Adamo, S. H., Cain, M. S., & Mitroff, S. R. (2013). Self-induced attentional blink: A cause of errors in multiple-target search. Psychological Science, 24(12), 2569–2574.
Article
PubMed
Google Scholar
Adamo, S. H., Cox, P. H., Kravitz, D. J., & Mitroff, S. R. (2019). How to correctly put the “subsequent” in subsequent search miss errors. Attention, Perception, & Psychophysics, 81(8), 2648–2657.
Article
Google Scholar
Becker, M. W., Anderson, K., & Brascamp, J. W. (2020). A novel, unbiased approach to evaluating subsequent search misses in dual target visual search. Attention Perception & Psychophysics, 82, 3357–3373.
Article
Google Scholar
Berbaum, K. S., Franken, E. A., Jr., Dorfman, D. D., Rooholamini, S. A., Kathol, M. H., Barloon, T. J., & Montgomery, W. J. (1990). Satisfaction of search in diagnostic radiology. Investigative Radiology, 25(2), 133–140.
Article
PubMed
Google Scholar
Biggs, A. T., Adamo, S. H., Dowd, E. W., & Mitroff, S. R. (2015). Examining perceptual and conceptual set biases in multiple-target visual search. Attention, Perception, & Psychophysics, 77, 844–855.
Article
Google Scholar
Biggs, A. T., Cain, M. S., Clark, K., Darling, E. F., & Mitroff, S. R. (2013). Assessing visual search performance differences between Transportation Security Administration Officers and nonprofessional visual searchers. Visual Cognition, 21(3), 330–352.
Article
Google Scholar
Biggs, A. T., & Mitroff, S. R. (2015). Differences in multiple-target visual search performance between non-professional and professional searchers due to decision-making criteria. British Journal of Psychology, 106, 551–563.
Article
PubMed
Google Scholar
Boot, W. R., Becic, E., & Kramer, A. F. (2009). Stable individual differences in search strategy?: The effect of task demands and motivational factors on scanning strategy in visual search. Journal of Vision, 9(3), 7–7.
Article
PubMed
Google Scholar
Breast Cancer Surveillance Consortium. (2009). Cancer rate (per 1000 examinations) and cancer detection rate (per 1000 examinations) for 1,960,150 screening mammography examinations from 2002 to 2006 by age. Retrieved from http://breastscreening.cancer.gov/data/performance/screening/2009/rate_age.html
Cain, M. S., Vul, E., Clark, K., & Mitroff, S. R. (2012). A Bayesian optimal foraging model of human visual search. Psychological Science, 23(9), 1047–1054.
Article
PubMed
Google Scholar
Carney, P. A., Cook, A. J., Miglioretti, D. L., Feig, S. A., Bowles, E. A., Geller, B. M., & Elmore, J. G. (2012). Use of clinical history affects accuracy of interpretive performance of screening mammography. Journal of Clinical Epidemiology, 65(2), 219–230.
Article
PubMed
Google Scholar
Chabukswar, S., Gramopadhye, A. K., Melloy, B. J., & Grimes, L. W. (2003). Use of aiding and feedback in improving visual search performance for an inspection task. Human Factors and Ergonomics in Manufacturing & Service Industries, 13(2), 115–136.
Article
Google Scholar
Chan, L. K. H., & Hayward, W. G. (2013). Visual search. Wiley Interdisciplinary Reviews: Cognitive Science, 4, 415–429.
PubMed
Google Scholar
Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71.
Article
PubMed
Google Scholar
Chun, M. M., & Wolfe, J. M. (1996). Just say no: How are visual searches terminated when there is no target present? Cognitive Psychology, 30, 39–78.
Article
PubMed
Google Scholar
Clark, K., Cain, M. S., Adamo, S. H., & Mitroff, S. R. (2012). Examining influences on applied visual search performance. In M. D. Dodd & J. H. Flowers (Eds.), The influence of attention, learning, and motivation on visual search (Vol. 59, pp. 147–181). Springer.
Chapter
Google Scholar
Clark, K., Cain, M. S., Adcock, R. A., & Mitroff, S. R. (2014). Context matters: The structure of task goals affects accuracy in multiple-target visual search. Applied Ergonomics, 45(3), 528–533.
Article
PubMed
Google Scholar
Cornes, K. R., Boardman, M., Ford, C., & Smith, S. (2019). Adopting a multidisciplinary approach to maximizing performance during military visual search tasks. BMJ Military Health, 165(2), 120–123.
Google Scholar
Dowd, E. W., & Mitroff, S. R. (2013). Attentional guidance by working memory overrides saliency cues in visual search. Journal of Experimental Psychology: Human Perception & Performance, 39(6), 1786–1796.
Google Scholar
Eckstein, M. P. (2011). Visual search: A retrospective. Journal of Vision, 11, 14.
Article
PubMed
Google Scholar
Fleck, M. S., Samei, E., & Mitroff, S. R. (2010). Generalized “satisfaction of search”: Adverse influences on dual-target search accuracy. Journal of Experimental Psychology: Applied, 16(1), 60–71.
PubMed
Google Scholar
Godwin, H. J., Menneer, T., Riggs, C. A., Cave, K. R., & Donnelly, N. (2015). Perceptual failures in the selection and identification of low-prevalence targets in relative prevalence visual search. Attention, Perception, & Psychophysics, 77(1), 150–159.
Article
Google Scholar
Gur, D., Sumkin, J. H., Rockette, H. E., Ganott, M., Hakim, C., Hardesty, L., & Wallace, L. (2004). Changes in breast cancer detection and mammography recall rates after the introduction of a computer-aided detection system. Journal of the National Cancer Institute, 96, 185.
Article
PubMed
Google Scholar
Hout, M. C., Walenchok, S. C., Goldinger, S. D., & Wolfe, J. M. (2015). Failures of perception in the low-prevalence effect: Evidence from active and passive visual search. Journal of Experimental Psychology: Human Perception & Performance, 41(4), 977–994.
Google Scholar
Ishibashi, K., & Kita, S. (2014). Probability cueing influences miss rate and decision criterion in visual searches. i-Perception, 5(3), 170–175.
Article
PubMed
PubMed Central
Google Scholar
Ishibashi, K., Kita, S., & Wolfe, J. M. (2012). The effects of local prevalence and explicit expectations on search termination times. Attention, Perception, & Psychophysics, 74(1), 115–123.
Article
Google Scholar
Janelle, C. M., & Hatfield, B. D. (2008). Visual attention and brain processes that underlie expert performance: Implications for sport and military psychology. Military Psychology, 20(sup1), S39–S69.
Article
Google Scholar
Kass, R., & Raftery, A. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773–795.
Article
Google Scholar
King, M. C., Marks, J. H., & Mandell, J. B. (2003). Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science, 302(5645), 643–646.
Article
PubMed
Google Scholar
Kleiner, M., Brainard, D., & Pelli, D. (2007). What's new in Psychtoolbox-3?.
Koopman, B. O. (1956). The theory of search Kinematic bases. Operations Research, 4(3), 324–346.
Article
Google Scholar
Krupinski, E. A. (2010). Current perspectives in medical image perception. Attention, Perception, & Psychophysics, 72, 1205–1217.
Article
Google Scholar
Krupinski, E. A. (2015). Improving patient care through medical image perception research. Policy Insights from the Behavioral and Brain Sciences, 2(1), 74–80.
Article
Google Scholar
Kundel, H. L., Nodine, C. F., & Carmody, D. P. (1978). Visual scanning, pattern recognition and decision-making in pulmonary tumor detection. Investigative Radiology, 13, 175–181.
Article
PubMed
Google Scholar
Lau, J. S. H., & Huang, L. (2010). The prevalence effect is determined by past experience, not future prospects. Vision Research, 50(15), 1469–1474.
Article
PubMed
Google Scholar
Madrid, J., & Hout, M. C. (2019). Examining the effects of passive and active strategies on behavior during hybrid visual memory search: Evidence from eye tracking. Cognitive Research: Principles and Implications, 4, 39.
Google Scholar
Mitroff, S. R., Ericson, J. M., & Sharpe, B. (2018). Predicting airport screening officers’ visual search competency with a rapid assessment. Human Factors, 60(2), 201–211.
Article
PubMed
Google Scholar
Nakayama, K., & Martini, P. (2011). Situating visual search. Vision Research, 51, 1526–1537.
Article
PubMed
Google Scholar
Nothdurft, H.-C. (2002). Attention shifts to salient targets. Vision Research, 42, 1287–1306.
Article
PubMed
Google Scholar
Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. Science, 349(6251).
Palmer, J. (1994). Set-size effects in visual search: The effect of attention is independent of the stimulus for simple tasks. Vision Research, 34(13), 1703–1721.
Article
PubMed
Google Scholar
Pieters, R., & Warlop, L. (1999). Visual attention during brand choice: The impact of time pressure and task motivation. International Journal of Research in Marketing, 16(1), 1–16.
Article
Google Scholar
Pinto, A., & Brunese, L. (2010). Spectrum of diagnostic errors in radiology. World journal of Radiology, 2(10), 377.
Article
PubMed
PubMed Central
Google Scholar
Porfido, C. L., Cox, P. H., Adamo, S. H., & Mitroff, S. R. (2020). Recruiting from the shallow end of the pool: Differences in cognitive and compliance measures for subject pool participants based on enrollment time across an academic term. Visual Cognition, 28(1), 1–9.
Article
Google Scholar
Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109(2), 160.
Article
Google Scholar
Poulton, E. B. (1890). The colours of animals. D. Appleton and Company.
Google Scholar
Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16, 225–237.
Article
Google Scholar
Schwark, J. D., MacDonald, J., Sandry, J., & Dolgov, I. (2013). Prevalence-based decisions undermine visual search. Visual Cognition, 21(5), 541–568.
Article
Google Scholar
Schwark, J. D., Sandry, J., MacDonald, J., & Dolgov, I. (2012). False feedback increases detection of low-prevalence targets in visual search. Attention, Perception, & Psychophysics, 74(8), 1583–1589.
Article
Google Scholar
Smith, M. J. (1967). Error and variation in diagnostic radiology. Charles C Thomas.
Google Scholar
Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135, 77–99.
Article
PubMed
Google Scholar
van den Bergh, D., van Doorn, J., Marsman, M., Draws, T., van Kesteren, E., Derks, K., Wagenmakers, E. (2019). A tutorial on conducting and interpreting a Bayesian ANOVA in JASP. PsyArXiv Preprint: https://psyarxiv.com/spreb
Wetter, O. E. (2013). Imaging in airport security: past, present, future, and the link to forensic and clinical radiology. Journal of Forensic Radiology and Imaging, 1(4), 152–160.
Article
Google Scholar
Wolfe, J. M. (2020a). Major issues in the study of visual search: Part 2 of “40 years of feature integration: Special issue in memory of Anne Treisman.” Attention, Perception & Psychophysics, 82, 383–393.
Article
Google Scholar
Wolfe, J. M. (2020b). Visual search: How do we find what we are looking for? Annual Review of Vision Science, 6(1), 539–562.
Article
PubMed
Google Scholar
Wolfe, J. M., Horowitz, T. S., & Kenner, N. M. (2005). Rare items often missed in visual searches. Nature, 435, 439–440.
Article
PubMed
PubMed Central
Google Scholar
Wolfe, J. M., Horowitz, T. S., Van Wert, M. J., Kenner, N. M., Place, S. S., & Kibbi, N. (2007). Low target prevalence is a stubborn source of errors in visual search tasks. Journal of Experimental Psychology: General, 136(4), 623.
Article
Google Scholar
Wolfe, J. M., & Van Wert, M. J. (2010). Varying target prevalence reveals two dissociable decision criteria in visual search. Current Biology, 20(2), 121–124.
Article
PubMed
Google Scholar
Yarbus, A. L. (1967). Eye movements and vision. Plenum Press.
Book
Google Scholar