Aginsky, V., Harris, C., Rensink, R., & Beusmans, J. (1997). Two strategies for learning a route in a driving simulator. Journal of Environmental Psychology, 17(4), 317–331. https://doi.org/10.1006/jevp.1997.0070.
Article
Google Scholar
Barba, E., & Marroquin, R. Z. (2017). A Primer on Spatial Scale and Its Application to Mixed Reality. In W. Broll, H. Regenbrecht, & J. E. Swan (Eds.), Proceedings of the 2017 IEEE International Symposium on Mixed and Augmented Reality: Proceedings, (pp. 100–110). Los Alamitos, Washington, Tokyo: Conference Publishing Services, IEEE Computer Society. https://doi.org/10.1109/ISMAR.2017.27.
Chapter
Google Scholar
Barra, J., Laou, L., Poline, J.-B., Lebihan, D., & Berthoz, A. (2012). Does an oblique/slanted perspective during virtual navigation engage both egocentric and allocentric brain strategies? PLoS One, 7(11), e49537. https://doi.org/10.1371/journal.pone.0049537.
Article
PubMed
PubMed Central
Google Scholar
Baumann, O., & Mattingley, J. B. (2013). Dissociable representations of environmental size and complexity in the human hippocampus. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(25), 10526–10533. https://doi.org/10.1523/JNEUROSCI.0350-13.2013.
Article
Google Scholar
Belingard, L., & Péruch, P. (2000). Mental Representation and the Spatial Structure of Virtual Environments. Environment and Behavior, 32(3), 427–442. https://doi.org/10.1177/00139160021972603.
Article
Google Scholar
Bell, S. (2002). Spatial Cognition and Scale: A Child's Perspective. Journal of Environmental Psychology, 22(1–2), 9–27. https://doi.org/10.1006/jevp.2002.0250.
Article
Google Scholar
Bhandari, J., MacNeilage, P., & Folmer, E. (2018). Teleportation without Spatial Disorientation Using Optical Flow Cues. In C. Batty & D. Reilly (Eds.),Proceedings of Graphics Interface 2018. Toronto: Canadian Human-Computer Communications Society / Société canadienne dudialogue humain-machine. pp. 153–158.https://doi.org/10.20380/GI2018.22.
Carassa, A., Geminiani, G. C., Morganti, F., & Varotto, D. (2002). Active and passive spatial learning in a complex virtual environment: The effect of efficient exploration. Cognitive Processing, 3(4), 65–81.
Google Scholar
Chakraborty, S., & Wong, S. W. K. (2017). BAMBI: An R package for Fitting Bivariate Angular Mixture Models. Retrieved from https://arxiv.org/abs/1708.07804
Google Scholar
Chuderski, A. (2016). Time pressure prevents relational learning. Learning and Individual Differences, 49, 361–365. https://doi.org/10.1016/j.lindif.2016.07.006.
Article
Google Scholar
Clark, A. (1989). Microcognition: Philosophy, cognitive science, and parallel distributed processing. Cambridge: MIT Press.
Google Scholar
Cohen, G. (1996). Memory for places: Routes, maps, and object locations. In G. Cohen (Ed.), Memory in the real world. Milton Keynes: Psychology Press.
Google Scholar
Colle, H. A., & Reid, G. B. (1998). The Room Effect: Metric Spatial Knowledge of Local and Separated Regions. Presence: Teleoperators and Virtual Environments, 7(2), 116–128. https://doi.org/10.1162/105474698565622.
Article
Google Scholar
Cooper, G. (1998). Research into Cognitive Load Theory and Instructional Design at UNSW. Retrieved from http://dwb4.unl.edu/Diss/Cooper/UNSW.htm
Google Scholar
Devlin, A. L., & Wilson, P. H. (2010). Adult age differences in the ability to mentally transform object and body stimuli. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 17(6), 709–729. https://doi.org/10.1080/13825585.2010.510554.
Article
PubMed
Google Scholar
Evans, G. W., & Pezdek, K. (1980). Cognitive mapping: Knowledge of real-world distance and location information. Journal of Experimental Psychology: Human Learning and Memory, 6(1), 13–24. https://doi.org/10.1037/0278-7393.6.1.13.
Article
Google Scholar
Freksa, C., & Barkowsky, T. (1996). On the Relation between Spatial Concepts and Geographic Objects. In M. Ridland (Ed.), Geographic Objects with Indeterminate Boundaries: By Peter A Burrough, Andrew U Frank (Eds), (pp. 109–121).
Google Scholar
Goeke, C., Kornpetpanee, S., Köster, M., Fernández-Revelles, A. B., Gramann, K., & König, P. (2015). Cultural background shapes spatial reference frame proclivity. Scientific Reports, 5, 11426. https://doi.org/10.1038/srep11426.
Article
PubMed
PubMed Central
Google Scholar
Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research, (vol. 52, pp. 139–183). https://doi.org/10.1016/S0166-4115(08)62386-9.
Book
Google Scholar
He, Q., McNamara, T. P., & Brown, T. I. (2019). Manipulating the visibility of barriers to improve spatial navigation efficiency and cognitive mapping. Scientific Reports, 9(1), 11567. https://doi.org/10.1038/s41598-019-48098-0.
Article
PubMed
PubMed Central
Google Scholar
Hegarty, M. (2002). Development of a self-report measure of environmental spatial ability. Intelligence, 30(5), 425–447. https://doi.org/10.1016/S0160-2896(02)00116-2.
Article
Google Scholar
Hegarty, M., Montello, D. R., Richardson, A. E., Ishikawa, T., & Lovelace, K. (2006). Spatial abilities at different scales: Individual differences in aptitude-test performance and spatial-layout learning. Intelligence, 34(2), 151–176. https://doi.org/10.1016/j.intell.2005.09.005.
Article
Google Scholar
Höffler, T. N., & Leutner, D. (2011). The role of spatial ability in learning from instructional animations – Evidence for an ability-as-compensator hypothesis. Computers in Human Behavior, 27(1), 209–216. https://doi.org/10.1016/j.chb.2010.07.042.
Article
Google Scholar
Huk, T. (2006). Who benefits from learning with 3D models? The case of spatial ability. Journal of Computer Assisted Learning, 22(6), 392–404. https://doi.org/10.1111/j.1365-2729.2006.00180.x.
Article
Google Scholar
Jamieson, M., Cullen, B., McGee-Lennon, M., Brewster, S., & Evans, J. J. (2014). The efficacy of cognitive prosthetic technology for people with memory impairments: a systematic review and meta-analysis. Neuropsychological Rehabilitation, 24(3–4), 419–444. https://doi.org/10.1080/09602011.2013.825632.
Article
PubMed
Google Scholar
Lam, N. S.-N., & Quattrochi, D. A. (1992). On the Issues of Scale, Resolution, and Fractal Analysis in the Mapping Sciences. The Professional Geographer, 44(1), 88–98. https://doi.org/10.1111/j.0033-0124.1992.00088.x.
Article
Google Scholar
Lan, Y.-J., Fang, S.-Y., Legault, J., & Li, P. (2015). Second language acquisition of Mandarin Chinese vocabulary: Context of learning effects. Educational Technology Research and Development, 63(5), 671–690. https://doi.org/10.1007/s11423-015-9380-y.
Article
Google Scholar
Lee, E. A.-L., & Wong, K. W. (2014). Learning with desktop virtual reality: Low spatial ability learners are more positively affected. Computers & Education, 79, 49–58. https://doi.org/10.1016/j.compedu.2014.07.010.
Article
Google Scholar
Lenth, R. (2019). Emmeans package: Estimated Marginal Means, aka Least-Squares Means.
Google Scholar
Lokka, I. E., & Çöltekin, A. (2020). Perspective switch and spatial knowledge acquisition: Effects of age, mental rotation ability and visuospatial memory capacity on route learning in virtual environments with different levels of realism. Cartography and Geographic Information Science, 47(1), 14–27. https://doi.org/10.1080/15230406.2019.1595151.
Article
Google Scholar
Mark, D. M., Freksa, C., Hirtle, S. C., Lloyd, R., & Tversky, B. (1999). Cognitive models of geographical space. International Journal of Geographical Information Science, 13(8), 747–774. https://doi.org/10.1080/136588199241003.
Article
Google Scholar
Mayer, R. E. (2001). Multimedia Learning. Cambridge: Cambridge University Press.
Book
Google Scholar
Mayer, R. E., & Sims, V. K. (1994). For whom is a picture worth a thousand words? Extensions of a dual-coding theory of multimedia learning. Journal of Educational Psychology, 86(3), 389–401. https://doi.org/10.1037/0022-0663.86.3.389.
Article
Google Scholar
Meilinger, T., Henson, A., Rebane, J., Bülthoff, H. H., & Mallot, H. A. (2018). Humans Construct Survey Estimates on the Fly from a Compartmentalised Representation of the Navigated Environment. In S. Creem-Regehr, J. Schöning, & A. Klippel (Eds.), LNCS sublibrary. SL 7, Artificial intelligence, Spatial cognition XI: 11th International Conference, Spatial Cognition 2018, Tübingen, Germany, September 5–8, 2018, Proceedings / Sarah Creem-Regehr, Johannes Schöning, Alexander Klippel (eds.), (vol. 11034). Cham: Springer. https://doi.org/10.1007/978-3-319-96385-3_2.
Chapter
Google Scholar
Miller, S. (2001). LITERATURE REVIEW Workload Measures. Iowa City: National Advanced Driving Simulator.
Google Scholar
Montello, D. R. (1993). Scale and multiple psychologies of space. In A. U. Frank, & I. Campari (Eds.), Lecture Notes in Computer Science, Spatial information theory: A theoretical basis for GIS: European conference, COSIT'93, Marciana Marina, Elba Island, Italy, September 19-22, 1993: proceedings, (vol. 716, pp. 312–321). Berlin, New York: Springer-Verlag. https://doi.org/10.1007/3-540-57207-4_21.
Chapter
Google Scholar
Nazareth, A., Newcombe, N. S., Shipley, T., Velazquez, M., & Weisberg, S. M. (2019). Beyond small-scale spatial skills: Navigation skills and geoscience education. Cognitive Research: Principles and Implications, 4(1), 1–17. https://doi.org/10.1186/s41235-019-0185-0.
Article
Google Scholar
Newcombe, N. S. (2018). Three Kinds of Spatial Cognition. In J. T. Wixted (Ed.), Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience, (pp. 521–552). Hoboken: John Wiley & Sons, Inc.. https://doi.org/10.1002/9781119170174.epcn315.
Chapter
Google Scholar
Norman, D. A. (1993). Things That Make Us Smart: Defending Human Attributes in the Age of the Machine. New York: Addison-Wesley.
Google Scholar
Piller, M. J. (2006). Acquisition of Route and Survey Spatial Knowledge in Transparent and Opaque Virtual Environments: Effects of Goals, Alignment and Secondary Tasks (Dissertation). Washington, D.C: The Catholic Universty of America.
Google Scholar
Piller, M. J., & Sebrechts, M. M. (2003). Spatial Learning in Transparent Virtual Environments. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 47(20), 2133–2136. https://doi.org/10.1177/154193120304702012.
Article
Google Scholar
Raubal, M., Worboys, M. (1999). A Formal Model of the Process of Wayfinding in Built Environments. In C. Freksa & D. M. Mark: Vol. 1661. Lecture notes in computer science, 0302–9743, Spatial information theory: Cognitive and computational foundations of geographic information science: international conference COSIT ‘99 Stade, Germany, August 25–29, 1999, proceedings / Christian Freksa, David M. Mark (eds.) (381–399). Berlin, London: Springer. doi: https://doi.org/10.1007/3-540-48384-5_25
Restat, J. D., Steck, S. D., Mochnatzki, H. F., & Mallot, H. A. (2004). Geographical slant facilitates navigation and orientation in virtual environments. Perception, 33(6), 667–687. https://doi.org/10.1068/p5030.
Article
PubMed
Google Scholar
Ruddle, R. A. (2013). The Effect of Translational and Rotational Body-Based Information on Navigation. In F. Steinicke, Y. Visell, J. Campos, & A. Lécuyer (Eds.), Human Walking in Virtual Environments: Perception, Technology, and Applications, (pp. 99–112). New York: Springer. https://doi.org/10.1007/978-1-4419-8432-6_5.
Chapter
Google Scholar
Salomon, G. (1979). Interaction of media, cognition, and learning: An Exploration of How Symbolic Forms Cultivate Mental Skills and Affect Knowledge Acquisitio, (1st ed., ). Hillsdale, Hove: L. Erlbaum Associates.
Google Scholar
Sayre, N. F. (2005). Ecological and geographical scale: Parallels and potential for integration. Progress in Human Geography, 29(3), 276–290. https://doi.org/10.1191/0309132505ph546oa.
Article
Google Scholar
Shelton, A. L., & McNamara, T. P. (2004). Orientation and perspective dependence in route and survey learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 30(1), 158–170. https://doi.org/10.1037/0278-7393.30.1.158.
Article
PubMed
Google Scholar
Shelton, A. L., & Pippitt, H. A. (2007). Fixed versus dynamic orientations in environmental learning from ground-level and aerial perspectives. Psychological Research, 71(3), 333–346. https://doi.org/10.1007/s00426-006-0088-9.
Article
PubMed
Google Scholar
Simon, H. A. (1956). Rational choice and the structure of the environment. Psychological Review, 63(2), 129–138. https://doi.org/10.1037/h0042769.
Article
PubMed
Google Scholar
Snyder, J. P. (1998). Flattening the earth: Two thousand years of map projections, (Paperback ed., ). Chicago: University of Chicago Press.
Google Scholar
Thorndyke, P. W., & Hayes-Roth, B. (1982). Differences in spatial knowledge acquired from maps and navigation. Cognitive Psychology, 14(4), 560–589. https://doi.org/10.1016/0010-0285(82)90019-6.
Article
PubMed
Google Scholar
Török, A., Nguyen, T. P., Kolozsvári, O., Buchanan, R. J., & Nadasdy, Z. (2014). Reference frames in virtual spatial navigation are viewpoint dependent. Frontiers in Human Neuroscience, 8(646), 1–10. https://doi.org/10.3389/fnhum.2014.00646.
Article
Google Scholar
Tversky, B. (1993). Cognitive maps, cognitive collages, and spatial mental models. In A. U. Frank, & I. Campari (Eds.), Lecture Notes in Computer Science, Spatial information theory: A theoretical basis for GIS: European conference, COSIT'93, Marciana Marina, Elba Island, Italy, September 19-22, 1993: proceedings, (vol. 716, pp. 14–24). Berlin: Springer-Verlag.
Google Scholar
Weisberg, S. M., & Newcombe, N. S. (2016). How do (some) people make a cognitive map? Routes, places, and working memory. Journal of Experimental Psychology. Learning, Memory, and Cognition, 42(5), 768–785. https://doi.org/10.1037/xlm0000200.
Article
PubMed
Google Scholar
Weißker, T., Kunert, A., Frohlich, B., & Kulik, A. (2018). Spatial Updating and Simulator Sickness During Steering and Jumping in Immersive Virtual Environments. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), (pp. 97–104). https://doi.org/10.1109/VR.2018.8446620.
Chapter
Google Scholar
Wilkening, J., & Fabrikant, S. I. (2011). How Do Decision Time and Realism Affect Map-Based Decision Making? In M. J. Egenhofer (Ed.), LNCS sublibrary. SL 1, Theoretical computer science and general issues, Spatial information theory: 10th International Conference, COSIT 2011, Belfast, ME, USA, September 12-16 2011: proceedings / Max Egenhofer … [et al.] (eds.), (vol. 6899, pp. 1–19). Heidelberg: Springer. https://doi.org/10.1007/978-3-642-23196-4_1.
Chapter
Google Scholar
Yamamoto, N., & Degirolamo, G. J. (2012). Differential effects of aging on spatial learning through exploratory navigation and map reading. Frontiers in Aging Neuroscience, 4(14), 14. https://doi.org/10.3389/fnagi.2012.00014.
Article
PubMed
PubMed Central
Google Scholar
Zhao, J., & Klippel, A. (2019). Scale - Unexplored Opportunities for Immersive Technologies in Place-based Learning. In R. Teather, Y. Itoh, & J. Gabbard(Eds.), Proceedings of the 26th IEEE Conference on Virtual Reality and 3D User Interfaces (pp. 155–162). Piscataway: IEEE. https://doi.org/10.1109/VR.2019.8797867.