Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Proc. 2nd Int. Symp. Information Theory (eds B. N. Petrov and F. Csáki ), pp. 267–281. Budapest: Akadémiai Kiadó.
Alvarez, G. A. (2011). Representing multiple objects as an ensemble enhances visual cognition. Trends in Cognitive Sciences, 15(3), 122–131.
Article
PubMed
Google Scholar
Baillargeon, R. (1987). Young infants’ reasoning about the physical and spatial properties of a hidden object. Cognitive Development, 2(3), 179–200.
Article
Google Scholar
Balota, D. A., Yap, M. J., Hutchison, K. A., Cortese, M. J., Kessler, B., Loftis, B., … Treiman, R. (2007). The English lexicon project. Behavior Research Methods, 39(3), 445–459.
Article
PubMed
Google Scholar
Baron-Cohen, S., Wheelwright, S., Spong, A., Scahill, V., & Lawson, J. (2001). Are intuitive physics and intuitive psychology independent? A test with children with Asperger Syndrome. Journal of Developmental and Learning Disorders, 5(1), 47–78.
Google Scholar
Bates, C., Battaglia, P., Yildirim, I., & Tenenbaum, J. B. (2015). Humans predict liquid dynamics using probabilistic simulation. In Proceedings of the 37th Annual Conference of the Cognitive Science Society.
Google Scholar
Battaglia, P. W., Hamrick, J. B., & Tenenbaum, J. B. (2013). Simulation as an engine of physical scene understanding. Proceedings of the National Academy of Sciences, 110(45), 18327–18332.
Article
Google Scholar
Berg, C., Hertzog, C., & Hunt, E. (1982). Age differences in the speed of mental rotation. Developmental Psychology, 18(1), 95–107. https://doi.org/10.1037/0012-1649.18.1.95.
Article
Google Scholar
Blacker, K. J., Negoita, S., Ewen, J. B., & Courtney, S. M. (2017). N-back versus complex span working memory training. Journal of Cognitive Enhancement, 1(4), 434–454.
Article
PubMed
PubMed Central
Google Scholar
Caramazza, A., McCloskey, M., & Green, B. (1981). Naive beliefs in “sophisticated” subjects: misconceptions about trajectories of objects. Cognition, 9(2), 117–123.
Article
PubMed
Google Scholar
Chein, J. M., & Morrison, A. B. (2010). Expanding the mind’s workspace: training and transfer effects with a complex working memory span task. Psychonomic Bulletin & Review, 17(2), 193–199.
Article
Google Scholar
Chen, Y.-C., & Scholl, B. J. (2016). The perception of history: seeing causal history in static shapes induces illusory motion perception. Psychological Science, 27(6), 923–930.
Article
PubMed
Google Scholar
Conway, A. R., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7(12), 547–552.
Article
PubMed
Google Scholar
Davis, E., & Marcus, G. (2016). The scope and limits of simulation in automated reasoning. Artificial Intelligence, 233, 60–72.
Article
Google Scholar
Ekstrom, R. B., Dermen, D., & Harman, H. H. (1976). Manual for kit of factor-referenced cognitive tests (Vol. 102). Princeton: Educational testing service.
Google Scholar
Ernst, M. D. (2004). Permutation methods: a basis for exact inference. Statistical Science, 19(4), 676–685.
Article
Google Scholar
Firestone, C., & Scholl, B. (2017). Seeing physics in the blink of an eye. Journal of Vision, 17(10), 203–203.
Article
Google Scholar
Fischer, J. (2020). Naive physics: building a mental model of how the world behaves. In M. Gazzaniga, G. R. Mangun, & D. Poeppel (Eds.). The Cognitive Neurosciences (VI). MIT Press.
Fischer, J., Mikhael, J. G., Tenenbaum, J. B., & Kanwisher, N. (2016). Functional neuroanatomy of intuitive physical inference. Proceedings of the National Academy of Sciences, 113(34), E5072–E5081.
Article
Google Scholar
Fischer, J., Spotswood, N., & Whitney, D. (2011). The emergence of perceived position in the visual system. Journal of Cognitive Neuroscience, 23(1), 119–136.
Article
PubMed
PubMed Central
Google Scholar
Flynn, S. B. (1994). The perception of relative mass in physical collisions. Ecological Psychology, 6(3), 185–204.
Article
Google Scholar
Gerstenberg, T., Goodman, N. D., Lagnado, D. A., & Tenenbaum, J. B. (2015). How, whether, why: causal judgments as counterfactual contrasts. CogSci.
Google Scholar
Gerstenberg, T., Peterson, M. F., Goodman, N. D., Lagnado, D. A., & Tenenbaum, J. B. (2017). Eye-tracking causality. Psychological Science, 28(12), 1731–1744.
Article
PubMed
Google Scholar
Gerstenberg, T., Siegel, M. H., & Tenenbaum, J. (2018). What happened? Reconstructing the past through vision and sound. CogSci.
Google Scholar
Gilden, D. L., & Proffitt, D. R. (1989). Understanding collision dynamics. Journal of Experimental Psychology: Human Perception and Performance, 15(2), 372–383.
PubMed
Google Scholar
Gilden, D. L., & Proffitt, D. R. (1994). Heuristic judgment of mass ratio in two-body collisions. Perception & Psychophysics, 56(6), 708–720.
Article
Google Scholar
Haberman, J., & Whitney, D. (2012). Ensemble perception: summarizing the scene and broadening the limits of visual processing. In From Perception to Consciousness: Searching with Anne Treisman, (pp. 339–349).
Chapter
Google Scholar
Hamrick, J. B., Battaglia, P. W., Griffiths, T. L., & Tenenbaum, J. B. (2016). Inferring mass in complex scenes by mental simulation. Cognition, 157, 61–76.
Article
PubMed
Google Scholar
Hegarty, M., & Sims, V. K. (1994). Individual differences in mental animation during mechanical reasoning. Memory & Cognition, 22(4), 411–430. https://doi.org/10.3758/BF03200867.
Article
Google Scholar
Hegarty, M., & Waller, D. (2005). Individual differences in spatial abilities. In The Cambridge Handbook of Visuospatial Thinking, (pp. 121–169).
Chapter
Google Scholar
Indovina, I., Maffei, V., Bosco, G., Zago, M., Macaluso, E., & Lacquaniti, F. (2005). Representation of visual gravitational motion in the human vestibular cortex. Science, 308(5720), 416–419.
Article
PubMed
Google Scholar
Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: individual differences in working memory. Psychological Review, 99(1), 122.
Article
PubMed
Google Scholar
Kaiser, M. K., Jonides, J., & Alexander, J. (1986). Intuitive reasoning about abstract and familiar physics problems. Memory & Cognition, 14(4), 308–312.
Article
Google Scholar
Kamps, F. S., Julian, J. B., Battaglia, P., Landau, B., Kanwisher, N., & Dilks, D. D. (2017). Dissociating intuitive physics from intuitive psychology: evidence from Williams syndrome. Cognition, 168, 146–153.
Article
PubMed
PubMed Central
Google Scholar
Kontra, C., Lyons, D. J., Fischer, S. M., & Beilock, S. L. (2015). Physical experience enhances science learning. Psychological Science, 26(6), 737–749.
Article
PubMed
Google Scholar
Kubricht, J. R., Holyoak, K. J., & Lu, H. (2017). Intuitive physics: current research and controversies. Trends in Cognitive Sciences, 21(10), 749–759.
Article
PubMed
Google Scholar
Leyton, M. (1989). Inferring causal history from shape. Cognitive Science, 13(3), 357–387.
Google Scholar
Ludwin-Peery, E., Bramley, N. R., Davis, E., & Gureckis, T. M. (2019). Limits on the use of simulation in physical reasoning. PsyArXiv,
https://doi.org/10.31234/osf.io/qbrvn.
Maus, G. W., Fischer, J., & Whitney, D. (2013). Motion-dependent representation of space in area MT+. Neuron, 78(3), 554–562.
Article
PubMed
PubMed Central
Google Scholar
McCloskey, M. (1983). Intuitive physics. Scientific American, 248(4), 122–131.
Article
Google Scholar
McCloskey, M., Caramazza, A., & Green, B. (1980). Curvilinear motion in the absence of external forces: naive beliefs about the motion of objects. Science, 210(4474), 1139–1141.
Article
PubMed
Google Scholar
Murray, S. O., Boyaci, H., & Kersten, D. (2006). The representation of perceived angular size in human primary visual cortex. Nature Neuroscience, 9(3), 429–434.
Article
PubMed
Google Scholar
Peters, M., Laeng, B., Latham, K., Jackson, M., Zaiyouna, R., & Richardson, C. (1995). A redrawn Vandenberg and Kuse mental rotations test-different versions and factors that affect performance. Brain and Cognition, 28(1), 39–58.
Article
PubMed
Google Scholar
Rakison, D. H., & Krogh, L. (2012). Does causal action facilitate causal perception in infants younger than 6 months of age? Developmental Science, 15(1), 43–53.
Article
PubMed
Google Scholar
Richter, W., Somorjai, R., Summers, R., Jarmasz, M., Menon, R. S., Gati, J. S., … Kim, S.-G. (2000). Motor area activity during mental rotation studied by time-resolved single-trial fMRI. Journal of Cognitive Neuroscience, 12(2), 310–320.
Article
PubMed
Google Scholar
Sanborn, A. N., Mansinghka, V. K., & Griffiths, T. L. (2013). Reconciling intuitive physics and Newtonian mechanics for colliding objects. Psychological Review, 120(2), 411–437.
Article
PubMed
Google Scholar
Saxe, R. & Baron-Cohen, S. (2006). The neuroscience of theory of mind. Social Neuroscience, 1, 1–9.
Schwartz, D. L., & Black, T. (1999). Inferences through imagined actions: knowing by simulated doing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(1), 116–136.
Google Scholar
Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701–703.
Article
PubMed
Google Scholar
Smith, K., Battaglia, P., & Vul, E. (2013). Consistent physics underlying ballistic motion prediction. Proceedings of the. In 35th Conference of the Cognitive Science Society, (pp. 3426–3431).
Google Scholar
Smith, K. A., Battaglia, P. W., & Vul, E. (2018). different physical intuitions exist between tasks, not domains. Computational Brain & Behavior, 1–18. https://doi.org/10.1007/s42113-018-0007-3.
Article
Google Scholar
Smith, K. A., & Vul, E. (2013). Sources of uncertainty in intuitive physics. Topics in Cognitive Science, 5(1), 185–199.
Article
PubMed
Google Scholar
Spröte, P., Schmidt, F., & Fleming, R. W. (2016). Visual perception of shape altered by inferred causal history. Scientific Reports, 6, 36245.
Article
PubMed
PubMed Central
Google Scholar
Ullman, T. D., Spelke, E., Battaglia, P., & Tenenbaum, J. B. (2017). Mind games: game engines as an architecture for intuitive physics. Trends in Cognitive Sciences, 21(9), 649–665.
Article
PubMed
Google Scholar
Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: a meta-analysis of training studies. Psychological Bulletin, 139(2), 352.
Article
PubMed
Google Scholar
Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47(2), 599–604.
Article
PubMed
Google Scholar
Vingerhoets, G., De Lange, F. P., Vandemaele, P., Deblaere, K., & Achten, E. (2002). Motor imagery in mental rotation: an fMRI study. Neuroimage, 17(3), 1623–1633.
Article
PubMed
Google Scholar
Wright, R., Thompson, W. L., Ganis, G., Newcombe, N. S., & Kosslyn, S. M. (2008). Training generalized spatial skills. Psychonomic Bulletin & Review, 15(4), 763–771.
Article
Google Scholar
Wu, J., Yildirim, I., Lim, J. J., Freeman, B., & Tenenbaum, J. (2015). Galileo: perceiving physical object properties by integrating a physics engine with deep learning. In Advances in Neural Information Processing Systems, (pp. 127–135).
Google Scholar
Yılmaz, H. B. (2017). On the development and measurement of spatial ability. International Electronic Journal of Elementary Education, 1(2), 83–96.
Google Scholar
Zago, M., & Lacquaniti, F. (2005). Visual perception and interception of falling objects: a review of evidence for an internal model of gravity. Journal of Neural Engineering, 2(3), S198.
Article
PubMed
Google Scholar