Abboud, S., Hanassy, S., Levy-Tzedek, S., Maidenbaum, S., & Amedi, A. (2014). EyeMusic: introducing a ‘visual’ colorful experience for the blind using auditory sensory substitution. Restorative Neurology and Neuroscience, 32(2), 247–257. https://doi.org/10.3233/RNN-130338.
Article
PubMed
Google Scholar
Akita, J., Komatsu, T., Ito, K., Ono, T., & Okamoto, M. (2009). CyARM: haptic sensing device for spatial localization on basis of exploration by arms. Advances in Human-Computer Interaction, 2009, 1–6. https://doi.org/10.1155/2009/901707.
Article
Google Scholar
Amedi, A. & Hanassy, S. (2011). Infra red based devices for guiding blind and visually impaired persons. https://patents.google.com/patent/WO2012090114A1/en. Accessed 11 Nov 2019.
Arnold, G., Pesnot-Lerousseau, J., & Auvray, M. (2017). Individual differences in sensory substitution. Multisensory Research, 30(6), 579–600. https://doi.org/10.1163/22134808-00002561.
Article
PubMed
Google Scholar
Auvray, M., & Farina, M. (2017). Patrolling the Boundaries of Synaesthesia. In O Deroy (Ed.), Synaesthesia: Philosophical & Psychological Challenges (pp. 248–274). Oxford: Oxford University Press.
Auvray, M., Hanneton, S., & O’Regan, J. K. (2007). Learning to perceive with a visuo—auditory substitution system: localisation and object recognition with ‘the voice. Perception, 36(3), 416–430. https://doi.org/10.1068/p5631.
Article
PubMed
Google Scholar
Auvray, M., & Harris, L. R. (2014). The state of the art of sensory substitution. Multisensory Research, 27(5–6), 265–269. https://doi.org/10.1163/22134808-00002464.
Article
PubMed
Google Scholar
Auvray, M., & Myin, E. (2009). Perception with compensatory devices: from sensory substitution to sensorimotor extension. Cognitive Science, 33(6), 1036–1058. https://doi.org/10.1111/j.1551-6709.2009.01040.x.
Article
PubMed
Google Scholar
Bach-y-Rita, P., Collins, C. C., Saunders, F. A., White, B., & Scadden, L. (1969). Vision substitution by tactile image projection. Nature, 221(5184), 963–964. https://doi.org/10.1038/221963a0.
Article
PubMed
Google Scholar
Bach-y-Rita, P., & W. Kercel, S. (2003). Sensory substitution and the human–machine interface. Trends in Cognitive Sciences, 7(12), 541–546. https://doi.org/10.1016/J.TICS.2003.10.013.
Article
PubMed
Google Scholar
Barilari, M., de Heering, A., Crollen, V., Collignon, O., & Bottini, R. (2018). Is red heavier than yellow even for blind? I-Perception, 9(1), 204166951875912. https://doi.org/10.1177/2041669518759123.
Article
Google Scholar
Bermejo, F., Di Paolo, E. A., Hüg, M. X., & Arias, C. (2015). Sensorimotor strategies for recognizing geometrical shapes: a comparative study with different sensory substitution devices. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.00679.
Bichard, J. A., Coleman, R., & Langdon, P. (2007). Does my stigma look big in this? Considering acceptability and desirability in the inclusive design of technology products. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4554 LNCS (PART 1), 622–631. https://doi.org/10.1007/978-3-540-73279-2_69.
Bologna, G., Deville, B., & Pun, T. (2009). On the use of the auditory pathway to represent image scenes in real-time. Neurocomputing, 72(4–6), 839–849. https://doi.org/10.1016/J.NEUCOM.2008.06.020.
Article
Google Scholar
Borenstein, J. (1990). The NavBelt - a computerized multi-sensor travel aid for active guidance of the blind. In Proceedings of the Csun’s Fifth Annual Conference on Technology and Persons with Disabilities, (pp. 107–116) 10.1.1.23.9115.
Google Scholar
Borenstein, J., Ulrich, I., & Shoval, S. (2000). Computerized obstacle avoidance systems for the blind and visually impaired. In H. N. L. Teodorescu, & L. Jain (Eds.), Intelligent systems and technologies in rehabilitation engineering, (pp. 414–448). https://doi.org/10.1201/9781420042122.ch14.
Chapter
Google Scholar
Botzer, A., Shvalb, N., & Ben-Moshe, B. (2018). Using sound feedback to help blind people navigate. In Proceedings of the 36th European Conference on Cognitive Ergonomics - ECCE’18, (pp. 1–3). https://doi.org/10.1145/3232078.3232083.
Chapter
Google Scholar
Brefczynski-Lewis, J. A., & Lewis, J. W. (2017). Auditory object perception: a neurobiological model and prospective review. Neuropsychologia, 105, 223–242. https://doi.org/10.1016/j.neuropsychologia.2017.04.034.
Article
PubMed
PubMed Central
Google Scholar
Bremner, A. J. (2017). Multisensory development: calibrating a coherent sensory milieu in early life. Current Biology, 27(8), R305–R307. https://doi.org/10.1016/J.CUB.2017.02.055.
Article
PubMed
Google Scholar
Brown, D., Macpherson, T., & Ward, J. (2011). Seeing with sound? Exploring different characteristics of a visual-to-auditory sensory substitution device. Perception, 40(9), 1120–1135. https://doi.org/10.1068/p6952.
Article
PubMed
Google Scholar
Bülthoff, H. H., & Mallot, H. A. (1988). Integration of depth modules: stereo and shading. Journal of the Optical Society of America A, 5(10), 1749. https://doi.org/10.1364/JOSAA.5.001749.
Article
Google Scholar
Burchardt, T. (2004). Capabilities and disability: the capabilities framework and the social model of disability. Disability and Society, 19(7), 735–751. https://doi.org/10.1080/0968759042000284213.
Article
Google Scholar
Butts, A. M. (2015). Enhancing the perception of speech indexical properties of cochlear implants through sensory substitution. Tempe: Arizona State University.
Google Scholar
Calvert, G. A., Spence, C., & Stein, B. E. (2004). The handbook of multisensory processing. Cambridge: MIT Press.
Google Scholar
Cancar, L., Díaz, A., Barrientos, A., Travieso, D., & Jacobs, D. M. (2013). Tactile-sight: a sensory substitution device based on distance-related vibrotactile flow. International Journal of Advanced Robotic Systems, 10(6), 272. https://doi.org/10.5772/56235.
Article
Google Scholar
Capelle, C., Trullemans, C., Arno, P., & Veraart, C. (1998). A real-time experimental prototype for enhancement of vision rehabilitation using auditory substitution. IEEE Transactions on Biomedical Engineering, 45(10), 1279–1293. https://doi.org/10.1109/10.720206.
Article
PubMed
Google Scholar
Cardin, S., Thalmann, D., & Vexo, F. (2007). A wearable system for mobility improvement of visually impaired people. The Visual Computer, 23(2), 109–118. https://doi.org/10.1007/s00371-006-0032-4.
Article
Google Scholar
Carton, A., & Dunne, L. E. (2013). Tactile distance feedback for firefighters. In Proceedings of the 4th Augmented Human International Conference on - AH ‘13, (pp. 58–64). https://doi.org/10.1145/2459236.2459247.
Chapter
Google Scholar
Chebat, D.-R., Harrar, V., Kupers, R., Maidenbaum, S., Amedi, A., & Ptito, M. (2018). Sensory substitution and the neural correlates of navigation in blindness. In Mobility of visually impaired people, (pp. 167–200). https://doi.org/10.1007/978-3-319-54446-5_6.
Chapter
Google Scholar
Chebat, D.-R., Schneider, F. C., Kupers, R., & Ptito, M. (2011). Navigation with a sensory substitution device in congenitally blind individuals. NeuroReport, 22(7), 342–347. https://doi.org/10.1097/WNR.0b013e3283462def.
Article
PubMed
Google Scholar
Choi, I., Lee, J.-Y., & Lee, S.-H. (2018). Bottom-up and top-down modulation of multisensory integration. Current Opinion in Neurobiology, 52, 115–122. https://doi.org/10.1016/J.CONB.2018.05.002.
Article
PubMed
Google Scholar
Corradi, T., Hall, P., & Iravani, P. (2017). Object recognition combining vision and touch. Robotics and Biomimetics, 4(1), 2. https://doi.org/10.1186/s40638-017-0058-2.
Article
PubMed
PubMed Central
Google Scholar
d’Albe, E. E. F. (1914). On a type-reading optophone. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 90(619), 373–375. https://doi.org/10.1098/rspa.1914.0061.
Article
Google Scholar
Dakopoulos, D., & Bourbakis, N. G. (2010). Wearable obstacle avoidance electronic travel aids for blind: a survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(1), 25–35. https://doi.org/10.1109/TSMCC.2009.2021255.
Article
Google Scholar
Danilov, Y., & Tyler, M. (2005). BrainPort: an alternative input to the brain. Journal of Integrative Neuroscience, 04(04), 537–550. https://doi.org/10.1142/S0219635205000914.
Article
Google Scholar
Design Council. (2019). Design council. https://www.designcouncil.org.uk/. Accessed 11 Nov 2019.
Dewsbury, G., Clarke, K., Randall, D., Rouncefield, M., & Sommerville, I. (2004). The anti-social model of disability. Disability and Society, 19(2), 145–158. https://doi.org/10.1080/0968759042000181776.
Article
Google Scholar
Di Nuovo, A., & Cangelosi, A. (2015). Artificial mental imagery in cognitive robots interaction. In 2015 IEEE Symposium Series on Computational Intelligence, (pp. 91–96). https://doi.org/10.1109/SSCI.2015.23.
Chapter
Google Scholar
Dublon, G., & Paradiso, J. A. (2012). Tongueduino. In Proceedings of the 2012 ACM Annual Conference Extended Abstracts on Human Factors in Computing Systems Extended Abstracts - CHI EA ‘12, (p. 1453). https://doi.org/10.1145/2212776.2212482.
Chapter
Google Scholar
Dunai, L., Peris-Fajarnés, G., Lluna, E., & Defez, B. (2013). Sensory navigation device for blind people. Journal of Navigation, 66(3), 349–362. https://doi.org/10.1017/S0373463312000574.
Article
Google Scholar
Durette, B., Louveton, N., Alleysson, D., & Hérault, J. (2008). Visuo-auditory sensory substitution for mobility assistance: testing TheVIBE. Workshop on Computer Vision Applications for the Visually Impaired, 1–13.
Deroy, Ophelia, & Auvray, M. (2012). Reading the World through the Skin and Ears: A New Perspective on Sensory Substitution. Frontiers in Psychology, 3. https://doi.org/10.3389/fpsyg.2012.00457.
Eagleman, D. M., Novich, S. D., Goodman, D., Sahoo, A., & Perotta, M. (2017). Method and system for providing adjunct sensory information to a user. https://patents.google.com/patent/US10198076B2/en.
Google Scholar
Esenkaya, T., & Proulx, M. J. (2016). Crossmodal processing and sensory substitution: is ‘seeing’ with sound and touch a form of perception or cognition? Behavioral and Brain Sciences, 39, e241. https://doi.org/10.1017/S0140525X1500268X.
Article
PubMed
Google Scholar
Farcy, R., Leroux, R., Jucha, A., Damaschinin, R., Grégoire, C., & Zogaghi, A. (2006). Electronic travel aids and electronic orientation aids for blind people: technical, rehabilitation and everyday life points of view. In Conference on Assistive Technology for Vision and Hearing Impairment (CVHI).
Google Scholar
Faugloire, E., & Lejeune, L. (2014). Evaluation of heading performance with vibrotactile guidance: The benefits of information–movement coupling compared with spatial language. Journal of Experimental Psychology: Applied, 20(4), 397–410. https://doi.org/10.1037/xap0000032.
Article
PubMed
Google Scholar
Finnegan, D. J., O’Neill, E., & Proulx, M. J. (2016). Compensating for distance compression in audiovisual virtual environments using incongruence. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems - CHI ‘16, (pp. 200–212). https://doi.org/10.1145/2858036.2858065.
Chapter
Google Scholar
Froese, T., McGann, M., Bigge, W., Spiers, A., & Seth, A. K. (2012). The enactive torch: a new tool for the science of perception. IEEE Transactions on Haptics, 5(4), 365–375. https://doi.org/10.1109/TOH.2011.57.
Article
PubMed
Google Scholar
Gallagher, D. J., Connor, D. J., & Ferri, B. A. (2014). Beyond the far too incessant schism: special education and the social model of disability. International Journal of Inclusive Education, 18(11), 1120–1142. https://doi.org/10.1080/13603116.2013.875599.
Article
Google Scholar
Geldard, F. A. (1966). Cutaneous coding of optical signals: the optohapt. Perception & Psychophysics, 1(11), 377–381. https://doi.org/10.3758/BF03215810.
Article
Google Scholar
Ghazanfar, A. A., & Schroeder, C. E. (2006). Is neocortex essentially multisensory? Trends in Cognitive Sciences, 10(6), 278–285. https://doi.org/10.1016/J.TICS.2006.04.008.
Article
PubMed
Google Scholar
Gieben-Gamal, E., & Matos, S. (2017). Design and disability. developing new opportunities for the design curriculum. The Design Journal, 20(sup1), S2022–S2032. https://doi.org/10.1080/14606925.2017.1352721.
Article
Google Scholar
Gori, M., Del Viva, M., Sandini, G., & Burr, D. C. (2008). Young children do not integrate visual and haptic form information. Current Biology, 18(9), 694–698. https://doi.org/10.1016/j.cub.2008.04.036.
Article
PubMed
Google Scholar
Grah, T., Epp, F., Wuchse, M., Meschtscherjakov, A., Gabler, F., Steinmetz, A., & Tscheligi, M. (2015). Dorsal haptic display: a shape-changing car seat for sensory augmentation of rear obstacles. In Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, (pp. 305–312). https://doi.org/10.1145/2799250.2799281.
Chapter
Google Scholar
Grant, P., Spencer, L., Arnoldussen, A., Hogle, R., Nau, A., Szlyk, J., et al. (2016). The functional performance of the brainport v100 device in persons who are profoundly blind. Journal of Visual Impairment & Blindness, 110(2), 77–88. https://doi.org/10.1177/0145482X1611000202.
Article
Google Scholar
Hamilton-Fletcher, G., Obrist, M., Watten, P., Mengucci, M., & Ward, J. (2016). “I Always Wanted to See the Night Sky”: Blind user preferences for sensory substitution devices. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems - CHI ‘16, (pp. 2162–2174). https://doi.org/10.1145/2858036.2858241.
Chapter
Google Scholar
Hamilton-Fletcher, G., & Ward, J. (2013). Representing colour through hearing and touch in sensory substitution devices. Multisensory Research, 26(6), 503–532.
Article
Google Scholar
Hamilton-Fletcher, G., Wright, T. D., & Ward, J. (2016). Cross-modal correspondences enhance performance on a colour-to-sound sensory substitution device. Multisensory Research, 29(4–5), 337–363.
Article
Google Scholar
Hawkins, J., & Blakeslee, S. (2005). On intelligence, (1st ed., ). New York: Henry Holt and Co.
Google Scholar
Hoffmann, R., Spagnol, S., Kristjánsson, Á., & Unnthorsson, R. (2018). Evaluation of an audio-haptic sensory substitution device for enhancing spatial awareness for the visually impaired. Optometry and Vision Science, 95(9), 757–765. https://doi.org/10.1097/OPX.0000000000001284.
Article
PubMed
PubMed Central
Google Scholar
Hoggan, E., & Brewster, S. (2007). Designing audio and tactile crossmodal icons for mobile devices. In Proceedings of the Ninth International Conference on Multimodal Interfaces - ICMI ‘07, (p. 162). https://doi.org/10.1145/1322192.1322222.
Chapter
Google Scholar
Hoggan, E., Kaaresoja, T., Laitinen, P., & Brewster, S. (2008). Crossmodal congruence. In Proceedings of the 10th International Conference on Multimodal Interfaces - IMCI ‘08, (p. 157). https://doi.org/10.1145/1452392.1452423.
Chapter
Google Scholar
Ishii, H. (2019). SIGCHI lifetime research award talk. In Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems - CHI EA ‘19, (pp. 1–4). https://doi.org/10.1145/3290607.3313769.
Chapter
Google Scholar
Ito, K., Okamoto, M., Akita, J., Ono, T., Gyobu, I., Takagi, T., et al. (2005). CyARM: an alternative aid device for blind persons. In CHI ‘05 Extended Abstracts on Human Factors in Computing Systems - CHI ‘05, (p. 1483). https://doi.org/10.1145/1056808.1056947.
Chapter
Google Scholar
Jicol, C., Lloyd-Esenkaya, T., Proulx, M. J., Lange-Smith, S., Scheller, M., O’Neill, E., & Petrini, K. (2020). Efficiency of sensory substitution devices alone and in combination with self-motion for spatial navigation in sighted and visually impaired. Frontiers in Psychology, 11, 1443.
Article
Google Scholar
Jones, L. A., Nakamura, M., & Lockyer, B. (2004). Development of a tactile vest. In 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2004, HAPTICS ‘04. Proceedings, (pp. 82–89). https://doi.org/10.1109/HAPTIC.2004.1287181.
Chapter
Google Scholar
Jordan, J. B., & Vanderheiden, G. C. (2013). Modality-independent interaction framework for cross-disability accessibility. In Cross-cultural design. methods, practice, and case studies, (pp. 218–227). https://doi.org/10.1007/978-3-642-39143-9_24.
Chapter
Google Scholar
Kaczmarek, K. A., Webster, J. G., Bach-y-Rita, P., & Tompkins, W. J. (1991). Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Transactions on Biomedical Engineering, 38(1), 1–16. https://doi.org/10.1109/10.68204.
Article
PubMed
Google Scholar
Kayser, C., & Logothetis, N. K. (2007). Do early sensory cortices integrate cross-modal information? Brain Structure and Function, 212(2), 121–132. https://doi.org/10.1007/s00429-007-0154-0.
Article
PubMed
Google Scholar
Kim, C. S. (2015). Christine Sun Kim: The enchanting music of sign language | TED Talk. https://www.ted.com/talks/christine_sun_kim_the_enchanting_music_of_sign_language. Accessed 11 Nov 2019.
Kupers, R., Chebat, D. R., Madsen, K. H., Paulson, O. B., & Ptito, M. (2010). Neural correlates of virtual route recognition in congenital blindness. Proceedings of the National Academy of Sciences, 107(28), 12716–12721. https://doi.org/10.1073/pnas.1006199107.
Article
Google Scholar
Lenay, C., Canu, S., & Villon, P. (1997). Technology and perception: the contribution of sensory substitution systems. In Proceedings Second International Conference on Cognitive Technology Humanizing the Information Age, (pp. 44–53). https://doi.org/10.1109/CT.1997.617681.
Chapter
Google Scholar
Lenay, C., & Declerck, G. (2018). Technologies to access space without vision. some empirical facts and guiding theoretical principles. In Mobility of visually impaired people, (pp. 53–75). https://doi.org/10.1007/978-3-319-54446-5_2.
Chapter
Google Scholar
Lenay, C., Gapenne, O., Hanneton, S., Marque, C., & Genouëlle, C. (2003). Sensory substitution: limits and perspectives. In Y. Hatwell, A. Streri, & E. Gentaz (Eds.), Touching for knowing: cognitive psychology of haptic manual perception, (pp. 275–292). Amsterdam: John Benjamins Publishing.
Chapter
Google Scholar
Levy-Tzedek, S., Novick, I., Arbel, R., Abboud, S., Maidenbaum, S., Vaadia, E., & Amedi, A. (2012). Cross-sensory transfer of sensory-motor information: visuomotor learning affects performance on an audiomotor task, using sensory-substitution. Scientific Reports, 2(1), 949. https://doi.org/10.1038/srep00949.
Article
PubMed
PubMed Central
Google Scholar
Li, Y., Zhu, J. Y., Tedrake, R., & Torralba, A. (2019). Connecting touch and vision via cross-modal prediction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (pp. 10609–10618).
Google Scholar
Linvill, J. G., & Bliss, J. C. (1966). A direct translation reading aid for the blind. Proceedings of the IEEE, 54(1), 40–51. https://doi.org/10.1109/PROC.1966.4572.
Article
Google Scholar
Liu, J., Liu, J., Xu, L., & Jin, W. (2010). Electronic travel aids for the blind based on sensory substitution. In 2010 5th International Conference on Computer Science & Education, (pp. 1328–1331). https://doi.org/10.1109/ICCSE.2010.5593738.
Chapter
Google Scholar
Maidenbaum, S., Levy-Tzedek, S., Chebat, D.-R., & Amedi, A. (2013). Increasing accessibility to the blind of virtual environments, using a virtual mobility aid based on the ‘EyeCane’: feasibility study. PLoS One, 8(8), e72555. https://doi.org/10.1371/journal.pone.0072555.
Article
PubMed
PubMed Central
Google Scholar
Maidenbaum, S., Levy-Tzedek, S., Chebat, D. R., Namer-Furstenberg, R., & Amedi, A. (2014). The effect of extended sensory range via the eyecane sensory substitution device on the characteristics of visionless virtual navigation. Multisensory Research, 27(5–6), 379–397. https://doi.org/10.1163/22134808-00002463.
Article
PubMed
Google Scholar
Marks, L. E. (1974). On associations of light and sound: the mediation of brightness, pitch, and loudness. The American Journal of Psychology, 87(1–2), 173–188.
Article
Google Scholar
Meijer, P. (1992). An experimental system for auditory image representations. IEEE Transactions on Biomedical Engineering, 39(2), 112–121. https://doi.org/10.1109/10.121642
Article
PubMed
Google Scholar
Meijer, P. (2019). Seeing with sound. https://www.seeingwithsound.com/. Accessed 11 Nov 2019.
Melara, R. D., & O’Brien, T. P. (1987). Interaction between synesthetically corresponding dimensions. Journal of Experimental Psychology: General, 116(4), 323–336. https://doi.org/10.1037/0096-3445.116.4.323
Article
Google Scholar
Nagel, S. K., Carl, C., Kringe, T., Märtin, R., & König, P. (2005). Beyond sensory substitution—learning the sixth sense. Journal of Neural Engineering, 2(4), R13–R26. https://doi.org/10.1088/1741-2560/2/4/R02
Nardini, M., Jones, P., Bedford, R., & Braddick, O. (2008). Development of cue integration in human navigation. Current Biology, 18(9), 689–693. https://doi.org/10.1016/J.CUB.2008.04.021
Article
PubMed
Google Scholar
National Research Council (2008). Emerging cognitive neuroscience and related technologies. https://doi.org/10.17226/12177. Accessed 11 Nov 2019.
Nau, A., Bach, M., & Fisher, C. (2013). Clinical tests of ultra-low vision used to evaluate rudimentary visual perceptions enabled by the brainport vision device. Translational Vision Science & Technology, 2(3), 1. https://doi.org/10.1167/tvst.2.3.1.
Article
Google Scholar
Newell, A. (2003). Inclusive design or assistive technology. Inclusive Design, 172–181. https://doi.org/10.1007/978-1-4471-0001-0_11.
Newell, F. N., Ernst, M. O., Tjan, B. S., & Bülthoff, H. H. (2001). Viewpoint dependence in visual and haptic object recognition. Psychological Science, 12(1), 37–42. https://doi.org/10.1111/1467-9280.00307.
Article
PubMed
Google Scholar
Obrist, M., Gatti, E., Maggioni, E., Vi, C. T., & Velasco, C. (2017). multisensory experiences in HCI. IEEE Multimedia, 24(2), 9–13. https://doi.org/10.1109/MMUL.2017.33.
Article
Google Scholar
Oliver, M. (2013). The social model of disability: thirty years on. Disability and Society, 28(7), 1024–1026. https://doi.org/10.1080/09687599.2013.818773.
Article
Google Scholar
Ortiz, T., Poch, J., Santos, J. M., Requena, C., Martínez, A. M., Ortiz-Terán, L., et al. (2011). Recruitment of occipital cortex during sensory substitution training linked to subjective experience of seeing in people with blindness. PLoS One, 6(8), e23264. https://doi.org/10.1371/journal.pone.0023264.
Article
PubMed
PubMed Central
Google Scholar
Ortiz-Terán, L., Ortiz, T., Perez, D. L., Aragón, J. I., Diez, I., Pascual-Leone, A., & Sepulcre, J. (2016). brain plasticity in blind subjects centralizes beyond the modal cortices. Frontiers in Systems Neuroscience, 10. https://doi.org/10.3389/fnsys.2016.00061.
Oviatt, S. (1999). Ten myths of multimodal interaction. Communications of the ACM, 42(11), 74–81. https://doi.org/10.1145/319382.319398.
Article
Google Scholar
Parise, C. V., & Spence, C. (2012). Audiovisual crossmodal correspondences and sound symbolism: a study using the implicit association test. Experimental Brain Research, 220(3–4), 319–333. https://doi.org/10.1007/s00221-012-3140-6.
Article
PubMed
Google Scholar
Pascual-Leone, A., & Hamilton, R. (2001). The metamodal organization of the brain. Progress in Brain Research, 134, 427–445. https://doi.org/10.1016/s0079-6123(01)34028-1.
Article
PubMed
Google Scholar
Pasqualotto, A., & Esenkaya, T. (2016). Sensory substitution: the spatial updating of auditory scenes ‘mimics’ the spatial updating of visual scenes. Frontiers in Behavioral Neuroscience, 10. https://doi.org/10.3389/fnbeh.2016.00079.
Perrault, T. J., Vaughan, J. W., Stein, B. E., & Wallace, M. T. (2003). Neuron-specific response characteristics predict the magnitude of multisensory integration. Journal of Neurophysiology, 90(6), 4022–4026. https://doi.org/10.1152/jn.00494.2003.
Article
PubMed
Google Scholar
Persson, H., Åhman, H., Yngling, A. A., & Gulliksen, J. (2015). Universal design, inclusive design, accessible design, design for all: different concepts—one goal? On the concept of accessibility—historical, methodological and philosophical aspects. Universal Access in the Information Society, 14(4), 505–526. https://doi.org/10.1007/s10209-014-0358-z.
Article
Google Scholar
Phillips, B., & Zhao, H. (2010). Predictors of assistive technology abandonment. Assistive Technology, 5(1), 36–45. https://doi.org/10.1080/10400435.1993.10132205.
Article
Google Scholar
Proulx, M. J., Brown, D. J., Pasqualotto, A., & Meijer, P. (2014). Multisensory perceptual learning and sensory substitution. Neuroscience & Biobehavioral Reviews, 41, 16–25. https://doi.org/10.1016/J.NEUBIOREV.2012.11.017.
Article
Google Scholar
Proulx, M. J., & Harder, A. (2008). Sensory substitution: visual-to-auditory sensory substitution devices for the blind. Tijdschrift Voor Ergonomie, 6(33).
Renier, L., Laloyaux, C., Collignon, O., Tranduy, D., Vanlierde, A., Bruyer, R., & De Volder, A. G. (2005). The ponzo illusion with auditory substitution of vision in sighted and early-blind subjects. Perception, 34(7), 857–867. https://doi.org/10.1068/p5219.
Article
PubMed
Google Scholar
Ricciardi, E., Bonino, D., Pellegrini, S., & Pietrini, P. (2014). Mind the blind brain to understand the sighted one! Is there a supramodal cortical functional architecture? Neuroscience & Biobehavioral Reviews, 41, 64–77. https://doi.org/10.1016/J.NEUBIOREV.2013.10.006.
Article
Google Scholar
Ricciardi, E., & Pietrini, P. (2011). New light from the dark: what blindness can teach us about brain function. Current Opinion in Neurology, 24(4), 357–363. https://doi.org/10.1097/WCO.0b013e328348bdbf.
Article
PubMed
Google Scholar
Richardson, M., Thar, J., Alvarez, J., Borchers, J., Ward, J., & Hamilton-Fletcher, G. (2019). How much spatial information is lost in the sensory substitution process? Comparing visual, tactile, and auditory approaches. Perception, 48(11), 1079–1103. https://doi.org/10.1177/0301006619873194.
Article
PubMed
Google Scholar
Rochlis, J. (1998). A vibrotactile display for aiding extravehicular activity (EVA) navigation in space. Cambridge: Massachusetts Institute of Technology.
Google Scholar
Rock, I., & Victor, J. (1964). Vision and touch: an experimentally created conflict between the two senses. Science, 143(3606), 594–596. https://doi.org/10.1126/science.143.3606.594.
Article
PubMed
Google Scholar
Rohde, M., van Dam, L. C. J., & Ernst, M. (2016). Statistically optimal multisensory cue integration: a practical tutorial. Multisensory Research, 29(4–5), 279–317.
Article
Google Scholar
Sampaio, E., Maris, S., & Bach-y-Rita, P. (2001). Brain plasticity: ‘visual’ acuity of blind persons via the tongue. Brain Research, 908(2), 204–207. https://doi.org/10.1016/S0006-8993(01)02667-1.
Article
PubMed
Google Scholar
Scheller, M., Proulx, M. J., de Haan, M., Dahlmann-Noor, A., & Petrini, K. (2020). Late- but not early-onset blindness impairs the development of audio-haptic multisensory integration. Developmental Science, (September 2019), 1–17. https://doi.org/10.1111/desc.13001.
Segond, H., Weiss, D., & Sampaio, E. (2005). Human spatial navigation via a visuo-tactile sensory substitution system. Perception, 34(10), 1231–1249. https://doi.org/10.1068/p3409.
Article
PubMed
Google Scholar
Todd Selby. (2011). Todd Selby x Christine Sun Kim | NOWNESS. https://www.nowness.com/story/todd-selby-x-christine-sun-kim. Accessed 11 Nov 2019.
Shoval, S., Borenstein, J., & Koren, Y. (1998). Auditory guidance with the Navbelt-a computerized travel aid for the blind. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 28(3), 459–467. https://doi.org/10.1109/5326.704589.
Article
Google Scholar
Siegle, J. H., & Warren, W. H. (2010). Distal attribution and distance perception in sensory substitution. Perception, 39(2), 208–223. https://doi.org/10.1068/p6366.
Article
PubMed
PubMed Central
Google Scholar
Sound Foresight Technology. (2019a). UltraBike. https://www.ultracane.com/ultra_bike. Accessed 11 Nov 2019.
Sound Foresight Technology. (2019b). UltraCane. https://www.ultracane.com/about_the_ultracane. Accessed 11 Nov 2019.
Spence, C. (2011). Crossmodal correspondences: a tutorial review. Attention, Perception, & Psychophysics, 73(4), 971–995. https://doi.org/10.3758/s13414-010-0073-7.
Article
Google Scholar
Spence, C. (2014). The Skin as a Medium for Sensory Substitution. Multisensory Research, 27(5–6), 293–312. https://doi.org/10.1163/22134808-00002452.
Spence, C., & Parise, C. V. (2012). The cognitive neuroscience of crossmodal correspondences. I-Perception, 3(7), 410–412. https://doi.org/10.1068/i0540ic.
Article
PubMed
PubMed Central
Google Scholar
Sreetharan, S., & Schutz, M. (2019). Improving human–computer interface design through application of basic research on audiovisual integration and amplitude envelope. Multimodal Technologies and Interaction, 3(1), 4. https://doi.org/10.3390/mti3010004.
Article
Google Scholar
Stanford, T. R. (2005). Evaluating the operations underlying multisensory integration in the cat superior colliculus. Journal of Neuroscience, 25(28), 6499–6508. https://doi.org/10.1523/JNEUROSCI.5095-04.2005.
Article
PubMed
Google Scholar
Stanford, T. R., & Stein, B. E. (2007). Superadditivity in multisensory integration: putting the computation in context. NeuroReport, 18(8), 787–792. https://doi.org/10.1097/WNR.0b013e3280c1e315.
Article
PubMed
Google Scholar
Starkiewicz, W., & Kuliszewski, T. (1963). The 80-channel elektroftalm. In L. Clark (Ed.), Proceedings of the International Congress on Technology and Blindness, (2nd ed., p. 157). New York: American Foundation for the Blind.
Google Scholar
Stein, B. E., & Wallace, M. T. (1996). Comparisons of cross-modality integration in midbrain and cortex. Progress in Brain Research, 112, 289–299. https://doi.org/10.1016/s0079-6123(08)63336-1.
Article
PubMed
Google Scholar
Stein, B. E. (1998). Neural mechanisms for synthesizing sensory information and producing adaptive behaviors. Experimental Brain Research, 123(1–2), 124–135. https://doi.org/10.1007/s002210050553.
Article
PubMed
Google Scholar
Stein, B. E., Burr, D., Constantinidis, C., Laurienti, P. J., Alex Meredith, M., Perrault, T. J., … Lewkowicz, D. J. (2010). Semantic confusion regarding the development of multisensory integration: a practical solution. European Journal of Neuroscience, 31(10), 1713–1720. https://doi.org/10.1111/j.1460-9568.2010.07206.x.
Article
PubMed
Google Scholar
Stiles, N. R. B., & Shimojo, S. (2015). auditory sensory substitution is intuitive and automatic with texture stimuli. Scientific Reports, 5(1), 15628. https://doi.org/10.1038/srep15628.
Article
PubMed
PubMed Central
Google Scholar
Stiles, N. R. B., Zheng, Y., & Shimojo, S. (2015). Length and orientation constancy learning in 2-dimensions with auditory sensory substitution: the importance of self-initiated movement. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.00842.
Stoll, C., Palluel-Germain, R., Fristot, V., Pellerin, D., Alleysson, D., & Graff, C. (2015). Navigating from a depth image converted into sound. Applied Bionics and Biomechanics, 2015, 1–9. https://doi.org/10.1155/2015/543492.
Article
Google Scholar
Striem-Amit, E., Cohen, L., Dehaene, S., & Amedi, A. (2012). Reading with sounds: sensory substitution selectively activates the visual word form area in the blind. Neuron, 76(3), 640–652. https://doi.org/10.1016/J.NEURON.2012.08.026.
Article
PubMed
Google Scholar
Stronks, H. C., Mitchell, E. B., Nau, A. C., & Barnes, N. (2016). Visual task performance in the blind with the BrainPort V100 Vision Aid. Expert Review of Medical Devices, 13(10), 919–931. https://doi.org/10.1080/17434440.2016.1237287.
Article
PubMed
Google Scholar
Talsma, D., Senkowski, D., Soto-Faraco, S., & Woldorff, M. G. (2010). The multifaceted interplay between attention and multisensory integration. Trends in Cognitive Sciences, 14(9), 400–410. https://doi.org/10.1016/J.TICS.2010.06.008.
Article
PubMed
PubMed Central
Google Scholar
van Erp, J. B. F., Van Veen, H. A. H. C., Jansen, C., & Dobbins, T. (2005). Waypoint navigation with a vibrotactile waist belt. ACM Transactions on Applied Perception, 2(2), 106–117. https://doi.org/10.1145/1060581.1060585.
Article
Google Scholar
Visell, Y. (2009). Tactile sensory substitution: models for enaction in HCI. Interacting with Computers, 21(1–2), 38–53. https://doi.org/10.1016/j.intcom.2008.08.004.
Article
Google Scholar
Ward, J., & Meijer, P. (2010). Visual experiences in the blind induced by an auditory sensory substitution device. Consciousness and Cognition, 19(1), 492–500. https://doi.org/10.1016/J.CONCOG.2009.10.006.
Article
PubMed
Google Scholar
Wicab. (2019). Wicab, Inc. BrainPort Technologies. United States. https://www.wicab.com/wicab-inc. Accessed 11 Nov 2019.
White, B. W., Saunders, F. A., Scadden, L., Bach-Y-Rita, P., & Collins, C. C. (1970). Seeing with the skin. Perception & Psychophysics, 7(1), 23–27. https://doi.org/10.3758/BF03210126.
Article
Google Scholar
Woods, A. T., Spence, C., Butcher, N., & Deroy, O. (2013). Fast lemons and sour boulders: testing crossmodal correspondences using an internet-based testing methodology. I-Perception, 4(6), 365–379. https://doi.org/10.1068/i0586.
Article
PubMed
PubMed Central
Google Scholar
Zelek, J. S., Bromley, S., Asmar, D., & Thompson, D. (2003). A haptic glove as a tactile-vision sensory substitution for wayfinding. Journal of Visual Impairment & Blindness, 97(10), 621–632. https://doi.org/10.1177/0145482X0309701007.
Article
Google Scholar