Anderson, B. A., Laurent, P. A., & Yantis, S. (2011). Value-driven attentional capture. Proceedings of the National Academy of Sciences, 108(25), 10367–10371.
Article
Google Scholar
Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450.
Article
PubMed
Google Scholar
Awh, E., Armstrong, K. M., & Moore, T. (2006). Visual and oculomotor selection: Links, causes and implications for spatial attention. Trends in Cognitive Sciences, 10(3), 124–130.
Article
PubMed
Google Scholar
Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55(5), 485–496.
Article
Google Scholar
Ballard, D. H., Hayhoe, M. M., Pook, P. K., & Rao, R. P. (1997). Deictic codes for the embodiment of cognition. The Behavioral and Brain Sciences, 20(4), 723–767.
Article
PubMed
Google Scholar
Balota, D. A., & Spieler, D. H. (1999). Word frequency, repetition, and lexicality effects in word recognition tasks: Beyond measures of central tendency. Journal of Experimental Psychology: General, 128(1), 32–55.
Article
Google Scholar
Balota, D. A., & Yap, M. J. (2011). Moving beyond the mean in studies of mental chronometry: The power of response time distributional analyses. Current Directions in Psychological Science, 20(3), 160–166.
Article
Google Scholar
Bekkering, H., & Neggers, S. F. (2002). Visual search is modulated by action intentions. Psychological Science, 13(4), 370–374.
Article
PubMed
Google Scholar
Bowen, H. J., Spaniol, J., Patel, R., & Voss, A. (2016). A diffusion model analysis of decision biases affecting delayed recognition of emotional stimuli. PLoS ONE, 11(1), e0146769.
Article
PubMed
PubMed Central
Google Scholar
Brady, T. F., Störmer, V. S., Shafer-Skelton, A., Williams, J. R., Chapman, A. F., & Schill, H. (2019). Scaling up visual attention and visual working memory to the real world. Psychology of Learning and Motivation, 70, 29–69.
Article
Google Scholar
Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.
Article
PubMed
Google Scholar
Bray, S. R., Graham, J. D., Ginis, K. A. M., & Hicks, A. L. (2012). Cognitive task performance causes impaired maximum force production in human hand flexor muscles. Biological Psychology, 89(1), 195–200.
Article
PubMed
Google Scholar
Burra, N., & Kerzel, D. (2014). The distractor positivity (Pd) signals lowering of attentional priority: Evidence from event-related potentials and individual differences. Psychophysiology, 51(7), 685–696.
Article
PubMed
Google Scholar
Callejas, A., Lupianez, J., Funes, M. J., & Tudela, P. (2005). Modulations among the alerting, orienting and executive control networks. Experimental Brain Research, 167(1), 27–37.
Article
PubMed
Google Scholar
Castelhano, M. S., & Henderson, J. M. (2007). Initial scene representations facilitate eye movement guidance in visual search. Journal of Experimental Psychology: Human Perception and Performance, 33(4), 753–763.
PubMed
Google Scholar
Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87–101.
Article
PubMed
Google Scholar
Chen, X., & Zelinsky, G. J. (2006). Real-world visual search is dominated by top-down guidance. Vision Research, 46(24), 4118–4133.
Article
PubMed
Google Scholar
Cohen, R. G., & Rosenbaum, D. A. (2004). Where grasps are made reveals how grasps are planned: Generation and recall of motor plans. Experimental Brain Research, 157(4), 486–495.
Article
PubMed
Google Scholar
Davey, C. P. (1973). Physical exertion and mental performance. Ergonomics, 16(5), 595–599.
Article
PubMed
Google Scholar
Davranche, K., Audiffren, M., & Denjean, A. (2006). A distributional analysis of the effect of physical exercise on a choice reaction time task. Journal of Sports Sciences, 24(3), 323–329.
Article
PubMed
Google Scholar
Droit-Volet, S., & Berthon, M. (2017). Emotion and implicit timing: The arousal effect. Frontiers in Psychology, 8, 176.
Article
PubMed
PubMed Central
Google Scholar
Feldmann-Wüstefeld, T., & Schubö, A. (2016). Intertrial priming due to distractor repetition is eliminated in homogeneous contexts. Attention, Perception, & Psychophysics, 78(7), 1935–1947.
Article
Google Scholar
Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 1030–1044.
PubMed
Google Scholar
Franconeri, S. L., & Simons, D. J. (2003). Moving and looming stimuli capture attention. Perception & Psychophysics, 65(7), 999–1010.
Article
Google Scholar
Gaspelin, N., Leonard, C. J., & Luck, S. J. (2017). Suppression of overt attentional capture by salient-but-irrelevant color singletons. Attention, Perception, & Psychophysics, 79(1), 1–18.
Article
Google Scholar
Gaspelin, N., & Luck, S. J. (2018). The role of inhibition in avoiding distraction by salient stimuli. Trends in Cognitive Sciences, 22(1), 79–92.
Article
PubMed
Google Scholar
Gaspelin, N., & Luck, S. J. (2019). Inhibition as a potential resolution to the attentional capture debate. Current Opinion in Psychology, 29, 12–18.
Article
PubMed
Google Scholar
Gaspar, J. M., & McDonald, J. J. (2014). Suppression of salient objects prevents distraction in visual search. Journal of Neuroscience, 34(16), 5658–5666.
Article
PubMed
Google Scholar
Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457–472.
Article
Google Scholar
Geng, J. J. (2014). Attentional mechanisms of distractor suppression. Current Directions in Psychological Science, 23(2), 147–153.
Article
Google Scholar
Gilzenrat, M. S., Nieuwenhuis, S., Jepma, M., & Cohen, J. D. (2010). Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cognitive, Affective, & Behavioral Neuroscience, 10(2), 252–269.
Article
Google Scholar
Guillery, E., Mouraux, A., Thonnard, J. L., & Legrain, V. (2017). Mind your grip: Even usual dexterous manipulation requires high level cognition. Frontiers in Behavioral Neuroscience, 11, 220.
Article
PubMed
PubMed Central
Google Scholar
Heathcote, A., Popiel, S. J., & Mewhort, D. J. (1991). Analysis of response time distributions: An example using the Stroop task. Psychological Bulletin, 109(2), 340–347.
Article
Google Scholar
Heuer, A., & Schubö, A. (2017). Selective weighting of action-related feature dimensions in visual working memory. Psychonomic Bulletin & Review, 24(4), 1129–1134.
Article
Google Scholar
Hickey, C., Di Lollo, V., & McDonald, J. J. (2009). Electrophysiological indices of target and distractor processing in visual search. Journal of Cognitive Neuroscience, 21(4), 760–775.
Article
PubMed
Google Scholar
Hohle, R. H. (1965). Inferred components of reaction times as functions of foreperiod duration. Journal of Experimental Psychology, 69(4), 382–386.
Article
PubMed
Google Scholar
Hope, L., Lewinski, W., Dixon, J., Blocksidge, D., & Gabbert, F. (2012). Witnesses in action: The effect of physical exertion on recall and recognition. Psychological Science, 23(4), 386–390.
Article
PubMed
Google Scholar
Humphreys, M. S., & Revelle, W. (1984). Personality, motivation, and performance: A theory of the relationship between individual differences and information processing. Psychological Review, 91(2), 153.
Article
PubMed
Google Scholar
Huxhold, O., Li, S. C., Schmiedek, F., & Lindenberger, U. (2006). Dual-tasking postural control: Aging and the effects of cognitive demand in conjunction with focus of attention. Brain Research Bulletin, 69(3), 294–305.
Article
PubMed
Google Scholar
Jefferies, L. N., Smilek, D., Eich, E., & Enns, J. T. (2008). Emotional valence and arousal interact in attentional control. Psychological Science, 19(3), 290–295.
Article
PubMed
Google Scholar
Jiang, Y., & Chun, M. M. (2001). Selective attention modulates implicit learning. Quarterly Journal of Experimental Psychology: Human Experimental Psychology, 54, 1105–1124.
Article
Google Scholar
Kahneman, D. (1973). Attention and Effort. Prentice-Hall.
Google Scholar
Kleberg, J. L., del Bianco, T., & Falck-Ytter, T. (2019). How infants’ arousal influences their visual search. Child Development, 90(4), 1413–1423.
PubMed
Google Scholar
Knaepen, K., Goekint, M., Heyman, E. M., & Meeusen, R. (2010). Neuroplasticity—Exercise-induced response of peripheral brain-derived neurotrophic factor. Sports Medicine, 40(9), 765–801.
Article
PubMed
Google Scholar
Kruschke, J. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Academic Press.
Google Scholar
Kruschke, J. K. (2011). Bayesian assessment of null values via parameter estimation and model comparison. Perspectives on Psychological Science, 6(3), 299–312.
Article
PubMed
Google Scholar
Kurzban, R. (2016). The sense of effort. Current Opinion in Psychology, 7, 67–70.
Article
Google Scholar
Kurzban, R., Duckworth, A., Kable, J. W., & Myers, J. (2013). An opportunity cost model of subjective effort and task performance. Behavioral and Brain Sciences, 36(6), 661–679.
Article
PubMed
Google Scholar
Labelle, V., Bosquet, L., Mekary, S., & Bherer, L. (2013). Decline in executive control during acute bouts of exercise as a function of exercise intensity and fitness level. Brain and Cognition, 81(1), 10–17.
Article
PubMed
Google Scholar
Larson, G. E., & Alderton, D. L. (1990). Reaction time variability and intelligence: A “worst performance” analysis of individual differences. Intelligence, 14(3), 309–325.
Article
Google Scholar
Lee, T. H., Greening, S. G., Ueno, T., Clewett, D., Ponzio, A., Sakaki, M., & Mather, M. (2018). Arousal increases neural gain via the locus coeruleus–noradrenaline system in younger adults but not in older adults. Nature Human Behaviour, 2(5), 356–366.
Article
PubMed
PubMed Central
Google Scholar
Leisman, G., Moustafa, A. A., & Shafir, T. (2016). Thinking, walking, talking: Integratory motor and cognitive brain function. Frontiers in Public Health, 4, 94.
Article
PubMed
PubMed Central
Google Scholar
Lyons, J. L., Elliott, D., Ricker, K. L., Weeks, D. J., & Chua, R. (1999). Action-centred attention in virtual environments. Canadian Journal of Experimental Psychology, 53(2), 176–187.
Article
Google Scholar
Mather, M., Clewett, D., Sakaki, M., & Harley, C. W. (2016). Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behavioral and Brain Sciences, 39, e200.
Article
PubMed
Google Scholar
Mather, M., Huang, R., Clewett, D., Nielsen, S. E., Velasco, R., Tu, K., Han, S., & Kennedy, B. L. (2020). Isometric exercise facilitates attention to salient events in women via the noradrenergic system. NeuroImage, 210, 116560.
Article
PubMed
Google Scholar
Matzke, D., & Wagenmakers, E. J. (2009). Psychological interpretation of the ex-Gaussian and shifted Wald parameters: A diffusion model analysis. Psychonomic Bulletin & Review, 16(5), 798–817.
Article
Google Scholar
Mazaheri, A., Di Quattro, N. E., Bengson, J., & Geng, J. J. (2011). Pre-stimulus activity predicts the winner of top-down vs. bottom-up attentional selection. PLoS ONE, 6(2), 16243.
Article
Google Scholar
McAuley, T., Yap, M., Christ, S. E., & White, D. A. (2006). Revisiting inhibitory control across the life span: Insights from the ex-Gaussian distribution. Developmental Neuropsychology, 29(3), 447–458.
Article
PubMed
Google Scholar
McConnell, M. M., & Shore, D. I. (2011). Upbeat and happy: Arousal as an important factor in studying attention. Cognition & Emotion, 25(7), 1184–1195.
Article
Google Scholar
McMorris, T., Davranche, K., Jones, G., Hall, B., Corbett, J., & Minter, C. (2009). Acute incremental exercise, performance of a central executive task, and sympathoadrenal system and hypothalamic-pituitary-adrenal axis activity. International Journal of Psychophysiology, 73(3), 334–340.
Article
PubMed
Google Scholar
McMorris, T., Sproule, J., Turner, A., & Hale, B. J. (2011). Acute, intermediate intensity exercise, and speed and accuracy in working memory tasks: A meta-analytical comparison of effects. Physiology & Behavior, 102(3–4), 421–428.
Article
Google Scholar
McVay, J. C., & Kane, M. J. (2012). Drifting from slow to “d’oh!”: Working memory capacity and mind wandering predict extreme reaction times and executive control errors. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(3), 525–549.
PubMed
Google Scholar
Mehta, R. K. (2016). Integrating physical and cognitive ergonomics. IIE Transactions on Occupational Ergonomics and Human Factors, 4, 83–87.
Article
Google Scholar
Mewhort, D., Braun, J., & Heathcote, A. (1992). Response time distributions and the Stroop task: A test of the Cohen, Dunbar, and McClelland (1990) model. Journal of Experimental Psychology: Human Perception and Performance, 18(3), 872–882.
PubMed
Google Scholar
Moher, J., Anderson, B. A., & Song, J. H. (2015). Dissociable effects of salience on attention and goal-directed action. Current Biology, 25(15), 2040–2046.
Article
PubMed
Google Scholar
Müller, H. J., Geyer, T., Zehetleitner, M., & Krummenacher, J. (2009). Attentional capture by salient color singleton distractors is modulated by top-down dimensional set. Journal of Experimental Psychology: Human Perception and Performance, 35(1), 1–16.
PubMed
Google Scholar
Nielsen, S. E., & Mather, M. (2015). Comparison of two isometric handgrip protocols on sympathetic arousal in women. Physiology & Behavior, 142, 5–13.
Article
Google Scholar
Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005). Decision making, the P3, and the locus coeruleus–norepinephrine system. Psychological Bulletin, 131(4), 510–532.
Article
PubMed
Google Scholar
Oliva, A., & Torralba, A. (2001). Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision, 42(3), 145–175.
Article
Google Scholar
Olivers, C. N., & Nieuwenhuis, S. (2005). The beneficial effect of concurrent task-irrelevant mental activity on temporal attention. Psychological Science, 16(4), 265–269.
Article
PubMed
Google Scholar
Opsomer, L., Théate, V., Lefèvre, P., & Thonnard, J. L. (2018). Dexterous manipulation during rhythmic arm movements in Mars, moon, and micro-gravity. Frontiers in Physiology, 9, 938.
Article
PubMed
PubMed Central
Google Scholar
Palmer, E. M., Horowitz, T. S., Torralba, A., & Wolfe, J. M. (2011). What are the shapes of response time distributions in visual search? Journal of Experimental Psychology: Human Perception and Performance, 37(1), 58–71.
PubMed
Google Scholar
Park, H. B., Han, J. E., & Hyun, J. S. (2015). You may look unhappy unless you smile: The distinctiveness of a smiling face against faces without an explicit smile. Acta Psychologica, 157, 185–194.
Article
PubMed
Google Scholar
Park, H. B., Zhang, W., & Hyun, J. S. (2017). Dissociating models of visual working memory by reaction-time distribution analysis. Acta Psychologica, 173, 21–31.
Article
PubMed
Google Scholar
Ratcliff, R., & Murdock, B. (1976). Retrieval processes in recognition memory. Psychological Review, 83(3), 190–214.
Article
Google Scholar
Ratcliff, R., Schmiedek, F., & McKoon, G. (2008). A diffusion model explanation of the worst performance rule for reaction time and IQ. Intelligence, 36(1), 10–17.
Article
PubMed
PubMed Central
Google Scholar
Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of the diffusion model: Approaches to dealing with contaminant reaction times and parameter variability. Psychonomic Bulletin & Review, 9(3), 438–481.
Article
Google Scholar
Rizzolatti, G., Riggio, L., & Sheliga, B. M. (1994). Space and selective attention. Attention and Performance XV, 15, 231–265.
Google Scholar
Rouder, J. N., & Lu, J. (2005). An introduction to Bayesian hierarchical models with an application in the theory of signal detection. Psychonomic Bulletin & Review, 12(4), 573–604.
Article
Google Scholar
Rouder, J. N., Lu, J., Speckman, P., Sun, D., & Jiang, Y. (2005). A hierarchical model for estimating response time distributions. Psychonomic Bulletin & Review, 12(2), 195–223.
Article
Google Scholar
Rouder, J. N., Morey, R. D., & Pratte, M. S. (2014). Bayesian hierarchical models. In H. Batchelder, H. Colonius, E. Dzharafarov, & J. I. Myung (Eds.), New handbook of mathematical psychology. Volume I: Measurement and methodology. Cambridge University Press.
Google Scholar
Rouder, J. N., Sun, D., Speckman, P. L., Lu, J., & Zhou, D. (2003). A hierarchical Bayesian statistical framework for response time distributions. Psychometrika, 68(4), 589–606.
Article
Google Scholar
Rosenbaum, D. A. (2017). Knowing hands: The cognitive psychology of manual control. Cambridge University Press.
Book
Google Scholar
Rosenbaum, D. A., Chapman, K. M., Coelho, C. J., Gong, L., & Studenka, B. E. (2013). Choosing actions. Frontiers in Psychology, 4, 273.
Article
PubMed
PubMed Central
Google Scholar
Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception, & Psychophysics, 72(6), 1455–1470.
Article
Google Scholar
Sawaki, R., & Luck, S. J. (2011). Active suppression of distractors that match the contents of visual working memory. Visual Cognition, 19(7), 956–972.
Article
PubMed
PubMed Central
Google Scholar
Schmidt-Kassow, M., Deusser, M., Thiel, C., Otterbein, S., Montag, C., Reuter, M., Banzer, W., & Kaiser, J. (2013). Physical exercise during encoding improves vocabulary learning in young female adults: A neuroendocrinological study. PLoS ONE, 8(5), e64172.
Article
PubMed
PubMed Central
Google Scholar
Schmiedek, F., Oberauer, K., Wilhelm, O., Süß, H. M., & Wittmann, W. W. (2007). Individual differences in components of reaction time distributions and their relations to working memory and intelligence. Journal of Experimental Psychology: General, 136(3), 414–429.
Article
Google Scholar
Schmitz, F., & Wilhelm, O. (2016). Modeling mental speed: Decomposing response time distributions in elementary cognitive tasks and correlations with working memory capacity and fluid intelligence. Journal of Intelligence, 4(4), 13.
Article
Google Scholar
Shao, Z., Roelofs, A., & Meyer, A. S. (2012). Sources of individual differences in the speed of naming objects and actions: The contribution of executive control. Quarterly Journal of Experimental Psychology, 65(10), 1927–1944.
Article
Google Scholar
Song, J. H., & Nakayama, K. (2009). Hidden cognitive states revealed in choice reaching tasks. Trends in Cognitive Sciences, 13(8), 360–366.
Article
PubMed
Google Scholar
Spieler, D. H., Balota, D. A., & Faust, M. E. (1996). Stroop performance in healthy younger and older adults and in individuals with dementia of the Alzheimer’s type. Journal of Experimental Psychology: Human Perception and Performance, 22(2), 461–479.
PubMed
Google Scholar
Spieler, D. H., Balota, D. A., & Faust, M. E. (2000). Levels of selective attention revealed through analyses of response time distributions. Journal of Experimental Psychology: Human Perception and Performance, 26(2), 506–526.
PubMed
Google Scholar
Stan Development Team. (2016). Stan modeling language users guide and reference manual. Technical report.
Stevens, J. C., & Cain, W. S. (1970). Effort in isometric muscular contractions related to force level and duration. Perception & Psychophysics, 8(4), 240–244.
Article
Google Scholar
Störmer, V. S., Cohen, M. A., & Alvarez, G. A. (2019). Tuning attention to object categories: Spatially global effects of attention to faces in visual processing. Journal of Cognitive Neuroscience, 31(7), 937–947.
Article
PubMed
Google Scholar
Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51(6), 599–606.
Article
Google Scholar
Theeuwes, J. (2010). Top–down and bottom–up control of visual selection. Acta Psychologica, 135(2), 77–99.
Article
PubMed
Google Scholar
Theeuwes, J., Atchley, P., & Kramer, A. F. (2000). On the time course of top-down and bottom-up control of visual attention. Attention and Performance, 18, 104–124.
Google Scholar
Thomas, L. E. (2015). Grasp posture alters visual processing biases near the hands. Psychological Science, 26(5), 625–632.
Article
PubMed
Google Scholar
Tipper, S. P., Lortie, C., & Baylis, G. C. (1992). Selective reaching: Evidence for action-centered attention. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 891–905.
PubMed
Google Scholar
Tomporowski, P. D. (2003). Effects of acute bouts of exercise on cognition. Acta Psychologica, 112(3), 297–324.
Article
PubMed
Google Scholar
Unsworth, N., Redick, T. S., Lakey, C. E., & Young, D. L. (2010). Lapses in sustained attention and their relation to executive control and fluid abilities: An individual differences investigation. Intelligence, 38(1), 111–122.
Article
Google Scholar
van Zoest, W., & Donk, M. (2008). Goal-driven modulation as a function of time in saccadic target selection. Quarterly Journal of Experimental Psychology, 61(10), 1553–1572.
Article
Google Scholar
van Zoest, W., Donk, M., & Theeuwes, J. (2004). The role of stimulus-driven and goal-driven control in saccadic visual selection. Journal of Experimental Psychology: Human Perception and Performance, 30(4), 746–579.
PubMed
Google Scholar
Vatterott, D. B., & Vecera, S. P. (2012). Experience-dependent attentional tuning of distractor rejection. Psychonomic Bulletin & Review, 19(5), 871–878.
Article
Google Scholar
Voss, M. W., Vivar, C., Kramer, A. F., & van Praag, H. (2013). Bridging animal and human models of exercise-induced brain plasticity. Trends in Cognitive Sciences, 17(10), 525–544.
Article
PubMed
PubMed Central
Google Scholar
Welsh, T. N., & Elliott, D. (2004). Movement trajectories in the presence of a distracting stimulus: Evidence for a response activation model of selective reaching. The Quarterly Journal of Experimental Psychology Section A, 57(6), 1031–1057.
Article
Google Scholar
Welsh, T. N., & Pratt, J. (2008). Actions modulate attentional capture. Quarterly Journal of Experimental Psychology, 61(7), 968–976.
Article
Google Scholar
West, R. (2001). The transient nature of executive control processes in younger and older adults. European Journal of Cognitive Psychology, 13(1–2), 91–105.
Article
Google Scholar
Wetzel, N., Widmann, A., & Schroger, E. (2012). Distraction and facilitation—Two faces of the same coin? Journal of Experimental Psychology: Human Perception and Performance, 38(3), 664–674.
PubMed
Google Scholar
Winnard, A., Scott, J., Waters, N., Vance, M., & Caplan, N. (2019). Effect of time on human muscle outcomes during simulated microgravity exposure without countermeasures—Systematic review. Frontiers in Physiology, 10, 1046.
Article
PubMed
PubMed Central
Google Scholar
Wolfe, J. M., Alvarez, G. A., Rosenholtz, R., Kuzmova, Y. I., & Sherman, A. M. (2011). Visual search for arbitrary objects in real scenes. Attention, Perception, & Psychophysics, 73(6), 1650–1671.
Article
Google Scholar
Wolfe, J. M., Palmer, E. M., & Horowitz, T. S. (2010). Reaction time distributions constrain models of visual search. Vision Research, 50(14), 1304–1311.
Article
PubMed
Google Scholar
Won, B. Y., & Geng, J. J. (2018). Learned suppression for multiple distractors in visual search. Journal of Experimental Psychology: Human Perception and Performance, 44(7), 1128–1141.
PubMed
Google Scholar
Woollacott, M., & Shumway-Cook, A. (2002). Attention and the control of posture and gait: A review of an emerging area of research. Gait & Posture, 16(1), 1–14.
Article
Google Scholar
Yang, H., & Zelinsky, G. J. (2009). Visual search is guided to categorically-defined targets. Vision Research, 49(16), 2095–2103.
Article
PubMed
PubMed Central
Google Scholar
Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: Evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10(5), 601–621.
PubMed
Google Scholar
Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology and Psychology, 18(5), 459–482.
Article
Google Scholar
Zénon, A., Sidibé, M., & Olivier, E. (2014). Pupil size variations correlate with physical effort perception. Frontiers in Behavioral Neuroscience, 8, 286.
PubMed
PubMed Central
Google Scholar
Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233–235.
Article
PubMed
PubMed Central
Google Scholar