluation of self-report methods in civilian and police participants. PeerJ, 2019(1), 1–17. https://doi.org/10.7717/peerj.6330
Article
Google Scholar
Bate, S., Frowd, C., Bennetts, R., Hasshim, N., Portch, E., Murray, E., & Dudfield, G. (2019). The consistency of superior face recognition skills in police officers. Applied Cognitive Psychology, 33(5), 828–849.
Article
Google Scholar
Biggs, A. T., Kramer, M. R., & Mitroff, S. R. (2018). Using cognitive psychology research to inform professional visual search operations. Journal of Applied Research in Memory and Cognition, 7(2), 189–198. https://doi.org/10.1016/j.jarmac.2018.04.001
Article
Google Scholar
Biggs, A. T., & Mitroff, S. R. (2014). Different predictors of multiple-target search accuracy between nonprofessional and professional visual searchers. The Quarterly Journal of Experimental Psychology, 67(7), 1335–1348. https://doi.org/10.1080/17470218.2013.859715
Article
PubMed
Google Scholar
Biggs, A. T., & Mitroff, S. R. (2019). Visual search training via a consistency protocol: A pilot study. Visual Cognition, 27(9–10), 657–667. https://doi.org/10.1080/13506285.2019.1634662
Article
Google Scholar
Bindemann, M., Fysh, M., Cross, K., & Watts, R. (2016). Matching faces against the clock. I- Perception, 7(5), 1–18. https://doi.org/10.1177/2041669516672219
Article
Google Scholar
Braje, W., Kersten, D., Tarr, M., & Troje, N. (1998). Illumination effects in face recognition. Psychobiology, 26(4), 371–380. https://doi.org/10.3758/BF03330623
Article
Google Scholar
Bruce, V., Henderson, Z., Newman, C., & Burton, A. M. (2001). Matching identities of familiar and unfamiliar faces caught on CCTV images. Journal of Experimental Psychology: Applied, 7(3), 207–218. https://doi.org/10.1037/1076-898X.7.3.207
Article
PubMed
Google Scholar
Burton, A. M. (2013). Why has research in face recognition progressed so slowly? The importance of variability. The Quarterly Journal of Experimental Psychology, 66(8), 1467–1485. https://doi.org/10.1080/17470218.2013.800125
Article
Google Scholar
Burton, A. M., Kramer, R. S. S., Ritchie, K. L., & Jenkins, R. (2016). Identity from variation: Representations of faces derived from multiple instances. Cognitive Science, 40(1), 202–223. https://doi.org/10.1111/cogs.12231
Article
PubMed
Google Scholar
Cain, M. S., & Mitroff, S. R. (2013). Memory for found targets interferes with subsequent performance in multiple-target visual search. Journal of Experimental Psychology: Human Perception and Performance, 39(5), 1398–1408. https://doi.org/10.1037/a0030726
Article
PubMed
Google Scholar
Curby, K. M., & Gauthier, I. (2010). To the trained eye: Perceptual expertise alters visual processing. Topics in Cognitive Science, 2(2), 189–201. https://doi.org/10.1111/j.1756-8765.2009.01058.x
Article
PubMed
Google Scholar
Davies, G., & Flin, R. (1984). The man behind the mask: Disguise and face recognition. Human Learning, 3(2), 83–95.
Google Scholar
Davis, J. P., Lander, K., Evans, R. A. Y., & Jansari, A. (2016). Investigating predictors of superior face recognition ability in police super- recognisers. Applied Cognitive Psychology, 840, 827–840. https://doi.org/10.1002/acp.3260
Article
Google Scholar
Drozdowski, P., Rathgeb, C., Dantcheva, A., Damer, N., & Busch, C. (2020). Demographic bias in biometrics: A survey on an emerging challenge. IEEE Transactions on Technology and Society, 1(2), 89–103. https://doi.org/10.1109/TTS.2020.2992344
Article
Google Scholar
Dunn, J. D., Kemp, R. I., & White, D. (2018). Search templates that incorporate within-face variation improve visual search for faces. Cognitive Research: Principles and Implications. https://doi.org/10.1186/s41235-018-0128-1
Article
Google Scholar
Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciencesB. Behavior Research Methods, 39(2), 175–191.
Article
Google Scholar
Fleck, M. S., & Mitroff, S. R. (2007). Rare targets are rarely missed in correctable search. Psychological Science, 18(11), 943–947. https://doi.org/10.1111/j.1467-9280.2007.02006.x
Article
PubMed
Google Scholar
Gentry, N. W., & Bindemann, M. (2019). Examples improve facial identity comparison. Journal of Applied Research in Memory and Cognition. https://doi.org/10.1016/j.jarmac.2019.06.002
Article
Google Scholar
Gettleman, J., Grabman, J., Dobolyi, D. G., & Dodson, C. S. (2020). A decision processes account of the differences in the eyewitness confidence- accuracy relationship between strong and weak face recognizers under suboptimal exposure and delay cond. Journal of Experimental Psychology: Learning, Memory, and Cognition.
Hancock, P. J. B., Bruce, V., & Mike Burton, A. (2000). Recognition of unfamiliar faces. Trends in Cognitive Sciences, 4(9), 330–337. https://doi.org/10.1016/S1364-6613(00)01519-9
Article
PubMed
Google Scholar
Huegli, D., Merks, S., & Schwaninger, A. (2020). Automation reliability, human–machine system performance, and operator compliance: A study with airport security screeners supported by automated explosives detection systems for cabin baggage screening. Applied Ergonomics, 86(April), 103094. https://doi.org/10.1016/j.apergo.2020.103094
Article
PubMed
Google Scholar
Ishikawa, T., Fujiwara, H., Imai, O., & Okabe, A. (2008). Wayfinding with a GPS-based mobile navigation system: A comparison with maps and direct experience. Journal of Environmental Psychology, 28(1), 74–82. https://doi.org/10.1016/j.jenvp.2007.09.002
Article
Google Scholar
Kluger, A. N., & DeNisi, A. (1996). The effects of feedback interventions on performance: A historical review, a meta-analysis, and a preliminary feedback intervention theory. Psychological Bulletin, 119(2), 254–284. https://doi.org/10.1037/0033-2909.119.2.254
Article
Google Scholar
Kramer, R. S. S., & Ritchie, K. L. (2016). Disguising Superman: How glasses affect unfamiliar Face matching. Applied Cognitive Psychology, 30(6), 841–845. https://doi.org/10.1002/acp.3261
Article
Google Scholar
Kramer, R. S. S., Young, A. W., & Burton, A. M. (2018). Understanding face familiarity. Cognition, 172, 46–58. https://doi.org/10.1016/j.cognition.2017.12.005
Article
PubMed
Google Scholar
Lampinen, J. M., Erickson, W. B., Moore, K. N., & Hittson, A. (2014). Effects of distance on face recognition: Implications for eyewitness identification. Psychonomic Bulletin & Review. https://doi.org/10.3758/s13423-014-0641-2
Article
Google Scholar
Lander, K., Christie, F., & Bruce, V. (1999). The role of movement in the recognition of famous faces. Memory & Cognition, 27(6), 974–985. https://doi.org/10.3758/BF03201228
Article
Google Scholar
Levari, D. E., Gilbert, D. T., Wilson, T. D., Sievers, B., Amodio, D. M., & Wheatley, T. (2018). Prevalence-induced concept change in human judgment. Science, 360(6396), 1465–1467.
Article
Google Scholar
Matthews, C. M., & Mondloch, C. J. (2018). Improving identity matching of newly encountered faces: Effects of multi-image training. Journal of Applied Research in Memory and Cognition, 7(2), 280–290. https://doi.org/10.1016/j.jarmac.2017.10.005
Article
Google Scholar
McKone, E., Kanwisher, N., & Duchaine, B. C. (2007). Can generic expertise explain special processing for faces? Trends in Cognitive Sciences, 11(1), 8–15. https://doi.org/10.1016/j.tics.2006.11.002
Article
PubMed
Google Scholar
Menon, N., White, D., & Kemp, R. I. (2015b). Variation in photos of the same face drives improvements in identity verification. Perception, 33(11), 1332–1341. https://doi.org/10.1177/0301006615599902
Article
Google Scholar
Menon, N., White, D., & Kemp, R. I. (2015a). Identity-level representations affect unfamiliar face matching performance in sequential but not simultaneous tasks. Quarterly Journal of Experimental Psychology, 68(9), 1777–1793. https://doi.org/10.1080/17470218.2014.990468
Article
Google Scholar
Minaei, N. (2014). Do modes of transportation and GPS affect cognitive maps of Londoners? Transportation Research Part A: Policy and Practice, 70, 162–180. https://doi.org/10.1016/j.tra.2014.10.008
Article
Google Scholar
O’Toole, A. J., Dunlop, J. P., Natu, V. S., & Phillips, P. J. (2012). Comparing face recognition algorithms to humans on challenging tasks. ACM Transactions on Applied Perception, 9(4), 13. https://doi.org/10.1145/2355598.2355599
Article
Google Scholar
O’Toole, A. J., Roark, D. A., & Abdi, H. (2002). Recognizing moving faces: A psychological and neural synthesis. Trends in Cognitive Sciences, 6(6), 261–266. https://doi.org/10.1016/S1364-6613(02)01908-3
Article
PubMed
Google Scholar
Papesh, M. H., & Goldinger, S. D. (2014). Infrequent identity mismatches are frequently undetected. Attention, Perception & Psychophysics, 76(5), 1335–1349. https://doi.org/10.3758/s13414-014-0630-6
Article
Google Scholar
Papesh, M. H., Heisick, L. L., & Warner, K. A. (2018). The persistent low-prevalence effect in unfamiliar face-matching: The roles of feedback and criterion shifting. Journal of Experimental Psychology: Applied, 24(3), 416–430. https://doi.org/10.1037/xap0000156
Article
PubMed
Google Scholar
Phillips, P. J., Beveridge, J. R., Draper, B. A., Givens, G., O’Toole, A. J., Bolme, D., Dunlop, J., Lui, Y. M., Sahibzada, H., & Weimer, S. (2012). The good, the bad, and the ugly face challenge problem. Image and Vision Computing, 30(3), 177–185. https://doi.org/10.1016/j.imavis.2012.01.004
Article
Google Scholar
Phillips, P. J., & O’Toole, A. J. (2014). Comparison of human and computer performance across face recognition experiments. Image and Vision Computing, 32(1), 1. https://doi.org/10.1016/j.imavis.2013.12.002
Article
Google Scholar
Phillips, P. J., Yates, A. N., Hu, Y., Hahn, C. A., Noyes, E., Jackson, K., Cavazos, J. G., Jeckeln, G., Ranjan, R., Sankaranarayanan, S., Chen, J. C., Castillo, C. D., Chellappa, R., White, D., & O’Toole, A. J. (2018). Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.1721355115
Article
PubMed
PubMed Central
Google Scholar
Pike, G. E., Kemp, R. I., Towell, N. A., & Phillips, K. C. (1997). Recognizing moving faces: The relative contribution of motion and perspective view information. Visual Cognition, 4(4), 409–438. https://doi.org/10.1080/713756769
Article
Google Scholar
Pilz, K. S., Thornton, I. M., & Bülthoff, H. H. (2006). A search advantage for faces learned in motion. Experimental Brain Research, 171(4), 436–447. https://doi.org/10.1007/s00221-005-0283-8
Article
PubMed
Google Scholar
Rajsic, J., Wilson, D. E., & Pratt, J. (2015). Confirmation bias in visual search. Journal of Experimental Psychology Human Perception and Performance, 41(5), 1353–1364. https://doi.org/10.1037/xhp0000090
Article
PubMed
Google Scholar
Ramon, M., Bobak, A. K., & White, D. (2019b). Towards a ‘manifesto’ for super-recognizer research. British Journal of Psychology, 110(3), 495–498. https://doi.org/10.1111/bjop.12411
Article
PubMed
PubMed Central
Google Scholar
Ramon, M., Bobak, A. K., & White, D. (2019a). Super-recognizers: From the lab to the world and back again. British Journal of Psychology, 1, 1. https://doi.org/10.1111/bjop.12368
Article
Google Scholar
Rothlein, D., DeGutis, J., Germine, L., Wilmer, J., McGlinchey, R., & Esterman, M. (2018). Sensitivity to stimulus similarity is associated with greater sustained attention ability. Attention, Perception, and Psychophysics. https://doi.org/10.3758/s13414-018-1504-0
Article
Google Scholar
Russell, R., Duchaine, B., & Nakayama, K. (2009). Super-recognizers: People with extraordinary face recognition ability. Psychonomic Bulletin and Review, 16(2), 252–257. https://doi.org/10.3758/PBR.16.2.252
Article
PubMed
Google Scholar
Stacchi, L., Huguenin-Elie, E., Caldara, R., & Ramon, M. (2020). Normative data for two challenging tests of face matching under ecological conditions. Cognitive Research: Principles and Implications. https://doi.org/10.1186/s41235-019-0205-0
Article
Google Scholar
Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods, Instruments, & Computers, 31(1), 137–149.
Article
Google Scholar
Susa, K. J., Michael, S. W., Dessenberger, S. J., & Meissner, C. A. (2019). Imposter identification in low prevalence environments. Legal and Criminological Psychology, 24, 179–193. https://doi.org/10.1111/lcrp.12138
Article
Google Scholar
Swann, L., Popovic, V., Blackler, A., & Thompson, H. (2019). Airport security screener problem-solving knowledge and implications. Human Factors. https://doi.org/10.1177/0018720819874169
Article
PubMed
Google Scholar
Taigman, Y., Yang, M., Ranzato, M. A., & Wolf, L. (2014). DeepFace: Closing the gap to human-level performance in face verification. In IEEE Conference on Computer Vision and Pattern Recognition (2008). https://doi.org/10.1109/CVPR.2014.220
Thornton, I. M., & Kourtzi, Z. (2002). A matching advantage for dynamic human faces. Perception, 31(1), 113–132. https://doi.org/10.1068/p3300
Article
PubMed
Google Scholar
Thornton, T. L., & Gilden, D. L. (2007). Parallel and serial processes in visual search. Psychological Review, 114(1), 71–103. https://doi.org/10.1037/0033-295X.114.1.71
Article
PubMed
Google Scholar
Towler, A., Kemp, R. I., Burton, A. M., Dunn, J. D., Wayne, T., Moreton, R., & White, D. (2019). Do professional facial image comparison training courses work? PLoS ONE, 14(2), e0211037. https://doi.org/10.1371/journal.pone.0211037
Article
PubMed
PubMed Central
Google Scholar
Towler, A., White, D., Ballantyne, K., Searston, R. A., Martire, K. A., & Kemp, R. I. (2018). Are forensic scientists experts? Journal of Applied Research in Memory and Cognition, 7(2), 199–208. https://doi.org/10.1016/j.jarmac.2018.03.010
Article
Google Scholar
Towler, A., White, D., & Kemp, R. I. (2014). Evaluating training methods for facial image comparison: The face shape strategy does not work. Perception, 43(2–3), 214–218. https://doi.org/10.1068/p7676
Article
PubMed
Google Scholar
Towler, A., White, D., & Kemp, R. I. (2017). Evaluating the feature comparison strategy for forensic face identification. Journal of Experimental Psychology: Applied, 23(1), 47–58. https://doi.org/10.1037/xap0000108
Article
PubMed
Google Scholar
Tran, A. T., Hassner, T., Masi, I., & Medioni, G. (2017). Regressing robust and discriminative 3D morphable models with a very deep neural network. In Proceedings—30th IEEE conference on computer vision and pattern recognition, CVPR 2017 (pp. 1493–1502). https://doi.org/10.1109/CVPR.2017.163
Weatherford, D. R., Erickson, W. B., Thomas, J., Walker, M. E., & Schein, B. (2020). You shall not pass: How facial variability and feedback affect the detection of low-prevalence fake IDs. Cognitive Research: Principles and Implications, 5(1), 1–15. https://doi.org/10.1186/s41235-019-0204-1
Article
Google Scholar
Weatherford, D. R., Ottoson, J., Cocherell, R., & Erickson, W. B. (2016). Selfies for science: A comprehensive face database.
Weatherford, D. R., & Schein, B. H. (2015). Mismatch prevalence influences response bias and discriminability in unfamiliar face matching. Journal of Vision, 15(12), 697.
Article
Google Scholar
White, D., Kemp, R. I., Jenkins, R., Matheson, M., & Burton, A. M. (2014). Passportofficers’ errors in face matching. PLoS ONE, 9(8), e103510.
Article
Google Scholar
White, D., Phillips, P. J., Hahn, C. A., Hill, M., Toole, A. J. O., & White, D. (2015). Perceptual expertise in forensic facial image comparison. Proceedings of the Royal Society B: Biological Sciences, 282, 20151292. https://doi.org/10.1098/rspb.2015.1292
Article
PubMed
Google Scholar
Wolfe, J. M., Brunelli, D. N., & Horowitz, T. S. (2013). Prevalence effects in newly trained airport checkpoint screeners: Trained observers miss rare targets too. Journal of Vision, 13(3), 1–9. https://doi.org/10.1167/13.3.33
Article
Google Scholar
Wolfe, J. M., Horowitz, T. S., Van Wert, M. J., Kenner, N. M., Place, S. S., & Kibbi, N. (2007). Low target prevalence is a stubborn source of errors in visual search tasks. Journal of Experimental Psychology. General, 136(4), 623–638.
Article
Google Scholar
Xml, N., Id, M., Biometrics, W., & Force, T. (2007). Biometric automated toolset (BAT) and handheld interagency identity detection equipment (HIIDE). Intelligence, 1–12.
Young, A. W., & Burton, A. M. (2018). Are we face experts ? Trends in Cognitive Sciences. https://doi.org/10.1016/j.tics.2017.11.007
Article
PubMed
Google Scholar
Yovel, G., & O’Toole, A. J. (2016). Recognizing people in motion. Trends in Cognitive Sciences. https://doi.org/10.1016/j.tics.2016.02.005
Article
PubMed
Google Scholar
Zhao, M., & Bülthoff, I. (2017). Holistic processing of static and moving faces. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(7), 1020–1035. https://doi.org/10.1037/xlm0000368
Article
PubMed
Google Scholar