Beilock, S. L., & Gray, R. (2012). From attentional control to attentional spillover: A skill-level investigation of attention, movement, and performance outcomes. Human Movement Science, 31(6), 1473–1499. https://doi.org/10.1016/j.humov.2012.02.014.
Article
PubMed
Google Scholar
Bennett, S. J., De Xivry, J. J. O., Lefèvre, P., & Barnes, G. R. (2010). Oculomotor prediction of accelerative target motion during occlusion: Long-term and short-term effects. Experimental Brain Research, 204(4), 493–504. https://doi.org/10.1007/s00221-010-2313-4.
Article
PubMed
Google Scholar
Bherer, L., Kramer, A. F., Peterson, M. S., Colcombe, S., Erickson, K., & Becic, E. (2005). Training effects on dual-task performance: Are there age-related differences in plasticity of attentional control? Psychology and Aging, 20(4), 695–709. https://doi.org/10.1037/0882-7974.20.4.695.
Article
PubMed
Google Scholar
Bock, O. (2008). Dual-task costs while walking increase in old age for some, but not for other tasks: An experimental study of healthy young and elderly persons. Journal of Neuroengineering and Rehabilitation, 5, 27. https://doi.org/10.1186/1743-0003-5-27.
Article
PubMed
PubMed Central
Google Scholar
Bratzke, D., Rolke, B., & Ulrich, R. (2009). The source of execution-related dual-task interference: Motor bottleneck or response monitoring? Journal of Experimental Psychology: Human Perception and Performance, 35(5), 1413–1426. https://doi.org/10.1037/a0015874.
Article
PubMed
Google Scholar
Broeker, L., Ewolds, H. E., de Oliveira, R. F., Künzell, S., & Raab, M. (2020). Additive effects of prior knowledge and predictive visual information in improving continuous tracking performance. Journal of Cognition. https://doi.org/10.5334/joc.130.
Article
PubMed
PubMed Central
Google Scholar
Broeker, L., Haeger, M., Bock, O., Kretschmann, B., Ewolds, H., Künzell, S., & Raab, M. (2020). How visual information influences dual-task driving and tracking. Experimental Brain Research, 238(3), 675–687. https://doi.org/10.1007/s00221-020-05744-8.
Article
PubMed
PubMed Central
Google Scholar
Bubic, A., Von Cramon, D. Y., & Schubotz, R. I. (2010). Prediction, cognition and the brain. Frontiers in Human Neuroscience. https://doi.org/10.3389/fnhum.2010.00025.
Article
PubMed
PubMed Central
Google Scholar
Capizzi, M., Sanabria, D., & Correa, Á. (2012). Dissociating controlled from automatic processing in temporal preparation. Cognition, 123(2), 293–302. https://doi.org/10.1016/j.cognition.2012.02.005.
Article
PubMed
Google Scholar
Corr, P. J. (2003). Personality and dual-task processing: Disruption of procedural learning by declarative processing. Personality and Individual Differences, 34(7), 1245–1269. https://doi.org/10.1016/S0191-8869(02)00112-5.
Article
Google Scholar
Cutanda, D., Correa, Á., & Sanabria, D. (2015). Auditory temporal preparation induced by rhythmic cues during concurrent auditory working memory tasks. Journal of Experimental Psychology: Human Perception and Performance, 41(3), 790–797. https://doi.org/10.1037/a0039167.
Article
PubMed
Google Scholar
De Jong, R. (1995). The role of preparation in overlapping-task performance. The Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 48(1), 2–25. https://doi.org/10.1080/14640749508401372.
Article
PubMed
Google Scholar
de la Rosa, M. D., Sanabria, D., Capizzi, M., & Correa, A. (2012). Temporal preparation driven by rhythms is resistant to working memory interference. Frontiers in Psychology, 3(AUG), 1–9. https://doi.org/10.3389/fpsyg.2012.00308.
Article
Google Scholar
de Oliveira, R. F., Billington, J., & Wann, J. P. (2014). Optimal use of visual information in adolescents and young adults with developmental coordination disorder. Experimental Brain Research, 232(9), 2989–2995. https://doi.org/10.1007/s00221-014-3983-0.
Article
PubMed
Google Scholar
de Oliveira, R. F., Raab, M., Hegele, M., & Schorer, J. (2017). Task integration facilitates multitasking. Frontiers in Psychology, 8, 398. https://doi.org/10.3389/fpsyg.2017.00398.
Article
PubMed
PubMed Central
Google Scholar
Eagleman, D., Pariyadath, V., & Churchill, S. J. (2009). Predictability engenders more efficient neural responses. Nature Precedings. https://doi.org/10.1038/npre.2009.2847.1.
Article
Google Scholar
Eberts, R. E. (1987). Internal models, tracking strategies, and dual-task performance. Human Factors, 29(4), 407–419.
Article
Google Scholar
Elliott, D., Chua, R., Pollock, B. J., & Lyons, J. (1995). Optimizing the use of vision in manual aiming: The role of practice. The Quarterly Journal of Experimental Psychology Section A, 48(1), 72–83. https://doi.org/10.1080/14640749508401376.
Article
Google Scholar
Engel, K. C., & Soechting, J. F. (2000). Manual tracking in two dimensions. Journal of Neurophysiology, 83(6), 3483–3496. https://doi.org/10.1152/jn.2000.83.6.3483.
Article
PubMed
Google Scholar
Ewolds, H., Broeker, L., de Oliveira, R. F., Raab, M., & Künzell, S. (2020). No impact of instructions and feedback on task integration in motor learning. Memory & Cognition. https://doi.org/10.3758/s13421-020-01094-6.
Article
Google Scholar
Ewolds, H. E., Bröker, L., de Oliveira, R. F., Raab, M., & Künzell, S. (2017). Implicit and explicit knowledge both improve dual task performance in a continuous pursuit tracking task. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2017.02241.
Article
PubMed
PubMed Central
Google Scholar
Fletcher, H., & Munson, W. A. (1933). Loudness, its definition, measurement and calculation. The Journal of the Acoustical Society of America, 5(2), 82–108. https://doi.org/10.1121/1.1915637.
Article
Google Scholar
Fougnie, D., Cockhren, J., & Marois, R. (2018). A common source of attention for auditory and visual tracking. Attention, Perception, & Psychophysics. https://doi.org/10.3758/s13414-018-1524-9.
Article
Google Scholar
Gentsch, A., Weber, A., Synofzik, M., Vosgerau, G., & Schütz-Bosbach, S. (2016). Towards a common framework of grounded action cognition: Relating motor control, perception and cognition. Cognition, 146, 81–89. https://doi.org/10.1016/j.cognition.2015.09.010.
Article
PubMed
Google Scholar
Gopher, D., Brickner, M., & Navon, D. (1982). Different difficulty manipulations interact differently with task emphasis: Evidence for multiple resources. Journal of Experimental Psychology: Human Perception and Performance, 8(1), 146–157. https://doi.org/10.1037/0096-1523.8.1.146.
Article
PubMed
Google Scholar
Halvorson, K. M., Wagschal, T. T., & Hazeltine, E. (2013). Conceptualization of task boundaries preserves implicit sequence learning under dual-task conditions. Psychonomic Bulletin & Review, 20(5), 1005–1010. https://doi.org/10.3758/s13423-013-0409-0.
Article
Google Scholar
Heuer, H., & Schmidtke, V. (1996). Secondary-task effects on sequence learning. Psychological Research, 59, 119–133. https://doi.org/10.1007/BF01792433.
Article
PubMed
Google Scholar
Hill, H., & Raab, M. (2005). Analyzing a complex visuomotor tracking task with brain-electrical event related potentials. Human Movement Science, 24(1), 1–30. https://doi.org/10.1016/j.humov.2004.11.002.
Article
PubMed
Google Scholar
Hommel, B. (2020). Dual-Task Performance: Theoretical analysis and an event-coding account. Journal of Cognition, 3(1), 1–13. https://doi.org/10.5334/joc.114.
Article
Google Scholar
Isreal, J. B., Chesney, G. L., Wickens, C. D., & Donchin, E. (1980). P300 and tracking difficulty: Evidence for multiple resources in dual-task performance. Psychophysiology, 17(3), 259–273. https://doi.org/10.1111/j.1469-8986.1980.tb00146.x.
Article
PubMed
Google Scholar
Kahneman, D. (1973). Attention and effort. Upper Saddle River: Prentice-Hall.
Google Scholar
Klapp, S. T., Kelly, P. A., & Netick, A. (1987). Hesitations in continuous tracking induced by a concurrent discrete task. Human Factors, 29(3), 327–337. https://doi.org/10.1177/001872088702900306.
Article
PubMed
Google Scholar
Koch, I., Poljac, E., Müller, H., & Kiesel, A. (2018). Cognitive structure, flexibility, and plasticity in human multitasking—an integrative review of dual-task and task-switching research. Psychological Bulletin, 144(6), 557–583. https://doi.org/10.1037/bul0000144.
Article
PubMed
Google Scholar
Körding, K. P., & Wolpert, D. M. (2006). Bayesian decision theory in sensorimotor control. Trends in Cognitive Sciences, 10(7), 319–326. https://doi.org/10.1016/j.tics.2006.05.003.
Article
PubMed
Google Scholar
Król, E. M., & Król, M. (2017). The trickle-down effect of predictability: Secondary task performance benefits from predictability in the primary task. PLoS ONE, 12(7), 1–20. https://doi.org/10.1371/journal.pone.0180573.
Article
Google Scholar
Künzell, S., Broeker, L., Dignath, D., Ewolds, H., Raab, M., & Thomaschke, R. (2018). What is a task? An ideomotor perspective. Psychological Research Psychologische Forschung, 82(1), 4–11. https://doi.org/10.1007/s00426-017-0942-y.
Article
PubMed
Google Scholar
Lang, A., Gapenne, O., Aubert, D., & Ferrel-Chapus, C. (2013). Implicit sequence learning in a continuous pursuit-tracking task. Psychological Research Psychologische Forschung, 77(5), 517–527. https://doi.org/10.1007/s00426-012-0460-x.
Article
PubMed
Google Scholar
Lange, K. (2013). The ups and downs of temporal orienting: a review of auditory temporal orienting studies and a model associating the heterogeneous findings on the auditory N1 with opposite effects of attention and prediction. Frontiers in Human Neuroscience, 7(June), 263. https://doi.org/10.3389/fnhum.2013.00263.
Article
PubMed
PubMed Central
Google Scholar
Lehle, C., & Hubner, R. (2009). Strategic capacity sharing between two tasks: Evidence from tasks with the same and with different task sets. Psychological Research Psychologische Forschung, 73(5), 707–726. https://doi.org/10.1007/s00426-008-0162-6.
Article
PubMed
Google Scholar
Magill, R. A. (1998). Knowledge is more than we can talk about: Implicit learning in motor skill acquisition. Research Quarterly for Exercise and Sport, 69(2), 104–110. https://doi.org/10.1080/02701367.1998.10607676.
Article
PubMed
Google Scholar
McDowd, J. M. (1986). The effects of age and extended practice on divided attention performance. Journal of Gerontology, 41(6), 764–769. https://doi.org/10.1093/geronj/41.6.764.
Article
PubMed
Google Scholar
McDowd, J. M., & Craik, F. I. M. (1988). Effects of aging and task difficulty on divided attention performance. Journal of Experimental Psychology: Human Perception and Performance, 14(2), 267–280. https://doi.org/10.1037/0096-1523.14.2.267.
Article
PubMed
Google Scholar
McNeil, M. R., Matthews, C. T., Hula, W. D., Doyle, P. J., & Fossett, T. R. D. (2006). Effects of visual-manual tracking under dual-task conditions on auditory language comprehension and story retelling in persons with aphasia. Aphasiology, 20(2–4), 167–174. https://doi.org/10.1080/02687030500472660.
Article
Google Scholar
Meyer, D. E., & Kieras, D. E. (1997). A computational theory of executive cognitive processes and multiple-task performance: Part I. Basic mechanisms. Psychological Review, 104(1), 3–65. https://doi.org/10.1037/0033-295X.104.1.3.
Article
PubMed
Google Scholar
Navon, D., & Gopher, D. (1979). On the economy of the human-processing system. Psychological Review, 86(3), 214–255.
Article
Google Scholar
Nobre, A., Correa, A., & Coull, J. (2007). The hazards of time. Current Opinion in Neurobiology, 17(4), 465–470. https://doi.org/10.1016/j.conb.2007.07.006.
Article
PubMed
Google Scholar
Pew, R. W. (1974). Levels of analysis in motor control. Brain Research, 71(2–3), 393–400. https://doi.org/10.1016/0006-8993(74)90983-4.
Article
PubMed
Google Scholar
Plessow, F., Schade, S., Kirschbaum, C., & Fischer, R. (2012). Better not to deal with two tasks at the same time when stressed? Acute psychosocial stress reduces task shielding in dual-task performance. Cognitive, Affective, & Behavioral Neuroscience, 12(3), 557–570. https://doi.org/10.3758/s13415-012-0098-6.
Article
Google Scholar
Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13(1), 25–42. https://doi.org/10.1146/annurev.ne.13.030190.000325.
Article
PubMed
Google Scholar
Raab, M., de Oliveira, R. F., Schorer, J., & Hegele, M. (2013). Adaptation of motor control strategies to environmental cues in a pursuit-tracking task. Experimental Brain Research, 228(2), 155–160. https://doi.org/10.1007/s00221-013-3546-9.
Article
PubMed
Google Scholar
Requin, J., Brener, J., & Ring, C. (1991). Preparation for action. In J. R. Jennings & M. G. H. Coles (Eds.), Handbook of cognitive psychophysiology: Central and autonomic nervous system approaches (pp. 357–448). New York: Wiley.
Google Scholar
Rolke, B., & Hofmann, P. (2007). Temporal uncertainty degrades perceptual processing. Psychonomic Bulletin and Review, 14(3), 522–526. https://doi.org/10.3758/BF03194101.
Article
PubMed
Google Scholar
Salvucci, D. D., & Taatgen, N. A. (2008). Threaded cognition: An integrated theory of concurrent multitasking. Psychological Review, 115(1), 101–130. https://doi.org/10.1037/0033-295X.115.1.101.
Article
PubMed
Google Scholar
Schmidt, A. M., & Dolis, C. M. (2009). Something’s got to give: The effects of dual-goal difficulty, goal progress, and expectancies on resource allocation. Journal of Applied Psychology, 94(3), 678–691. https://doi.org/10.1037/a0014945.
Article
Google Scholar
Schmidtke, V., & Heuer, H. (1997). Task integration as a factor in secondary-task effects on sequence learning. Psychological Research Psychologische Forschung, 60(1–2), 53–71. https://doi.org/10.1007/BF00419680.
Article
Google Scholar
Scott, S. H. (2012). The computational and neural basis of voluntary motor control and planning. Trends in Cognitive Sciences, 16(11), 541–549. https://doi.org/10.1016/j.tics.2012.09.008.
Article
PubMed
Google Scholar
Sigman, M., & Dehaene, S. (2006). Dynamics of the central bottleneck: Dual-task and task uncertainty. PLoS Biology, 4(7), 1227–1238. https://doi.org/10.1371/journal.pbio.0040220.
Article
Google Scholar
Strayer, D. L., & Drews, F. A. (2007). Cell-phone-induced driver distraction. Current Directions in Psychological Science, 16(3), 128–131. https://doi.org/10.1111/j.1467-8721.2007.00489.x.
Article
Google Scholar
Swinnen, S. P., & Wenderoth, N. (2004). Two hands, one brain: Cognitive neuroscience of bimanual skill. Trends in Cognitive Sciences, 8(1), 18–25. https://doi.org/10.1016/j.tics.2003.10.017.
Article
PubMed
Google Scholar
Töllner, T., Strobach, T., Schubert, T., & Müller, H. J. (2012). The effect of task order predictability in audio-visual dual task performance: Just a central capacity limitation? Frontiers in Integrative Neuroscience, 6(September), 75. https://doi.org/10.3389/fnint.2012.00075.
Article
PubMed
PubMed Central
Google Scholar
Tombu, M., & Jolicœur, P. (2003). A central capacity sharing model of dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 29(1), 3–18. https://doi.org/10.1037/0096-1523.29.1.3.
Article
PubMed
Google Scholar
Tsang, P. S. (2006). Regarding time-sharing with convergent operations. Acta Psychologica, 121(2), 137–175. https://doi.org/10.1016/j.actpsy.2005.07.002.
Article
PubMed
Google Scholar
Tsang, S. N. H., & Chan, A. H. S. (2015). Tracking and discrete dual task performance with different spatial stimulus-response mappings. Ergonomics, 58(3), 368–382. https://doi.org/10.1080/00140139.2014.978901.
Article
PubMed
Google Scholar
Van Roon, D., Caeyenberghs, K., Swinnen, S. P., & Smits-Engelsman, B. C. M. (2008). Development of feedforward control in a dynamic manual tracking task. Child Development, 79(4), 852–865. https://doi.org/10.1111/j.1467-8624.2008.01163.x.
Article
PubMed
Google Scholar
Van Rullen, R., & Thorpe, S. J. (2001). The time course of visual processing: From early perception to decision-making. Journal of Cognitive Neuroscience, 13(4), 454–461. https://doi.org/10.1162/08989290152001880.
Article
Google Scholar
Vu, K.-P.L., & Proctor, R. W. (2002). The prevalence effect in two-dimensional stimulus-response compatibility is a function of the relative salience of the dimensions. Perception & Psychophysics, 64(5), 815–828. https://doi.org/10.3758/BF03194748.
Article
Google Scholar
Wages, N. P., Beck, T. W., Ye, X., & Carr, J. C. (2016). Examination of a neural cross-over effect using resting mechanomyographic mean frequency from the vastus lateralis muscle in different resting positions following aerobic exercise. European Journal of Applied Physiology, 116(5), 919–929. https://doi.org/10.1007/s00421-016-3351-9.
Article
PubMed
Google Scholar
Wahn, B., & König, P. (2015). Audition and vision share spatial attentional resources, yet attentional load does not disrupt audiovisual integration. Frontiers in Psychology, 6, 1084. https://doi.org/10.3389/fpsyg.2015.01084.
Article
PubMed
PubMed Central
Google Scholar
Wahn, B., & König, P. (2017). Is attentional resource allocation across sensory modalities task-dependent? Advances in Cognitive Psychology, 13(1), 83–96. https://doi.org/10.5709/acp-0209-2.
Article
PubMed
PubMed Central
Google Scholar
Weir, D. J., Stein, J. F., & Miall, R. C. (1989). Cues and control strategies in visually guided tracking. Journal of Motor Behavior, 21(3), 185–204. https://doi.org/10.1080/00222895.1989.10735477.
Article
PubMed
Google Scholar
Wickens, C. D. (1980). The structure of attentional resources. In R. Nickerson (Ed.), Attention and performance VII (pp. 239–257). New Jersey: Lawrence Erlbaum.
Google Scholar
Wickens, C. D. (2002). Multiple resources and performance prediction. Theoretical Issues in Ergonomics Science, 3(2), 159–177. https://doi.org/10.1080/14639220210123806.
Article
Google Scholar
Wickens, C. D. (2008). Multiple resources and mental workload. Human Factors, 50(3), 449–455. https://doi.org/10.1518/001872008X288394.
Article
PubMed
Google Scholar
Wickens, C. D., Goh, J., Helleberg, J., Horrey, W. J., & Talleur, D. A. (2003). Attentional models of multitask pilot performance using advanced display technology. Human Factors, 45(3), 360–380. https://doi.org/10.1518/hfes.45.3.360.27250.
Article
PubMed
Google Scholar
Wickens, C. D., Gutzwiller, R. S., & Santamaria, A. (2015). Discrete task switching in overload: A meta-analyses and a model. International Journal of Human Computer Studies, 79, 79–84. https://doi.org/10.1016/j.ijhcs.2015.01.002.
Article
Google Scholar
Wickens, & Colcombe, A. . (2007). Dual-task performance consequences of imperfect alerting associated with a cockpit display of traffic information. Human Factors, 49(5), 839–850. https://doi.org/10.1518/001872007X230217.
Article
Google Scholar
Wolpert, D. M., Diedrichsen, J., & Flanagan, J. R. (2011). Principles of sensorimotor learning. Nature Reviews Neuroscience, 12(12), 739–751. https://doi.org/10.1038/nrn3112.
Article
PubMed
Google Scholar
Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1431), 593–602. https://doi.org/10.1098/rstb.2002.1238.
Article
Google Scholar
Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Networks, 11(7–8), 1317–1329. https://doi.org/10.1016/S0893-6080(98)00066-5.
Article
PubMed
Google Scholar
Wulf, G., & Schmidt, R. A. (1997). Variability of practice and implicit motor learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23(4), 987–1006. https://doi.org/10.1037/0278-7393.23.4.987.
Article
Google Scholar
Zhou, X., Cao, X., & Ren, X. (2009). Speed-accuracy tradeoff in trajectory-based tasks with temporal constraint. In Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 5726 LNCS(PART 1) (pp. 906–919). https://doi.org/10.1007/978-3-642-03655-2_99