Alexander, R. G., & Zelinsky, G. J. (2011). Visual similarity effects in categorical search. Journal of Vision, 11(8), 1–15. https://doi.org/10.1167/11.8.9.
Article
Google Scholar
Andrews, S., Jenkins, R., Cursiter, H., & Burton, A. M. (2015). Telling faces together: learning new faces through exposure to multiple instances. The Quarterly Journal of Experimental Psychology, 68(10), 2041–2050. https://doi.org/10.1080/17470218.2014.1003949.
Article
PubMed
Google Scholar
Baker, K. A., Laurence, S., & Mondloch, C. J. (2017). How does a newly encountered face become familiar? The effect of within-person variability on adults’ and children’s perception of identity. Cognition, 161, 19–30.
Article
Google Scholar
Bennetts, R. J., Butcher, N., Lander, K., Udale, R., & Bate, S. (2015). Movement cues aid face recognition in developmental prosopagnosia. Neuropsychology, 29(6), 855–860. https://doi.org/10.1037/neu0000187.
Article
PubMed
Google Scholar
Bindemann, M., & Sandford, A. (2011). Me, myself, and I: different recognition rates for three photo-IDs of the same person. Perception, 40(5), 625–627. https://doi.org/10.1068/p7008.
Article
PubMed
Google Scholar
Bornstein, B. H., Deffenbacher, K. A., Penrod, S. D., & McGorty, E. K. (2012). Effects of exposure time and cognitive operations on facial identification accuracy: a meta-analysis of two variables associated with initial memory strength. Psychology, Crime & Law, 18(5), 473–490.
Article
Google Scholar
Bruce, V., Henderson, Z., Greenwood, K., Hancock, P. J. B., Burton, A. M., & Miller, P. (1999). Verification of face identities from images captured on video. Journal of Experimental Psychology: Applied, 5(4), 339–360.
Google Scholar
Bruce, V., Henderson, Z., Newman, C., & Burton, A. M. (2001). Matching identities of familiar and unfamiliar faces caught on CCTV images. Journal of Experimental Psychology: Applied, 7(3), 207–218. https://doi.org/10.1037//1076-898X.7.3.207.
Article
PubMed
Google Scholar
Burton, A. M., Jenkins, R., Hancock, P. J. B., & White, D. (2005). Robust representations for face recognition: the power of averages. Cognitive Psychology, 51(3), 256–284. https://doi.org/10.1016/j.cogpsych.2005.06.003.
Article
PubMed
Google Scholar
Burton, A. M., Jenkins, R., & Schweinberger, S. R. (2011). Mental representations of familiar faces. British Journal of Psychology, 102(4), 943–958. https://doi.org/10.1111/j.2044-8295.2011.02039.x.
Article
PubMed
Google Scholar
Burton, A. M., Kramer, R. S., Ritchie, K. L., & Jenkins, R. (2016). Identity from variation: representations of faces derived from multiple instances. Cognitive Science, 40(1), 202–223. https://doi.org/10.1111/cogs.12231.
Article
PubMed
Google Scholar
Burton, A. M., White, D., & McNeill, A. (2010). The Glasgow face matching test. Behavior Research Methods, 42(1), 286–291. https://doi.org/10.3758/BRM.42.1.286.
Article
PubMed
Google Scholar
Burton, A. M., Wilson, S., Cowan, M., & Bruce, V. (1999). Face recognition in poor-quality video: evidence from security surveillance. Psychological Science, 10(3), 243–248. https://doi.org/10.1111/1467-9280.00144.
Article
Google Scholar
Butcher, N., & Lander, K. (2017). Exploring the motion advantage: evaluating the contribution of familiarity and differences in facial motion. The Quarterly Journal of Experimental Psychology, 70(5), 919–929. https://doi.org/10.1080/17470218.2016.1138974.
Article
PubMed
Google Scholar
Butcher, N., Lander, K., Fang, H., & Costen, N. (2011). The effect of motion at encoding and retrieval for same-and other-race face recognition. British Journal of Psychology, 102(4), 931–942. https://doi.org/10.1111/j.2044-8295.2011.02060.x.
Article
PubMed
Google Scholar
Christie, F., & Bruce, V. (1998). The role of dynamic information in the recognition of unfamiliar faces. Memory & Cognition, 26(4), 780–790. https://doi.org/10.3758/BF03211397.
Article
Google Scholar
Clark, K., Cain, M., & Mitroff, S. R. (2015). Perception and human information processing in visual search. In R. R. Hoffman, P. A. Hancock, M. W. Scerbo, R. Parasuraman, & J. L. Szalma (Eds.), The Cambridge handbook of applied perception research, (pp. 199–217). Cambridge University Press Available from: http://eprints.uwe.ac.uk/32658.
Cohen, N., Gattuso, J., & MacLennan-Brown, K. (2009). CCTV operational requirements manual 2009. Home Office Scientific Developement Branch.
Cousineau, D. (2005). Confidence intervals in within-subject designs: a simpler solution to Loftus and Masson’s method. Tutorials in Quantitative Methods for Psychology, 1(1), 42–45.
Article
Google Scholar
Darling, S., Valentine, T., & Memon, A. (2008). Selection of lineup foils in operational contexts. Applied Cognitive Psychology, 22(2), 159–169. https://doi.org/10.1002/acp.1366.
Article
Google Scholar
Davis, J. P., & Valentine, T. (2009). CCTV on trial: Matching video images with the defendant in the dock. Applied Cognitive Psychology, 23, 482–505. https://doi.org/10.1002/acp.1490.
Article
Google Scholar
Dowsett, A. J., Sandford, A., & Burton, A. M. (2016). Face learning with multiple images leads to fast acquisition of familiarity for specific individuals. Quarterly Journal of Experimental Psychology, 69(1), 1–10. https://doi.org/10.1080/17470218.2015.1017513.
Article
Google Scholar
Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433–458.
Article
Google Scholar
Ellis, H. D., Shepherd, J. W., & Davies, G. M. (1975). An investigation of the use of the photo-fit technique for recalling faces. British Journal of Psychology, 66(1), 29–37. https://doi.org/10.1111/j.2044-8295.1975.tb01437.x.
Article
Google Scholar
Erdfelder, E., Faul, F., & Buchner, A. (1996). GPOWER: a general power analysis program. Behavior Research Methods, Instruments & Computers, 28, 1–11. https://doi.org/10.3758/BF03203630.
Article
Google Scholar
Farrington, D. P., Gill, M., Waples, S. J., & Argomaniz, J. (2007). The effects of closed-circuit television on crime: meta-analysis of an English national quasi multi-site evaluation. Journal of Experimental Criminology, 3(1), 21–38. https://doi.org/10.1007/s11292-007-9024-2.
Article
Google Scholar
Havard, C., Memon, A., Clifford, B., & Gabbert, F. (2010). A comparison of video and static photo lineups with child and adolescent witnesses. Applied Cognitive Psychology, 24(9), 1209–1221. https://doi.org/10.1002/acp.1645.
Article
Google Scholar
Henderson, Z., Bruce, V., & Burton, A. M. (2001). Matching the faces of robbers captured on video. Applied Cognitive Psychology, 15(4), 445–464. https://doi.org/10.1002/acp.718.
Article
Google Scholar
Jenkins, R., White, D., Van Montfort, X., & Mike Burton, A. (2011). Variability in photos of the same face. Cognition, 121(3), 313–323. https://doi.org/10.1016/j.cognition.2011.08.001.
Article
Google Scholar
Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773–795. https://doi.org/10.1080/01621459.1995.10476572.
Article
Google Scholar
Kemp, R., Towell, N., & Pike, G. (1997). When seeing should not be believing: photographs, credit cards and fraud. Applied Cognitive Psychology, 11(3), 211–222.
Article
Google Scholar
Kerr, N. L., & Tindale, R. S. (2004). Group performance and decision making. Annual Review of Psychology, 55(1), 623–655.
Article
Google Scholar
Keval, H., & Sasse, M. A. (2008). Can we ID from CCTV? Image quality in digital CCTV and face identification performance. In S. S. Agaian, & S. A. Jassim (Eds.), Mobile Multimedia/Image Processing, Security, and Applications, (vol. 6982, p. 69820K). https://doi.org/10.1117/12.774212.
Chapter
Google Scholar
Knight, B., & Johnston, A. (1997). The role of movement in face recognition. Visual Cognition, 4(3), 265–273. https://doi.org/10.1080/713756764.
Article
Google Scholar
Lander, K., & Bruce, V. (2000). Recognizing famous faces: exploring the benefits of facial motion. Ecological Psychology, 12(4), 259–272. https://doi.org/10.1207/S15326969ECO1204_01.
Article
Google Scholar
Lander, K., & Bruce, V. (2003). The role of motion in learning new faces. Visual Cognition, 10(8), 897–912. https://doi.org/10.1080/13506280344000149.
Article
Google Scholar
Lander, K., & Chuang, L. (2005). Why are moving faces easier to recognize? Visual Cognition, 12(3), 429–442. https://doi.org/10.1080/13506280444000382.
Article
Google Scholar
Lander, K., & Davies, R. (2007). Exploring the role of characteristic motion when learning new faces. Quarterly Journal of Experimental Psychology, 60(4), 519–526. https://doi.org/10.1080/17470210601117559.
Article
Google Scholar
Lander, K., Humphreys, G., & Bruce, V. (2004). Exploring the role of motion in prosopagnosia: Recognizing, learning and matching faces. Neurocase, 10(6), 462–470. https://doi.org/10.1080/13554790490900761.
Article
PubMed
Google Scholar
McCaffery, J. M., Robertson, D. J., Young, A. W., & Burton, A. M. (2018). Individual differences in face identity processing. Cognitive Research: Principles and Implications, 3(1), 21. https://doi.org/10.1186/s41235-018-0112-9.
Article
Google Scholar
Megreya, A. M., & Burton, A. M. (2006). Unfamiliar faces are not faces. Memory & Cognition, 34(4), 865–876. https://doi.org/10.3758/BF03193433.
Article
Google Scholar
Megreya, A. M., & Burton, A. M. (2008). Matching faces to photographs: poor performance in eyewitness memory (without the memory). Journal of Experimental Psychology: Applied, 14(4), 364–372. https://doi.org/10.1037/a0013464.
Article
PubMed
Google Scholar
Menneer, T., Cave, K. R., & Donnelly, N. (2009). The cost of search for multiple targets: effects of practice and target similarity. Journal of Experimental Psychology: Applied, 15(2), 125–139.
PubMed
Google Scholar
Menneer, T., Donnelly, N., Godwin, H. J., & Cave, K. R. (2010). High or low target prevalence increases the dual-target cost in visual search. Journal of Experimental Psychology: Applied, 16(2), 133–144. https://doi.org/10.1037/a0019569.
Article
PubMed
Google Scholar
Menon, N., White, D., & Kemp, R. I. (2015). Variation in photos of the same face drives improvements in identity verification. Perception, 44(11), 1332–1341. https://doi.org/10.1177/0301006615599902.
Article
PubMed
Google Scholar
Moore, R. M., & Johnston, R. A. (2013). Motivational incentives improve unfamiliar face matching accuracy. Applied Cognitive Psychology, 27(6), 754–760.
Article
Google Scholar
Muhl-Richardson, A., Godwin, H. J., Garner, M., Hadwin, J. A., Liversedge, S. P., & Donnelly, N. (2018). Individual differences in search and monitoring for color targets in dynamic visual displays. Journal of Experimental Psychology: Applied Advance online publication. https://doi.org/10.1037/xap0000155.
PubMed
Google Scholar
Murphy, J., Ipser, A., Gaigg, S. B., & Cook, R. (2015). Exemplar variance supports robust learning of facial identity. Journal of Experimental Psychology: Human Perception and Performance, 41(3), 577–581. https://doi.org/10.1037/xhp0000049.
Article
PubMed
Google Scholar
Pashler, H. (1987). Target-distractor discriminability in visual search. Perception & Psychophysics, 41(4), 285–292. https://doi.org/10.3758/BF03208228.
Article
Google Scholar
Peltier, C., & Becker, M. W. (2017). Individual differences predict low prevalence visual search performance. Cognitive Research: Principles and Implications, 2(1), 5. https://doi.org/10.1186/s41235-016-0042-3.
Article
Google Scholar
Phillips, P. J., Yates, A. N., Hu, Y., Hahn, C. A., Noyes, E., Jackson, K., … Chen, J. C. (2018). Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1721355115.
Article
Google Scholar
Pike, G. E., Kemp, R. I., Towell, N. A., & Phillips, K. C. (1997). Recognizing moving faces: the relative contribution of motion and perspective view information. Visual Cognition, 4(4), 409–438. https://doi.org/10.1080/713756769.
Article
Google Scholar
Pilz, K. S., Thornton, I. M., & Bülthoff, H. H. (2006). A search advantage for faces learned in motion. Experimental Brain Research, 171(4), 436–447. https://doi.org/10.1007/s00221-005-0283-8.
Article
PubMed
Google Scholar
Ritchie, K. L., & Burton, A. M. (2017). Learning faces from variability. The Quarterly Journal of Experimental Psychology, 70(5), 897–905. https://doi.org/10.1080/17470218.2015.1136656.
Article
PubMed
Google Scholar
Robertson, D. J., Noyes, E., Dowsett, A. J., Jenkins, R., & Burton, A. M. (2016). Face recognition by metropolitan police super-recognisers. PLoS One, 11(2), e0150036. https://doi.org/10.1371/journal.pone.0150036.
Article
PubMed
PubMed Central
Google Scholar
Schiff, W., Banka, L., & de Bordes Galdi, G. (1986). Recognizing people seen in events via dynamic “mug shots”. The American Journal of Psychology, 99(2), 219–231. https://doi.org/10.2307/1422276.
Article
PubMed
Google Scholar
Schwark, J., Sandry, J., & Dolgov, I. (2013). Evidence for a positive relationship between working-memory capacity and detection of low-prevalence targets in visual search. Perception, 42(1), 112–114. https://doi.org/10.1068/p7386.
Article
PubMed
Google Scholar
Seidl-Rathkopf, K. N., Turk-Browne, N. B., & Kastner, S. (2015). Automatic guidance of attention during real-world visual search. Attention, Perception, & Psychophysics, 77(6), 1881–1895. https://doi.org/10.3758/s13414-015-0903-8.
Article
Google Scholar
Shepherd, J. W., Ellis, H. D., & Davies, G. M. (1982). Identification evidence - a psychological evaluation. Aberdeen: Aberdeen University Press Ltd.
Google Scholar
Sobel, K. V., Gerrie, M. P., Poole, B. J., & Kane, M. J. (2007). Individual differences in working memory capacity and visual search: the roles of top-down and bottom-up processing. Psychonomic Bulletin & Review, 14(5), 840–845. https://doi.org/10.3758/BF03194109.
Article
Google Scholar
Strnad, B. N., & Mueller, J. H. (1977). Levels of processing in facial recognition memory. Bulletin of the Psychonomic Society, 9(1), 17–18.
Article
Google Scholar
Stroud, M. J., Menneer, T., Cave, K. R., & Donnelly, N. (2012). Using the dual-target cost to explore the nature of search target representations. Journal of Experimental Psychology: Human Perception and Performance, 38(1), 113–122. https://doi.org/10.1037/a0025887.
Article
PubMed
Google Scholar
Surowiecki, J. (2004). The wisdom of crowds. US: Random House.
Google Scholar
Surveillance Camera Code of Practice. (2013). Home Office. Retrieved from https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/282774/SurveillanceCameraCodePractice.pdf
Google Scholar
Thornton, I. M., & Kourtzi, Z. (2002). A matching advantage for dynamic human faces. Perception, 31(1), 113–132. https://doi.org/10.1068/p3300.
Article
PubMed
Google Scholar
Tipper, S. P., Driver, J., & Weaver, B. (1991). Object-centred inhibition of return of visual attention. The Quarterly Journal of Experimental Psychology Section A, 43(2), 289–298. https://doi.org/10.1080/14640749108400971.
Article
Google Scholar
Tipper, S. P., Jordan, H., & Weaver, B. (1999). Scene-based and object-centered inhibition of return: evidence for dual orienting mechanisms. Perception & Psychophysics, 61(1), 50–60. https://doi.org/10.3758/BF03211948.
Article
Google Scholar
Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136. https://doi.org/10.1016/0010-0285(80)90005-5.
Article
PubMed
Google Scholar
Verhallen, R. J., Bosten, J. M., Goodbourn, P. T., Lawrance-Owen, A. J., Bargary, G., & Mollon, J. D. (2017). General and specific factors in the processing of faces. Vision Research, 141, 217–227. https://doi.org/10.1016/j.visres.2016.12.014.
Article
PubMed
Google Scholar
Wagenmakers, E. J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14(5), 779–804. https://doi.org/10.3758/BF03194105.
Article
Google Scholar
Warm, J. S., Finomore, V. S., Vidulich, M. A., & Funke, M. E. (2015). Vigilance: a perceptual challenge. In R. R. Hoffman, P. A. Hancock, M. W. Scerbo, R. Parasurman, & J. L. Szlama (Eds.), The Cambridge Handbook of Applied Perception Research, (pp. 241–283). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511973017.018.
Chapter
Google Scholar
Wells, G. L. (1993). What do we know about eyewitness identification? American Psychologist, 48(5), 553–571. https://doi.org/10.1037/0003-066X.48.5.553.
Article
PubMed
Google Scholar
Wells, G. L., & Hryciw, B. (1984). Memory for faces: encoding and retrieval operations. Memory & Cognition, 12(4), 338–344.
Article
Google Scholar
Wells, G. L., & Olson, E. A. (2003). Eyewitness testimony. Annual Review of Psychology, 54(1), 277–295. https://doi.org/10.1146/annurev.psych.54.101601.145028.
Article
PubMed
Google Scholar
Welsh, B. C., & Farrington, D. P. (2009). Public area CCTV and crime prevention: an updated systematic review and meta-analysis. Justice Quarterly, 26(4), 716–745.
Article
Google Scholar
White, D., Burton, A. M., Jenkins, R., & Kemp, R. I. (2014). Redesigning photo-ID to improve unfamiliar face matching performance. Journal of Experimental Psychology: Applied, 20(2), 166–173. https://doi.org/10.1037/xap0000009.
Article
PubMed
Google Scholar
White, D., Burton, A. M., Kemp, R. I., & Jenkins, R. (2013). Crowd effects in unfamiliar face matching. Applied Cognitive Psychology, 27(6), 769–777.
Article
Google Scholar
Wilmer, J. B. (2017). Individual differences in face recognition: a decade of discovery. Current Directions in Psychological Science, 26(3), 225–230. https://doi.org/10.1177/0963721417710693.
Article
Google Scholar
Wolfe, J. M., Alvarez, G. A., Rosenholtz, R., Kuzmova, Y. I., & Sherman, A. M. (2011). Visual search for arbitrary objects in real scenes. Attention, Perception, & Psychophysics, 73(6), 1650–1671. https://doi.org/10.3758/s13414-011-0153-3.
Article
Google Scholar
Wolfe, J. M., Horowitz, T. S., Van Wert, M. J., Kenner, N. M., Place, S. S., & Kibbi, N. (2007). Low target prevalence is a stubborn source of errors in visual search tasks. Journal of Experimental Psychology: General, 136(4), 623–638. https://doi.org/10.1037/0096-3445.136.4.623.
Article
Google Scholar
Young, A. W., & Burton, A. M. (2017a). Recognizing faces. Current Directions in Psychological Science, 26(3), 212–217. https://doi.org/10.1177/0963721416688114.
Article
Google Scholar
Young, A. W., & Burton, A. M. (2017b). Are we face experts? Trends in Cognitive Sciences, 22(2), 100–110. https://doi.org/10.1016/j.tics.2017.11.007.
Article
PubMed
Google Scholar
Yovel, G., Wilmer, J. B., & Duchaine, B. (2014). What can individual differences reveal about face processing? Frontiers in Human Neuroscience, 8, 562. https://doi.org/10.3389/fnhum.2014.00562.
Article
PubMed
PubMed Central
Google Scholar