Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01.
Article
Google Scholar
Biederman, I. (1972). Perceiving real-world scenes. Science, 177(4043), 77–80. https://doi.org/10.1126/science.177.4043.77.
Article
PubMed
Google Scholar
Boucart, M., Lenoble, Q., Quettelart, J., Szaffarczyk, S., Despretz, P., & Thorpe, S. J. (2016). Finding faces, animals, and vehicles in far peripheral vision. Journal of Vision, 16(2), 10.
Article
PubMed
Google Scholar
Boucart, M., Moroni, C., Thibaut, M., Szaffarczyk, S., & Greene, M. (2013). Scene categorization at large visual eccentricities. Vision Research, 86, 35–42.
Article
PubMed
Google Scholar
Brockmole, J. R., Castelhano, M. S., & Henderson, J. M. (2006). Contextual cueing in naturalistic scenes: Global and local contexts. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(4), 699–706. https://doi.org/10.1037/0278-7393.32.4.699.
Article
PubMed
Google Scholar
Brockmole, J. R., & Henderson, J. M. (2006). Using real-world scenes as contextual cues for search. Visual Cognition, 13(1), 99–108. https://doi.org/10.1080/13506280500165188.
Article
Google Scholar
Brysbaert, M., & Stevens, M. (2018). Power analysis and effect size in mixed effects models: A tutorial. Journal of Cognition, 1(1), 9. https://doi.org/10.5334/joc.10.
Article
PubMed
PubMed Central
Google Scholar
Centre for the Protection of National Infrastructure. (2016). CPNI Control Rooms Guidance: Helping you get the most out of your control room. https://www.cpni.gov.uk/system/files/documents/73/38/Control%20Rooms%20Guidance%20Dec%202016.pdf. Accessed 9 Jan 2021.
Chainey, S., & Ratcliffe, J. (2013). GIS and crime mapping. New York: Wiley.
Google Scholar
Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71. https://doi.org/10.1006/cogp.1998.0681.
Article
PubMed
Google Scholar
Chun, M. M., & Jiang, Y. (2003). Implicit, long-term spatial contextual memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(2), 224–234. https://doi.org/10.1037/0278-7393.29.2.224.
Article
PubMed
Google Scholar
Clarke, A. D. F., Green, P., Chantler, M. J., & Hunt, A. R. (2016). Human search for a target on a textured background is consistent with a stochastic model. Journal of Vision, 16(7), 4. https://doi.org/10.1167/16.7.4.
Article
PubMed
Google Scholar
Davenport, J. L., & Potter, M. C. (2004). Scene consistency in object and background perception. Psychological Science, 15(8), 559–564. https://doi.org/10.1111/j.0956-7976.2004.00719.x.
Article
PubMed
Google Scholar
Donald, C. (1998). Ergonomic considerations in CCTV viewing. Hi-Tech Security Systems Publication, 4(3). http://www.leaderware.com/Hitech/ergonomic%20monitoring.htm
Ehinger, K. A., Hidalgo-Sotelo, B., Torralba, A., & Oliva, A. (2009). Modelling search for people in 900 scenes: A combined source model of eye guidance. Visual Cognition, 17(6–7), 945–978. https://doi.org/10.1080/13506280902834720.
Article
PubMed
PubMed Central
Google Scholar
Fabre-Thorpe, M. (2011). The characteristics and limits of rapid visual categorization. Frontiers in Psychology, 2, 243. https://doi.org/10.3389/fpsyg.2011.00243.
Article
PubMed
PubMed Central
Google Scholar
Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/BF03193146.
Article
PubMed
Google Scholar
Felson, M., & Poulsen, E. (2003). Simple indicators of crime by time of day. International Journal of Forecasting, 19(4), 595–601. https://doi.org/10.1016/S0169-2070(03)00093-1.
Article
Google Scholar
Gelernter, J. (2013). Effective threat detection for surveillance. In 2013 IEEE international conference on technologies for homeland security (HST) (pp. 290–296). https://doi.org/10.1109/THS.2013.6699016
Gill, M., & Spriggs, A. (2005). Assessing the impact of CCTV (Vol. 292). Home Office Research, Development and Statistics Directorate London.
Gill, M., Spriggs, A., Allen, J., Hemming, M., Jessiman, P., Kara, D., et al. (2005). Control room operation: Findings from control room observations. Home Office Online Report, 14(05).
González, B. J., De Boeck, P., & Tuerlinckx, F. (2014). Linear mixed modelling for data from a double mixed factorial design with covariates: A case-study on semantic categorization response times. Journal of the Royal Statistical Society Series C (Applied Statistics), 63(2), 289–302.
Article
Google Scholar
Goold, B. J. (2004). CCTV and policing: Public area surveillance and police practices in Britain. CCTV and policing. Oxford: Oxford University Press.
Google Scholar
Green, P., & MacLeod, C. J. (2016). Simr: An r package for power analysis of generalised linear mixed models by simulation. Methods in Ecology and Evolution, 7(4), 493–498. https://doi.org/10.1111/2041-210X.12504.
Article
Google Scholar
Greene, M. R. (2013). Statistics of high-level scene context. Frontiers in Psychology, 4, 777. https://doi.org/10.3389/fpsyg.2013.00777.
Article
PubMed
PubMed Central
Google Scholar
Greene, M. R., & Wolfe, J. M. (2011). Global image properties do not guide visual search. Journal of Vision, 11(6), 18. https://doi.org/10.1167/11.6.18.
Article
PubMed
Google Scholar
Gupta, R., Rajitha, K., Basu, S., & Mittal, S. K. (2012). Application of GIS in crime analysis: A gateway to safe city. In India Geospatial Forum.
Harris, S., Stedmon, A., Sharples, S., & Wilson, J. (2008). Keeping track of a suspect on CCTV: How hard can it be? In P. D. Bust (Ed.), Contemporary ergonomics 2008 (pp. 133–138). London: Taylor & Francis Ltd.
Google Scholar
Hodgetts, H. M., Chamberland, C., Latulippe-Thériault, J.-D., Vachon, F., & Tremblay, S. (2018). Priority or parity? Scanning strategies and detection performance of novice operators in urban surveillance. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 62(1), 1113–1117. https://doi.org/10.1177/1541931218621255.
Article
Google Scholar
Hodgetts, H. M., Vachon, F., Chamberland, C., & Tremblay, S. (2017). See no evil: Cognitive challenges of security surveillance and monitoring. Journal of Applied Research in Memory and Cognition, 6(3), 230–243. https://doi.org/10.1016/j.jarmac.2017.05.001.
Article
Google Scholar
Hon, N., & Tan, C.-H. (2013). Why rare targets are slow: Evidence that the target probability effect has an attentional locus. Attention, Perception, & Psychophysics, 75(3), 388–393. https://doi.org/10.3758/s13414-013-0434-0.
Article
Google Scholar
Hout, M. C., & Goldinger, S. D. (2010). Learning in repeated visual search. Attention, Perception & Psychophysics, 72(5), 1267–1282. https://doi.org/10.3758/APP.72.5.1267.
Article
Google Scholar
Howard, C. J., Troscianko, T., Gilchrist, I. D., Behera, A., & Hogg, D. C. (2009). Searching for threat: Factors determining performance during CCTV monitoring. In D. de Waard, J. Godthelp, F. L. Kooi, & K. A. Brookhuis (Eds.), Human Factors, Security and Safety (pp. 1–7). Maastricht: Shaker Publishing.
Google Scholar
Howard, C. J., Troscianko, T., Gilchrist, I. D., Behera, A., & Hogg, D. C. (2013). Suspiciousness perception in dynamic scenes: A comparison of CCTV operators and novices. Frontiers in Human Neuroscience, 7, 441. https://doi.org/10.3389/fnhum.2013.00441.
Article
PubMed
PubMed Central
Google Scholar
International Organization for Standardization. (2013). Ergonomic design of control centres Part 4: Layout and dimensions of workstations. https://www.iso.org/standard/54419.html. Accessed 22 May 2020. ISO 11064-4:2013.
Kanan, C., Tong, M. H., Zhang, L., & Cottrell, G. W. (2009). SUN: Top-down saliency using natural statistics. Visual Cognition, 17(6–7), 979–1003. https://doi.org/10.1080/13506280902771138.
Article
PubMed
PubMed Central
Google Scholar
Keval, H., & Sasse, M. A. (2010). “Not the Usual Suspects”: A study of factors reducing the effectiveness of CCTV. Security Journal, 23(2), 134–154. https://doi.org/10.1057/palgrave.sj.8350092.
Article
Google Scholar
Kliegl, R., Wei, P., Dambacher, M., Yan, M., & Zhou, X. (2011). Experimental effects and individual differences in linear mixed models: Estimating the relationship between spatial, object, and attraction effects in visual attention. Frontiers in Psychology, 1, 238. https://doi.org/10.3389/fpsyg.2010.00238.
Article
PubMed
PubMed Central
Google Scholar
Kumle, L., Vo, M. L.-H., & Draschkow, D. (2020). Estimating power in (generalized) linear mixed models: An open introduction and tutorial in R. (Preprint). PsyArXiv. https://doi.org/10.31234/osf.io/vxfbh
Kunar, M. A., Flusberg, S., & Wolfe, J. M. (2008). The role of memory and restricted context in repeated visual search. Perception & Psychophysics, 70(2), 314–328. https://doi.org/10.3758/PP.70.2.314.
Article
Google Scholar
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1–26. https://doi.org/10.18637/jss.v082.i13.
Article
Google Scholar
Laberge, D., & Tweedy, J. R. (1964). Presentation probability and choice time. Journal of Experimental Psychology, 68(5), 477.
Article
PubMed
Google Scholar
Leroy, A., Faure, S., & Spotorno, S. (2020). Reciprocal semantic predictions drive categorization of scene contexts and objects even when they are separate. Scientific Reports, 10, 1–12.
Article
Google Scholar
Levesley, T., & Martin, A. (2005). Police attitudes to and use of CCTV. American Psychological Association,. https://doi.org/10.1037/e635052007-001.
Article
Google Scholar
Levi, D. M. (2008). Crowding—An essential bottleneck for object recognition: A mini-review. Vision Research, 48(5), 635–654. https://doi.org/10.1016/j.visres.2007.12.009.
Article
PubMed
PubMed Central
Google Scholar
Malcolm, G. L., & Henderson, J. M. (2009). The effects of target template specificity on visual search in real-world scenes: Evidence from eye movements. Journal of Vision, 9(11), 8. https://doi.org/10.1167/9.11.8.
Article
PubMed
Google Scholar
Nowakowska, A., Clarke, A. D. F., & Hunt, A. R. (2017). Human visual search behaviour is far from ideal. Proceedings of the Royal Society B: Biological Sciences, 284(1849), 20162767. https://doi.org/10.1098/rspb.2016.2767.
Article
PubMed
PubMed Central
Google Scholar
Oliva, A., & Torralba, A. (2006). Building the gist of a scene: The role of global image features in recognition. Progress in Brain Research, 155, 23–36.
Article
PubMed
Google Scholar
Pelli, D. G., & Tillman, K. A. (2008). The uncrowded window of object recognition. Nature Neuroscience, 11(10), 1129–1135. https://doi.org/10.1038/nn.2187.
Article
PubMed
PubMed Central
Google Scholar
Pikaar, R., Lenior, D., Schreibers, K., & de Bruijn, D. (2015). Human Factors Guidelines for CCTV system design. In Proceedings 19th Triennial Congress of the IEA, Melbourne (p. 9) (2015).
Piza, E., Caplan, J., Kennedy, L., & Gilchrist, A. (2015). The effects of merging proactive CCTV monitoring with directed police patrol: A randomized controlled trial. Journal of Experimental Criminology, 11, 43–69.
Article
Google Scholar
Piza, E. L., Caplan, J. M., & Kennedy, L. W. (2017). CCTV as a tool for early police intervention: Preliminary lessons from nine case studies. Security Journal, 30(1), 247–265. https://doi.org/10.1057/sj.2014.17.
Article
Google Scholar
Piza, E. L., Welsh, B. C., Farrington, D. P., & Thomas, A. L. (2019). CCTV surveillance for crime prevention: A 40-year systematic review with meta-analysis. Criminology & Public Policy, 18(1), 135–159. https://doi.org/10.1111/1745-9133.12419.
Article
Google Scholar
Potter, M. (1975). Meaning in visual search. Science, 187(4180), 965–966. https://doi.org/10.1126/science.1145183.
Article
PubMed
Google Scholar
Potter, M. C. (1976). Short-term conceptual memory for pictures. Journal of Experimental Psychology: Human Learning and Memory, 2(5), 509–522.
Google Scholar
Potter, M. C., & Fox, L. F. (2009). Detecting and remembering simultaneous pictures in a rapid serial visual presentation. Journal of Experimental Psychology: Human Perception and Performance, 35(1), 28–38. https://doi.org/10.1037/a0013624.
Article
PubMed
Google Scholar
Ratcliffe, J. (2010). Crime mapping: Spatial and temporal challenges. In A. R. Piquero & D. Weisburd (Eds.), Handbook of quantitative criminology (pp. 5–24). New York, NY: Springer. https://doi.org/10.1007/978-0-387-77650-7_2.
Chapter
Google Scholar
Ratcliffe, J. H. (2002). Aoristic signatures and the spatio-temporal analysis of high volume crime patterns. Journal of Quantitative Criminology, 18(1), 23–43. https://doi.org/10.1023/A:1013240828824.
Article
Google Scholar
R Core Team. (2020). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
Rousselet, G. A., Thorpe, S. J., & Fabre-Thorpe, M. (2004). Processing of one, two or four natural scenes in humans: The limits of parallelism. Vision Research, 44(9), 877–894. https://doi.org/10.1016/j.visres.2003.11.014.
Article
PubMed
Google Scholar
Schreibers, K. B. J., Landman, R. B., & Pikaar, R. (2012). Human factors of CCTV: Part I technology and literature review. In (pp. S386–R1.CCT). Enschede: ErgoS Engineering and Ergonimics.
Sherman, L. W. (1995). Hot spots of crime and criminal careers of places. Crime and Place, 4, 35–52.
Google Scholar
Sherman, L. W., Gartin, P. R., & Buerger, M. E. (1989). Hot spots of predatory crime: Routine activities and the criminology of place*. Criminology, 27(1), 27–56. https://doi.org/10.1111/j.1745-9125.1989.tb00862.x.
Article
Google Scholar
Spotorno, S., Malcolm, G. L., & Tatler, B. W. (2014). How context information and target information guide the eyes from the first epoch of search in real-world scenes. Journal of Vision, 14(2), 7. https://doi.org/10.1167/14.2.7.
Article
PubMed
Google Scholar
Stainer, M. J., Scott-Brown, K. C., & Tatler, B. (2013). Looking for trouble: A description of oculomotor search strategies during live CCTV operation. Frontiers in Human Neuroscience, 7, 615. https://doi.org/10.3389/fnhum.2013.00615.
Article
PubMed
PubMed Central
Google Scholar
Stainer, M. J., Scott-Brown, K. C., & Tatler, B. W. (2017). On the factors causing processing difficulty of multiple-scene displays. I-Perception, 8(2), 204166951668957. https://doi.org/10.1177/2041669516689572.
Article
Google Scholar
Stedmon, A. W., Harris, S., & Wilson, J. R. (2011). Simulated multiplexed CCTV: The effects of screen layout and task complexity on user performance and strategies. Security Journal, 24(4), 344–356. https://doi.org/10.1057/sj.2010.7.
Article
Google Scholar
Thorpe, S. J., Gegenfurtner, K. R., Fabre-Thorpe, M., & Bülthoff, H. H. (2001). Detection of animals in natural images using far peripheral vision. European Journal of Neuroscience, 14(5), 869–876.
Article
PubMed
Google Scholar
Tickner, A. H., & Poulton, E. C. (1973). Monitoring up to 16 synthetic television pictures showing a great deal of movement. Ergonomics, 16(4), 381–401. https://doi.org/10.1080/00140137308924529.
Article
PubMed
Google Scholar
Torralba, A., & Oliva, A. (2003). Statistics of natural image categories. Network: Computation Neural Systems, 14, 391–412.
Article
Google Scholar
Torralba, A., Oliva, A., Castelhano, M. S., & Henderson, J. M. (2006). Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search. Psychological Review, 113(4), 766–786. https://doi.org/10.1037/0033-295X.113.4.766.
Article
PubMed
Google Scholar
Troscianko, T., Holmes, A., Stillman, J., Mirmehdi, M., Wright, D., & Wilson, A. (2004). What happens next? The predictability of natural behaviour viewed through CCTV cameras. Perception, 33, 87–101. https://doi.org/10.1068/p3402.
Article
PubMed
Google Scholar
Vanmarcke, S., & Wagemans, J. (2016). Individual differences in spatial frequency processing in scene perception: The influence of autism-related traits. Visual Cognition, 24(2), 115–131. https://doi.org/10.1080/13506285.2016.1199625.
Article
Google Scholar
VanRullen, R., Reddy, L., & Koch, C. (2004). Visual search and dual tasks reveal two distinct attentional resources. Journal of Cognitive Neuroscience, 16(1), 4–14. https://doi.org/10.1162/089892904322755502.
Article
PubMed
Google Scholar
Varakin, D. A., Klemes, K. J., & Porter, K. A. (2013). The effect of scene structure on time perception. Quarterly Journal of Experimental Psychology, 66(8), 1639–1652. https://doi.org/10.1080/17470218.2012.754912.
Article
Google Scholar
Wallace, E., & Diffley, C. (1998). CCTV: Making it work: CCTV control room ergonomics. St Albans: Police Scientific Development Branch Sandridge.
Google Scholar
Wallace, L. K., Diffley, D. M., Baines, E. K., & Aldridge, J. H. (1997). Ergonomic design considerations for public area CCTV safety and security applications. In International ergonomics association congress (pp. 14–98). Sandridge, St Albans.
Weisburd, D., Bruinsma, G. J. N., & Bernasco, W. (2009). Units of analysis in geographic criminology: Historical development, critical issues, and open questions. In D. Weisburd, W. Bernasco, & G. J. N. Bruinsma (Eds.), Putting Crime in its place: Units of analysis in geographic criminology (pp. 3–31). New York, NY: Springer. https://doi.org/10.1007/978-0-387-09688-9_1.
Chapter
Google Scholar
Weisburd, D., Bushway, S., Lum, C., & Yang, S.-M. (2004). Trajectories of crime at places: A longitudinal study of street segments in the City of Seattle. Criminology, 42(2), 283–322. https://doi.org/10.1111/j.1745-9125.2004.tb00521.x.
Article
Google Scholar
Whitney, D., & Levi, D. M. (2011). Visual crowding: A fundamental limit on conscious perception and object recognition. Trends in Cognitive Sciences, 15(4), 160–168. https://doi.org/10.1016/j.tics.2011.02.005.
Article
PubMed
PubMed Central
Google Scholar
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag.
Wolfe, J. M. (2020). Visual search: How do we find what we are looking for? Annual Review of Vision Science,. https://doi.org/10.1146/annurev-vision-091718-015048.
Article
PubMed
Google Scholar
Wolfe, J. M., Horowitz, T. S., & Kenner, N. M. (2005). Rare items often missed in visual searches. Nature, 435(7041), 439–440. https://doi.org/10.1038/435439a.
Article
PubMed
PubMed Central
Google Scholar
Wood, J., & Clarke, T. (2006). Practical guidelines for CCTV ergonomics. In Proceedings of IEA 2006 congress, international ergonomics association 16th triennial congress. Maastricht: Elsevier.
Zelinsky, G. J., & Schmidt, J. (2009). An effect of referential scene constraint on search implies scene segmentation. Visual Cognition, 17(6–7), 1004–1028. https://doi.org/10.1080/13506280902764315.
Article
Google Scholar