Allen, G. L., Kirasic, K. C., Dobson, S. H., Long, R. G., & Beck, S. (1996). Predicting environmental learning from spatial abilities: An indirect route. Intelligence, 22(3), 327–355. https://doi.org/10.1016/S0160-2896(96)90026-4.
Article
Google Scholar
Alles, M., & Riggs, E. M. (2011). Developing a process model for visual penetrative ability. Geological Society of America Special Papers, 474, 63–80.
Article
Google Scholar
Atit, K., Gagnier, K., & Shipley, T. F. (2015). Student gestures aid penetrative thinking. Journal of Geoscience Education, 63(1), 66–72. https://doi.org/10.5408/14-008.1.
Article
Google Scholar
Atit, K., Shipley, T. F., & Tikoff, B. (2013). Twisting space: Are rigid and non-rigid mental transformations separate spatial skills? Cognitive Processing, 14(2), 163–173. https://doi.org/10.1007/s10339-013-0550-8.
Article
PubMed
Google Scholar
Atit, K., Shipley, T. F., & Tikoff, B. (2014). What do a geologist’s hands tell you? A framework for classifying spatial gestures in science education. In D. Montello, K. Grossner, & D. Janelle (Eds.), Space in mind: Concepts for spatial learning and education, (p. 173). Cambridge: MIT Press.
Google Scholar
Atit, K., Weisberg, S. M., Newcombe, N. S., & Shipley, T. F. (2016). Learning to interpret topographic maps: Understanding layered spatial information. Cognitive Research: Principles and Implications, 1(1), 2. https://doi.org/10.1186/s41235-016-0002-y.
Article
Google Scholar
Barrett, L. F., Lindquist, K. A., & Gendron, M. (2007). Language as context for the perception of emotion. Trends in Cognitive Sciences, 11(8), 327–332. https://doi.org/10.1016/j.tics.2007.06.003.
Article
PubMed
PubMed Central
Google Scholar
Bennett, G. K., Seashore, H. G., & Wesman, A. G. (1947). Differential aptitude tests. https://psycnet.apa.org/fulltext/1948-02421-000.pdf.
Google Scholar
Bethell-Fox, C. E., & Shepard, R. N. (1988). Mental rotation: Effects of stimulus complexity and familiarity. Journal of Experimental Psychology. Human Perception and Performance, 14(1), 12–23. https://doi.org/10.1037/0096-1523.14.1.12.
Article
Google Scholar
Caplan, P. J., MacPherson, G. M., & Tobin, P. (1985). Do sex-related differences in spatial abilities exist? A multilevel critique with new data. The American Psychologist, 40(7), 786–799. https://doi.org/10.1037/0003-066X.40.7.786.
Article
PubMed
Google Scholar
Carbonell Carrera, C., & Saorín Pérez, J. L. (2011). Engineers’ spatial orientation ability development at the European Space for Higher Education. European Journal of Engineering Education, 36(5), 505–512. https://doi.org/10.1080/03043797.2011.602184.
Article
Google Scholar
Carbonell-Carrera, C., & Hess-Medler, S. (2017). Spatial orientation skill improvement with geospatial applications: Report of a multi-year study. ISPRS International Journal of Geo-Information, 6(9), 278. https://doi.org/10.3390/ijgi6090278.
Article
Google Scholar
Carroll, J. B. (1993). Human cognitive abilities: A urvey of factor-analytic studies. Cambridge: Cambridge University Press.
Book
Google Scholar
Chang, K.-T., Antes, J., & Lenzen, T. (1985). The effect of experience on reading topographic relief information: Analyses of performance and eye movements. The Cartographic Journal, 22(2), 88–94. https://doi.org/10.1179/caj.1985.22.2.88.
Article
Google Scholar
Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4(1), 55–81.
Article
Google Scholar
Cheng, M., & Gilbert, J. K. (2009). Towards a better utilization of diagrams in research into the use of representative levels in chemical education. In J. K. Gilbert, & D. Treagust (Eds.), Multiple representations in chemical education, (pp. 55–73). Dordrecht: Springer Netherlands.
Chapter
Google Scholar
Cheng, Y.-L., & Mix, K. S. (2014). Spatial training improves children’s mathematics ability. Journal of Cognition and Development, 15(1), 2–11. https://doi.org/10.1080/15248372.2012.725186.
Article
Google Scholar
Compton, R. R. (1985). Geology in the field. New York: Wiley.
Google Scholar
Corey, E. J., & Cheng, X.-M. (1996). The logic of chemical synthesis. Journal of the American Chemical Society, 118, 10678–10678. https://doi.org/10.1021/ja9654443.
Article
Google Scholar
Cox, J. W. (1928). Mechanical aptitude, its existence, nature, and measurement. London: Methuen.
Google Scholar
Coyan, J., Busch, M., & Reynolds, S. (2010). Using eye tracking to evaluate the effectiveness of signaling to promote disembedding of geologic features in photographs. In Spatial Cognition 2010: Doctoral Colloquium, (p. 15).
Google Scholar
Ekstrom, R. B., French, J. W., Harman, H., & Derman, D. (1976). Kit of factor-referenced cognitive tests (revised edition). Princeton: Educational Testing Service.
Google Scholar
Eley, M. G. (1981). Imagery processing in the verification of topographical cross-sections. Educational Psychology Review, 1(1), 39–48. https://doi.org/10.1080/0144341810010104.
Article
Google Scholar
Eley, M. G. (1983). Representing the cross-sectional shapes of contour-mapped landforms. Human Learning: Journal of Practical Research & Applications, 2(4), 279–294.
Google Scholar
Evans, G. W. (1980). Environmental cognition. Psychological Bulletin, 88(2), 259–287. https://doi.org/10.1037/0033-2909.88.2.259.
Article
Google Scholar
Eyal, R., & Tendick, F. (2001). Spatial ability and learning the use of an angled laparoscope in a virtual environment. Studies in Health Technology and Informatics, 81, 146–152.
PubMed
Google Scholar
Gagnier, K. M., & Shipley, T. F. (2016). Visual completion from 2D cross-sections: Implications for visual theory and STEM education and practice. Cognitive Research: Principles and Implications, 1(1), 9. https://doi.org/10.1186/s41235-016-0010-y.
Article
Google Scholar
Geographic Information Technology Training Alliance (2016). Topographic cartography. http://www.gitta.info/website/en/html/index.html.
Google Scholar
Gibbons, R. D., Baker, R. J., & Skinner, D. B. (1986). Field articulation testing: A predictor of technical skills in surgical residents. The Journal of Surgical Research, 41(1), 53–57. https://doi.org/10.1016/0022-4804(86)90008-9.
Article
PubMed
Google Scholar
Gilbert, J. K. (2005). Visualization: A metacognitive skill in science and science education. In J. K. Gilbert (Ed.), Visualization in science education, (pp. 9–27). Dordrecht: Springer Netherlands.
Chapter
Google Scholar
Gilbert, J. K., & Treagust, D. (2009). Multiple representations in chemical education. In J. K. Gilbert, & D. Treagust (Eds.). Dordrecht: Springer.
Chapter
Google Scholar
Gilligan, K., Hodgkiss, A., Thomas, M., & Farran, E. (2017). The role of spatial skills in mathematics cognition: Evidence from children aged 5–10 years. Proceedings of Annual Meeting of the Cognitive Science Society (CogSci 2017). http://epubs.surrey.ac.uk/850194/.
Google Scholar
Gobet, F., & Simon, H. A. (1998). Expert chess memory: Revisiting the chunking hypothesis. Memory, 6, 225–255. https://doi.org/10.1080/741942359.
Article
PubMed
Google Scholar
Goldstone, R. L., & Barsalou, L. W. (1998). Reuniting perception and conception. Cognition, 65(2–3), 231–262. https://doi.org/10.1016/S0010-0277(97)00047-4.
Article
PubMed
Google Scholar
Goodwin, W. M. (2008). Structural formulas and explanation in organic chemistry. Foundations of Chemistry, 10(2), 117–127. https://doi.org/10.1007/s10698-007-9033-2.
Article
Google Scholar
Graham, M. J., Frederick, J., Byars-Winston, A., Hunter, A.-B., & Handelsman, J. (2013). Increasing Persistence of College Students in STEM. Science, 341(6153), 1455–1456.
Article
PubMed
Google Scholar
Guay, R. B. (1977). Purdue spatial visualization test-visualization of rotations. W. Lafayette, IN: Purdue Research Foundation.
Google Scholar
Habraken, C. L. (1996) Perceptions of chemistry: Why is the common perception of chemistry, the most visual of sciences, so distorted? Journal of Science Education and Technology, 5(3), 193–201.
Article
Google Scholar
Hambrick, D. Z., Libarkin, J. C., Petcovic, H. L., Baker, K. M., Elkins, J., Callahan, C. N., … Ladue, N. D. (2012). A test of the circumvention-of-limits hypothesis in scientific problem solving: The case of geological bedrock mapping. Journal of Experimental Psychology General, 141(3), 397–403. https://doi.org/10.1037/a0025927.
Article
PubMed
Google Scholar
Harle, M., & Towns, M. (2011). A review of spatial ability literature, its connection to chemistry, and implications for instruction. Journal of Chemical Education, 88(3), 351–360. https://doi.org/10.1021/ed900003n.
Article
Google Scholar
Hayden, K., Ouyang, Y., Scinski, L., Olszewski, B., & Bielefeldt, T. (2011). Increasing student interest and attitudes in STEM: Professional development and activities to engage and inspire learners. Contemporary Issues in Technology and Teacher Education, 11(1), 47–69.
Google Scholar
Hegarty, M., Crookes, R. D., Dara-Abrams, D., & Shipley, T. F. (2010). Do all science disciplines rely on spatial abilities? Preliminary evidence from self-report questionnaires. In Spatial Cognition VII, Lecture Notes in Computer Science, 6222, (pp. 85–94). Berlin: Springer.
Google Scholar
Hegarty, M., Keehner, M., Cohen, C., Montello, D. R., & Lippa, Y. (2007). The role of spatial cognition in medicine: Applications for selecting and training professionals. In G. Allen (Ed.), Applied spatial cognition: From research to cognitive technology, (pp. 285–315). Hillsdale: Lawrence Erlbaum.
Google Scholar
Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32(2), 175–191. https://doi.org/10.1016/j.intell.2003.12.001.
Article
Google Scholar
Held, R. T., & Hui, T. T. (2011). A guide to stereoscopic 3D displays in medicine. Academic Radiology, 18(8), 1035–1048. https://doi.org/10.1016/j.acra.2011.04.005.
Article
PubMed
Google Scholar
Hemler, D., & Repine, T. (2006). Teachers doing science: An authentic geology research experience for teachers. Journal of Geoscience Education, 54(2), 93–102. https://doi.org/10.5408/1089-9995-54.2.93.
Article
Google Scholar
Hickson, T. (2005). Sedimentology and stratigraphy. In Goals database
https://serc.carleton.edu/NAGTWorkshops/coursedesign/goalsdb/1396.html.
Google Scholar
Holden, M. P., Curby, K. M., Newcombe, N. S., & Shipley, T. F. (2010). A category adjustment approach to memory for spatial location in natural scenes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(3), 590–604. https://doi.org/10.1037/a0019293.
Article
PubMed
Google Scholar
Holden, M. P., Newcombe, N. S., Resnick, I., & Shipley, T. F. (2016). Seeing like a geologist: Bayesian use of expert categories in location memory. Cognitive Science, 40(2), 440–454. https://doi.org/10.1111/cogs.12229.
Article
PubMed
Google Scholar
Huttenlocher, J., Hedges, L. V., & Duncan, S. (1991). Categories and particulars: Prototype effects in estimating spatial location. Psychological Review, 98(3), 352–376. https://doi.org/10.1037/0033-295x.98.3.352.
Article
PubMed
Google Scholar
Ishikawa, T., & Kastens, K. A. (2005). Why some students have trouble with maps and other spatial representations. Journal of Geoscience Education, 53(2), 184–197. https://doi.org/10.5408/1089-9995-53.2.184.
Article
Google Scholar
Johnstone, A. H. (1982). Macro and microchemistry. The School Science Review, 64(227), 377–379.
Google Scholar
Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning, 7(2), 75–83. https://doi.org/10.1111/j.1365-2729.1991.tb00230.x.
Article
Google Scholar
Kali, Y., & Orion, N. (1996). Spatial abilities of high-school students in the perception of geologic structures. Journal of Research in Science Teaching, 33(4), 369–391.
Article
Google Scholar
Kastens, K. A., Manduca, C. A., Cervato, C., Frodeman, R., Goodwin, C., Liben, L. S., … Titus, S. (2009). How geoscientists think and learn. Eos, Transactions American Geophysical Union, 90(31), 265–266. https://doi.org/10.1029/2009EO310001.
Kastens, K. A., Shipley, T. F., Boone, A. P., & Straccia, F. (2016). What geoscience experts and novices look at, and what they see, when viewing data visualizations. Journal of Astronomy & Earth Sciences Education, 3(1), 27–58.
Google Scholar
Keehner, M. M., Tendick, F., Meng, M. V., Anwar, H. P., Hegarty, M., Stoller, M. L., & Duh, Q.-Y. (2004). Spatial ability, experience, and skill in laparoscopic surgery. American Journal of Surgery, 188(1), 71–75. https://doi.org/10.1016/j.amjsurg.2003.12.059.
Article
PubMed
Google Scholar
Keig, P. F., & Rubba, P. A. (1993). Translation of representations of the structure of matter and its relationship to reasoning, gender, spatial reasoning, and specific prior knowledge. Journal of Research in Science Teaching, 30(8), 883–903. https://doi.org/10.1002/tea.3660300807.
Article
Google Scholar
Kelly, J. W., McNamara, T. P., Bodenheimer, B., Carr, T. H., & Rieser, J. J. (2008). The shape of human navigation: How environmental geometry is used in maintenance of spatial orientation. Cognition, 109(2), 281–286. https://doi.org/10.1016/j.cognition.2008.09.001.
Article
PubMed
PubMed Central
Google Scholar
Kozhevnikov, M., & Hegarty, M. (2001). A dissociation between object manipulation spatial ability and spatial orientation ability. Memory & Cognition, 29(5), 745–756. https://doi.org/10.3758/bf03200477.
Article
Google Scholar
Kozhevnikov, M., Hegarty, M., & Mayer, R. (2002). Spatial abilities in problem solving in kinematics. In M. Anderson, B. Meyer, & P. Olivier (Eds.), Diagrammatic representation and reasoning, (pp. 155–171). London: Springer.
Chapter
Google Scholar
Kozma, R., Chin, E., Russell, J., & Marx, N. (2000). The roles of representations and tools in the chemistry laboratory and their implications for chemistry learning. Journal of the Learning Sciences, 9(2), 105–143. https://doi.org/10.1207/s15327809jls0902_1.
Article
Google Scholar
Liben, L. S. (1991). The Piagetian water-level task: Looking beneath the surface. In R. Vasta (Ed.), Annals of child development, (vol. 8, pp. 81–143). London: Jessica Kingsley.
Google Scholar
Liben, L. S., Kastens, K. A., & Christensen, A. E. (2011). Spatial foundations of science education: The illustrative case of instruction on introductory geological concepts. Cognition and Instruction, 29(1), 45–87. https://doi.org/10.1080/07370008.2010.533596.
Article
Google Scholar
Liben, L. S., & Titus, S. J. (2012). The importance of spatial thinking for geoscience education: Insights from the crossroads of geoscience and cognitive science. In K. A. Kastens, & C. A. Manduca (Eds.), Earth and mind II: A synthesis of research on thinking and learning in the geosciences: Geological Society of America special paper, (vol. 486, pp. 51–70). Boulder: Geological Society of America.
Google Scholar
Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56(6), 1479–1498.
Article
PubMed
Google Scholar
Lohman, D. F. (1988). Spatial abilities as traits, processes, and knowledge. In R. J. Sternberg (Ed.), Advances in the Psychology of Human Intelligence, (vol. 4, pp. 181–248). Mahwah: Lawrence Erlbaum.
Google Scholar
Lombardi, C. M., Casey, B. M., Pezaris, E., Shadmehr, M., & Jong, M. (2019). Longitudinal analysis of associations between 3-D mental rotation and mathematics reasoning skills during middle school: across and within genders. Journal of Cognition and Development, 20(4), 487–509. https://doi.org/10.1080/15248372.2019.1614592.
Article
Google Scholar
Loomis, J. M., Klatzky, R. L., & Lederman, S. J. (1991). Similarity of tactual and visual picture recognition with limited field of view. Perception, 20(2), 167–177. https://doi.org/10.1068/p200167.
Article
PubMed
Google Scholar
Lowrie, T., & Logan, T. (2018). The interaction between spatial reasoning constructs and mathematics understandings in elementary classrooms. In K. S. Mix, & M. T. Battista (Eds.), Visualizing mathematics: The role of spatial reasoning in mathematical thought, (pp. 253–276). Cham: Springer International. https://doi.org/10.1007/978-3-319-98767-5_12.
Chapter
Google Scholar
Lowrie, T., Logan, T., & Ramful, A. (2016). Spatial reasoning influences students’ performance on mathematics tasks. In White, B., Chinnappan, M., & Trenholm, S. (Eds.). Opening Up Mathematics Education Research, Proceedings of the 39th Annual Conference of the Mathematics Education Research Group of Australasia, (pp. 407-414). Adelaide: MERGA. https://eric.ed.gov/?id=ED572328.
Manduca, C. A., & Kastens, K. A. (2012). Geoscience and geoscientists: Uniquely equipped to study Earth. Geological Society of America Special Papers, 486, 1–12.
Google Scholar
McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological Bulletin, 86(5), 889–918.
Article
PubMed
Google Scholar
McNamara, T. P., & Diwadkar, V. A. (1997). Symmetry and asymmetry of human spatial memory. Cognitive Psychology, 34(2), 160–190. https://doi.org/10.1006/cogp.1997.0669.
Article
PubMed
Google Scholar
Melby-Lervåg, M., Redick, T. S., & Hulme, C. (2016). Working memory training does not improve performance on measures of intelligence or other measures of “far transfer.”. Perspectives on Psychological Science, 11, 512–534. https://doi.org/10.1177/1745691616635612.
Article
PubMed
PubMed Central
Google Scholar
Miller, D. I., & Halpern, D. F. (2013). Can spatial training improve long-term outcomes for gifted STEM undergraduates? Learning and Individual Differences. https://www.sciencedirect.com/science/article/pii/S1041608012000386.
Mogk, D. W., & Goodwin, C. (2012). Learning in the field: Synthesis of research on thinking and learning in the geosciences. Geological Society of America Special Papers, 486(0), 131–163.
Google Scholar
Moran, J., & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science, 229(4715), 782–784. https://doi.org/10.1126/science.4023713.
Article
PubMed
Google Scholar
National Park Service (2019). Geoscience concepts – Geology.
https://www.nps.gov/subjects/geology/geology-concepts.htm. Accessed 7 Aug 2019.
Google Scholar
National Research Council (2006). Learning to think spatially. Washington, DC: National Academies Press.
Google Scholar
National Research Council (2012a). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.
Google Scholar
National Research Council (2012b). Discipline-based education research: Understanding and improving learning in undergraduate science and engineering. Washington, DC: National Academies Press.
Google Scholar
National Science Foundation. (2018). National Science Board: Science & engineering indicators 2018. https://www.nsf.gov/statistics/2018/nsb20181/. Accessed 16 Sep 2019.
Google Scholar
Nazareth, A., Newcombe, N. S., Shipley, T. F., Velazquez, M., & Weisberg, S. M. (2019). Beyond small-scale spatial skills: Navigation skills and geoscience education. Cognitive Research: Principles and Implications, 4(1), 17. https://doi.org/10.1186/s41235-019-0167-2.
Article
Google Scholar
Newcombe, N., Huttenlocher, J., Sandberg, E., Lie, E., & Johnson, S. (1999). What do misestimations and asymmetries in spatial judgement indicate about spatial representation? Journal of Experimental Psychology. Learning, Memory, and Cognition, 25(4), 986–996. https://doi.org/10.1037/0278-7393.25.4.986.
Article
Google Scholar
Newcombe, N. S., & Shipley, T. F. (2015). Thinking about spatial thinking: New typology, new Assessments. In J. Gero (Ed.), Studying visual and spatial reasoning for design creativity, (pp. 179–192). Dordrecht: Springer Netherlands.
Google Scholar
Oltman, P. K., Raskin, E., Witkin, H. A., et al. (1971). Group embedded figures test. Palo Alto: Consulting Psychologists Press.
Google Scholar
Ormand, C. J., Manduca, C., Shipley, T. F., Tikoff, B., Harwood, C. L., Atit, K., & Boone, A. P. (2014). Evaluating geoscience students’ spatial thinking skills in a multi-institutional classroom study. Journal of Geoscience Education, 62(1), 146–154. https://doi.org/10.5408/13-027.1.
Article
Google Scholar
Ormand, C. J., Shipley, T. F., Tikoff, B., Dutrow, B., Goodwin, L. B., Hickson, T., … Resnick, I. (2017). The Spatial Thinking Workbook: A research-validated spatial skills curriculum for geology majors. Journal of Geoscience Education, 65(4), 423–434. https://doi.org/10.5408/16-210.1.
Padalkar, S., & Hegarty, M. (2015). Models as feedback: Developing representational competence in chemistry. Journal of Educational Psychology, 107(2), 451–467.
Article
Google Scholar
Paterson, D. G., Elliot, R. M., Anderson, L. D., Toops, H. A., & Heidbreder, E. (1930). Minnesota mechanical ability tests: The report of a research investigation subsidized by the Committee on Human Migrations of the National Research Council and conducted in the Department of Psychology of the University of Minnesota. Minneapolis: University of Minnesota Press.
Google Scholar
Petcovic, H. L., & Libarkin, J. C. (2007). Research in science education: The expert-novice continuum. Journal of Geoscience Education, 55(4), 333–339. https://doi.org/10.1080/10899995.2007.12028060.
Article
Google Scholar
Petcovic, H. L., Ormand, C. J., & Krantz, B. (2016). Earth, mind, and paper: Field sketches as expert representations of the Hat Creek fault zone. http://archives.datapages.com/data/specpubs/memoir111/data/173_aapg-sp2000173.htm.
Book
Google Scholar
Petcovic, H. L., Stokes, A., & Caulkins, J. L. (2014). Geoscientists’ perceptions of the value of undergraduate field education. GSA Today, 24(7), 4–10.
Article
Google Scholar
Piaget, J., & Inhelder, B. (1956). The child’s conception of space. London: Routledge & Kegan Paul.
Google Scholar
Piburn, M. D., Reynolds, S. J., Leedy, D. E., McAuliffe, C. M., Birk, J. P., & Johnson, J. K. (2002). The hidden earth: Visualization of geologic features and their subsurface geometry. In Annual Meeting of the National Association for Research in Science Teaching, New Orleans, (pp. 1–4).
Google Scholar
Rebelsky, F. (1964). Adult perception of the horizontal. Perceptual and Motor Skills, 19, 371–374. https://doi.org/10.2466/pms.1964.19.2.371.
Article
PubMed
Google Scholar
Redick, T. S., Shipstead, Z., Harrison, T. L., Hicks, K. L., Fried, D. E., Hambrick, D. Z., … Engle, R. W. (2013). No evidence of intelligence improvement after working memory training: A randomized, placebo-controlled study. Journal of Experimental Psychology: General, 142(2), 359–379. https://doi.org/10.1037/a0029082.
Article
Google Scholar
Resnick, I., & Shipley, T. F. (2013). Breaking new ground in the mind: An initial study of mental brittle transformation and mental rigid rotation in science experts, Cognitive Processing, 14, 143–152. https://doi.org/10.1007/s10339-013-0548-2.
Reynolds, S. J. (2012). Some important aspects of spatial cognition in field geology. Earth & Mind II: Synthesis of Research on Thinking and Learning in the Geosciences. Geological Society of America Special Publication, 486, 75–78.
Google Scholar
Reynolds, S. J., Johnson, J. K., Piburn, M. D., Leedy, D. E., Coyan, J. A., & Busch, M. M. (2005). Visualization in undergraduate geology courses. In J. K. Gilbert (Ed.), Visualization in science education, (pp. 253–266). Dordrecht: Springer Netherlands.
Chapter
Google Scholar
Risucci, D., Geiss, A., Gellman, L., Pinard, B., & Rosser, J. (2001). Surgeon-specific factors in the acquisition of laparoscopic surgical skills. American Journal of Surgery, 181(4), 289–293. https://doi.org/10.1016/s0002-9610(01)00574-8.
Article
PubMed
Google Scholar
Risucci, D. A. (2002). Visual spatial perception and surgical competence. The American Journal of Surgery, 184, 291–295. https://doi.org/10.1016/s0002-9610(02)00937-6.
Article
PubMed
Google Scholar
Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology, 93(3), 604–614. https://doi.org/10.1037/0022-0663.93.3.604.
Article
Google Scholar
Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701–703. https://doi.org/10.1126/science.171.3972.701.
Article
PubMed
Google Scholar
Shipley, T. F., & Tikoff, B. (2016). Linking cognitive science and disciplinary geoscience practice: The importance of the conceptual model. http://archives.datapages.com/data/specpubs/memoir111/data/219_aapg-sp2000219.htm.
Book
Google Scholar
Sorby, S., Veurink, N., & Streiner, S. (2018). Does spatial skills instruction improve STEM outcomes? The answer is “yes.”. Learning and Individual Differences, 67, 209–222.
Article
Google Scholar
Sorby, S. A. (2007). Developing 3D spatial skills for engineering students. Australasian Journal of Engineering Education, 13(1), 1–11. https://doi.org/10.1080/22054952.2007.11463998.
Article
Google Scholar
Stieff, M. (2004). A localized model of spatial cognition in chemistry (Doctor of Philosophy, Northwestern University). https://www.researchgate.net/profile/Mike_Stieff/publication/36195953_A_localized_model_of_spatial_cognition_in_chemistry/links/554bb4c70cf29f836c98a58d/A-localized-model-of-spatial-cognition-in-chemistry.pdf.
Google Scholar
Stieff, M. (2007). Mental rotation and diagrammatic reasoning in science. Learning and Instruction, 17(2), 219–234. https://doi.org/10.1016/j.learninstruc.2007.01.012.
Article
Google Scholar
Stieff, M. (2011). Improving representational competence using molecular simulations embedded in inquiry activities. Journal of Research in Science Teaching, 48(10), 1137–1158. https://doi.org/10.1002/tea.20438.
Article
Google Scholar
Stieff, M., Dixon, B. L., Ryu, M., Kumi, B. C., & Hegarty, M. (2014). Strategy training eliminates sex differences in spatial problem solving in a stem domain. Journal of Educational Psychology, 106(2), 390–402. https://doi.org/10.1037/a0034823.
Article
Google Scholar
Stieff, M., Lira, M. E., & Scopelitis, S. A. (2016). Gesture supports spatial thinking in STEM. Cognition and Instruction, 34(2), 80–99. https://doi.org/10.1080/07370008.2016.1145122.
Article
Google Scholar
Stieff, M., Origenes, A., DeSutter, D., Lira, M., Banevicius, L., Tabang, D., & Cabel, G. (2018). Operational constraints on the mental rotation of STEM representations. Journal of Educational Psychology, 110, 1160–1174. https://doi.org/10.1037/edu0000258.
Article
Google Scholar
Stieff, M., & Raje, S. (2010). Expert algorithmic and imagistic problem solving strategies in advanced chemistry. Spatial Cognition and Computation, 10(1), 53–81. https://doi.org/10.1080/13875860903453332.
Article
Google Scholar
Stieff, M., & Uttal, D. (2015). How much can spatial training improve STEM achievement? Educational Psychology Review, 27(4), 607–615. https://doi.org/10.1007/s10648-015-9304-8.
Article
Google Scholar
Stull, A. T., & Hegarty, M. (2016). Model manipulation and learning: Fostering representational competence with virtual and concrete models. Journal of Educational Psychology, 108(4), 509–527 https://psycnet.apa.org/record/2015-46256-001.
Article
Google Scholar
Stull, A. T., Hegarty, M., Dixon, B., & Stieff, M. (2012). Representational translation with concrete models in organic chemistry. Cognition and Instruction, 30(4), 404–434. https://doi.org/10.1080/07370008.2012.719956.
Article
Google Scholar
Tarampi, M. R., Atit, K., Petcovic, H. L., Shipley, T. F., & Hegarty, M. (2016). Spatial skills in expert structural geologists. http://archives.datapages.com/data/specpubs/memoir111/data/65_aapg-sp2000065.htm.
Book
Google Scholar
Tartre, L. A. (1990). Spatial orientation skill and mathematical problem solving. Journal for Research in Mathematics Education, 21(3), 216–229. https://doi.org/10.2307/749375.
Article
Google Scholar
Tendick, F., Downes, M., Goktekin, T., Cavusoglu, M. C., Feygin, D., Wu, X., … Way, L. W. (2000). A virtual environment testbed for training laparoscopic surgical skills. Presence: Teleoperators and Virtual Environments, 9(3), 236–255. https://doi.org/10.1162/105474600566772.
Article
Google Scholar
Tewksbury, B. (2019). Structural Geology and Tectonics. Courses. https://serc.carleton.edu/teachearth/courses/231338.html.
Google Scholar
Thomas, H., Jamison, W., & Hummel, D. D. (1973). Observation Is Insufficient for Discovering that the Surface of Still Water Is Invariantly Horizontal. Science, 181(4095), 173–174.
Article
PubMed
Google Scholar
Thurstone, L. L., & Thurstone, T. G. (1941). Factorial studies of intelligence. Psychometric Monographs, (vol. 2). Chicago: University of Chicago.
Google Scholar
Treagust, D. F., & Chittleborough, G. D. (2001). Chemistry: A matter of understanding representations. In C. Gail, & J. Brophy (Eds.), Subject-specific instructional methods and activities, (vol. 8, pp. 239–267). Bingley: Emerald Group Publishing.
Chapter
Google Scholar
Tversky, B. (1981). Distortions in memory for maps. Cognitive Psychology, 13(3), 407–433. https://doi.org/10.1016/0010-0285(81)90016-5.
Article
Google Scholar
Uttal, D. H., & Cohen, C. A. (2012). Spatial thinking and STEM education: When, why, and how? In Psychology of learning and motivation, (vol. 57, pp. 147–181). Amsterdam: Elsevier.
Chapter
Google Scholar
Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47(2), 599–604. https://doi.org/10.2466/pms.1978.47.2.599.
Article
PubMed
Google Scholar
Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817–835. https://doi.org/10.1037/a0016127.
Article
Google Scholar
Wanzel, K. R., Hamstra, S. J., Anastakis, D. J., Matsumoto, E. D., & Cusimano, M. D. (2002). Effect of visual-spatial ability on learning of spatially-complex surgical skills. The Lancet, 359(9302), 230–231. https://doi.org/10.1016/S0140-6736(02)07441-X.
Article
Google Scholar
Weisberg, S. M., & Newcombe, N. S. (2016). How do (some) people make a cognitive map? Routes, places, and working memory. Journal of Experimental Psychology. Learning, Memory, and Cognition, 42(5), 768–785. https://doi.org/10.1037/xlm0000200.
Article
PubMed
Google Scholar
Weisberg, S. M., Schinazi, V. R., Newcombe, N. S., Shipley, T. F., & Epstein, R. A. (2014). Variations in cognitive maps: Understanding individual differences in navigation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(3), 669–682. https://doi.org/10.1037/a0035261.
Article
PubMed
Google Scholar
Witkin, H. A., Dyk, R. B., Fattuson, H. F., Goodenough, D. R., & Karp, S. A. (1962). Psychological differentiation: Studies of development, (p. 418). New York: Wiley https://psycnet.apa.org/fulltext/1963-00819-000.pdf.
Book
Google Scholar
Wu, B., Klatzky, R. L., & Stetten, G. (2010). Visualizing 3D objects from 2D cross sectional images displayed in-situ versus ex-situ. Journal of Experimental Psychology: Applied, 16(1), 45–59. https://doi.org/10.1037/a0018373.
Article
PubMed
Google Scholar
Wu, H.-K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science Education, 88(3), 465–492. https://doi.org/10.1002/sce.10126.
Article
Google Scholar