Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450. https://doi.org/10.1146/annurev.neuro.28.061604.135709.
Article
PubMed
Google Scholar
Aston-Jones, & Waterhouse (2016). Locus coeruleus: From global projection system to adaptive regulation of behavior. Brain Research, 1645, 75–78. https://doi.org/10.1016/j.brainres.2016.03.001.
Article
PubMed
PubMed Central
Google Scholar
Baird, B., Smallwood, J., Mrazek, M. D., Kam, J. W. Y., Franklin, M. S., & Schooler, J. W. (2012). Inspired by distraction: Mind wandering facilitates creative incubation. Psychological Science, 23(10), 1117–1122. https://doi.org/10.1177/0956797612446024.
Article
PubMed
Google Scholar
Baldwin, C. L., Roberts, D. M., Barragan, D., Lee, J. D., Lerner, N., & Higgins, J. S. (2017). Detecting and quantifying mind wandering during simulated driving. Frontiers in Human Neuroscience, 11, 406. https://doi.org/10.3389/fnhum.2017.00406.
Article
PubMed
PubMed Central
Google Scholar
Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3). https://doi.org/10.1016/j.jml.2012.11.001.
Article
Google Scholar
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01.
Brysbaert, M., & Stevens, M. (2018). Power analysis and effect size in mixed effects models: a tutorial. Journal of Cognition, 1, 9(1). https://doi.org/10.5334/joc.10.
Burke, T. M., Scheer, F. A. J. L., Ronda, J. M., Czeisler, C. A., & Wright, K. P. J. (2015). Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions. Journal of Sleep Research, 24(4), 364–371. https://doi.org/10.1111/jsr.12291.
Article
PubMed
PubMed Central
Google Scholar
Callard, F., Smallwood, J., & Margulies, D. S. (2012). Default positions: how neuroscience’s historical legacy has hampered investigation of the resting mind. Frontiers in Psychology, 3, 321. https://doi.org/10.3389/fpsyg.2012.00321.
Article
PubMed
PubMed Central
Google Scholar
Carciofo, R., Du, F., Song, N., & Zhang, K. (2014). Chronotype and time-of-day correlates of mind wandering and related phenomena. Biological Rhythm Research, 45(1), 37–49. https://doi.org/10.1080/09291016.2013.790651.
Article
Google Scholar
Carrier, J., & Monk, T. H. (2000). Circadian rhythms of performance: New trends. Chronobiology International, 17(6), 719–732. https://doi.org/10.1081/CBI-100102108.
Article
PubMed
Google Scholar
Christoff, K., Irving, Z. C., Fox, K. C. R., Spreng, R. N., & Andrews-Hanna, J. R. (2016). Mind-wandering as spontaneous thought: a dynamic framework. Nature Reviews Neuroscience, 17, 718–731. https://doi.org/10.1038/nrn.2016.113.
Article
PubMed
Google Scholar
Christoff, K., Mills, C., Andrews-Hanna, J. R., Irving, Z. C., Thompson, E., Fox, K. C. R., & Kam, J. W. Y. (2018). Mind-wandering as a scientific concept: cutting through the definitional haze. Trends in Cognitive Sciences, 22(11), 957–959. https://doi.org/10.1016/j.tics.2018.07.004.
Article
PubMed
Google Scholar
Dane, E. (2011). Paying attention to mindfulness and its effects on task performance in the workplace. Journal of Management, 37(4), 997–1018. https://doi.org/10.1177/0149206310367948.
Article
Google Scholar
Dijksterhuis, A., & Meurs, T. (2006). Where creativity resides: The generative power of unconscious thought. Consciousness and Cognition, 15(1), 135–146. https://doi.org/10.1016/j.concog.2005.04.007.
Article
PubMed
Google Scholar
Dust, S. B. (2015). Mindfulness, flow, and mind wandering: The role of trait-based mindfulness in state-task alignment. Industrial and Organizational Psychology; Bowling Green, 8(4), 609–614. https://doi.org/10.1017/iop.2015.87.
Article
Google Scholar
Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. NeuroImage, 59(2), 1783–1794. https://doi.org/10.1016/j.neuroimage.2011.08.008.
Article
PubMed
Google Scholar
Ellamil, M., Fox, K. C. R., Dixon, M. L., Pritchard, S., Todd, R. M., Thompson, E., & Christoff, K. (2016). Dynamics of neural recruitment surrounding the spontaneous arising of thoughts in experienced mindfulness practitioners. NeuroImage, 136, 186–196. https://doi.org/10.1016/j.neuroimage.2016.04.034.
Article
PubMed
Google Scholar
Faber, M., Bixler, R., & D’Mello, S. K. (2018). An automated behavioral measure of mind wandering during computerized reading. Behavior Research Methods, 50(1), 134–150. https://doi.org/10.3758/s13428-017-0857-y.
Article
PubMed
Google Scholar
Fibiger, W., Singer, G., Miller, A. J., Armstrong, S., & Datar, M. (1984). Cortisol and catecholamines changes as functions of time-of-day and self-reported mood. Neuroscience & Biobehavioral Reviews, 8(4), 523–530. https://doi.org/10.1016/0149-7634(84)90009-5.
Article
Google Scholar
Fimm, B., & Blankenheim, A. (2016). Effect of sleep deprivation and low arousal on eye movements and spatial attention. Neuropsychologia, 92(Supplement C), 115–128. https://doi.org/10.1016/j.neuropsychologia.2016.03.021.
Article
PubMed
Google Scholar
Fimm, B., Brand, T., & Spijkers, W. (2016). Time-of-day variation of visuo-spatial attention. British Journal of Psychology, 107(2), 299–321. https://doi.org/10.1111/bjop.12143.
Article
PubMed
Google Scholar
Folkard, S., & Monk, T. H. (1987). The measurement of circadian rhythms in psychological functions. In L. E. Scheving, F. Halberg, & C. Ehret (Eds.), Chronobiotechnology and Chronobiological Engineering, (pp. 189–201). Dordrecht: Springer. https://doi.org/10.1007/978-94-009-3547-1_15.
Chapter
Google Scholar
Fox, K. C. R., Nijeboer, S., Solomonova, E., Domhoff, G. W., & Christoff, K. (2013). Dreaming as mind wandering: evidence from functional neuroimaging and first-person content reports. Frontiers in Human Neuroscience, 7, 412. https://doi.org/10.3389/fnhum.2013.00412.
Article
PubMed
PubMed Central
Google Scholar
Fox, K. C. R., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R., & Christoff, K. (2015). The wandering brain: Meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. NeuroImage, 111, 611–621. https://doi.org/10.1016/j.neuroimage.2015.02.039.
Article
PubMed
Google Scholar
Franklin, M. S., Mrazek, M. D., Anderson, C. L., Smallwood, J., Kingstone, A., & Schooler, J. W. (2013). The silver lining of a mind in the clouds: Interesting musings are associated with positive mood while mind-wandering. Frontiers in Psychology, 4, 583. https://doi.org/10.3389/fpsyg.2013.00583.
Article
PubMed
PubMed Central
Google Scholar
Franklin, M. S., Smallwood, J., & Schooler, J. W. (2011). Catching the mind in flight: Using behavioral indices to detect mindless reading in real time. Psychonomic Bulletin & Review, 18(5), 992–997. https://doi.org/10.3758/s13423-011-0109-6.
Article
Google Scholar
Franklin, M. S., Smallwood, J., Zedelius, C. M., Broadway, J. M., & Schooler, J. W. (2016). Unaware yet reliant on attention: Experience sampling reveals that mind-wandering impedes implicit learning. Psychonomic Bulletin & Review, 23(1), 223–229. https://doi.org/10.3758/s13423-015-0885-5.
Article
Google Scholar
Fuller-Tyszkiewicz, M., Hartley-Clark, L., Cummins, R. A., Tomyn, A. J., Weinberg, M. K., & Richardson, B. (2017). Using dynamic factor analysis to provide insights into data reliability in experience sampling studies. Psychological Assessment, 29(9), 1120–1128. https://doi.org/10.1037/pas0000411.
Article
PubMed
Google Scholar
Gabehart, R. J., & Dongen, H. P. A. V. (2017). Circadian rhythms in sleepiness, alertness, and performance. In Principles and Practice of Sleep Medicine, (6th ed., pp. 388–395.e5). Philadelphia: Elsevier https://www.clinicalkey.com/#!/content/book/3-s2.0-B9780323242882000374.
Chapter
Google Scholar
Galéra, C., Orriols, L., M’Bailara, K., Laborey, M., Contrand, B., Ribéreau-Gayon, R., … Lagarde, E. (2012). Mind wandering and driving: responsibility case-control study. BMJ, 345, e8105. https://doi.org/10.1136/bmj.e8105.
Article
PubMed
PubMed Central
Google Scholar
Giambra, L. M., Rosenberg, E. H., Kasper, S., Yee, W., & Sack, D. A. (1989). A circadian rhythm in the frequency of spontaneous task-tnrelated images and thoughts. Imagination, Cognition and Personality, 8(4), 309–314. https://doi.org/10.2190/1ECY-9JDW-MXNW-KMWC.
Article
Google Scholar
Gilzenrat, M. S., Nieuwenhuis, S., Jepma, M., & Cohen, J. D. (2010). Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cognitive, Affective, & Behavioral Neuroscience, 10(2), 252–269. https://doi.org/10.3758/CABN.10.2.252.
Article
Google Scholar
Goel, N., Basner, M., Rao, H., & Dinges, D. F. (2013). Circadian rhythms, sleep deprivation, and human performance. Progress in Molecular Biology and Translational Science, 119, 155–190. https://doi.org/10.1016/B978-0-12-396971-2.00007-5.
Article
PubMed
PubMed Central
Google Scholar
Green, P., & MacLeod, C. J. (2015). SIMR: an R package for power analysis of generalized linear mixed models by simulation. Methods in Ecology and Evolution, 7(4), 493–498. https://doi.org/10.1111/2041-210X.12504.
Article
Google Scholar
Hansen, Å. M., Garde, A. H., Skovgaard, L. T., & Christensen, J. M. (2001). Seasonal and biological variation of urinary epinephrine, norepinephrine, and cortisol in healthy women. Clinica Chimica Acta, 309(1), 25–35. https://doi.org/10.1016/S0009-8981(01)00493-4.
Article
Google Scholar
Hartmann, A., Zeeck, A., Herzog, W., Wild, B., de Zwaan, M., Herpertz, S., … Zipfel, S. (2016). The intersession process in psychotherapy for anorexia nervosa: Characteristics and relation to outcome. Journal of Clinical Psychology, 72(9), 861–879. https://doi.org/10.1002/jclp.22293.
Article
PubMed
Google Scholar
He, J., Becic, E., Lee, Y.-C., & McCarley, J. S. (2011). Mind wandering behind the wheel: Performance and oculomotor correlates. Human Factors, 53(1), 13–21. https://doi.org/10.1177/0018720810391530.
Article
PubMed
Google Scholar
Hurlburt, R. T., Alderson-Day, B., Fernyhough, C., & Kühn, S. (2017). Can inner experience be apprehended in high fidelity? Examining brain activation and experience from multiple perspectives. Frontiers in Psychology, 8, 628. https://doi.org/10.3389/fpsyg.2017.00043.
Article
PubMed
PubMed Central
Google Scholar
Hyland, P. K., Lee, R. A., & Mills, M. J. (2015). Mindfulness at work: A new approach to improving individual and organizational performance. Industrial and Organizational Psychology; Bowling Green, 8(4), 576–602. https://doi.org/10.1017/iop.2015.41.
Article
Google Scholar
Irving, Z. C. (2016). Mind-wandering is unguided attention: accounting for the “purposeful” wanderer. Philosophical Studies, 173(2), 547–571. https://doi.org/10.1007/s11098-015-0506-1.
Article
Google Scholar
Jazaieri, H., Lee, I. A., McGonigal, K., Jinpa, T., Doty, J. R., Gross, J. J., & Goldin, P. R. (2016). A wandering mind is a less caring mind: Daily experience sampling during compassion meditation training. The Journal of Positive Psychology, 11(1), 37–50. https://doi.org/10.1080/17439760.2015.1025418.
Article
Google Scholar
Jewett, M. E., & Kronauer, R. E. (1999). Interactive mathematical models of subjective alertness and cognitive throughput in humans. Journal of Biological Rhythms, 14(6), 588–597. https://doi.org/10.1177/074873099129000920.
Article
PubMed
Google Scholar
Keith, T. Z. (2005). Multiple Regression and Beyond. Boston: Pearson.
Google Scholar
Killingsworth, M. A., & Gilbert, D. T. (2010). A wandering mind is an unhappy mind. Science, 330(6006), 932–932. https://doi.org/10.1126/science.1192439.
Article
PubMed
Google Scholar
Krawietz, S. A., Tamplin, A. K., & Radvansky, G. A. (2012). Aging and mind wandering during text comprehension. Psychology and Aging, 27(4), 951–958. https://doi.org/10.1037/a0028831.
Article
PubMed
Google Scholar
Kucyi, A., & Davis, K. D. (2014). Dynamic functional connectivity of the default mode network tracks daydreaming. NeuroImage, 100, 471–480. https://doi.org/10.1016/j.neuroimage.2014.06.044.
Article
PubMed
Google Scholar
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software, 82(13). https://doi.org/10.18637/jss.v082.i13.
Marchetti, I., Koster, E. H. W., Klinger, E., & Alloy, L. B. (2016). Spontaneous thought and vulnerability to mood disorders: The dark side of the wandering mind. Clinical Psychological Science, 4(5), 835–857. https://doi.org/10.1177/2167702615622383.
Article
PubMed
PubMed Central
Google Scholar
Mather, M., Clewett, D., Sakaki, M., & Harley, C. W. (2016). Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behavioral and Brain Sciences, 39, e200. https://doi.org/10.1017/S0140525X15000667.
Article
Google Scholar
McCormick, C., Rosenthal, C. R., Miller, T. D., & Maguire, E. (2017). Mind-wandering in people with hippocampal amnesia. BioRxiv. https://doi.org/10.1101/159681.
McVay, J. C., & Kane, M. J. (2009). Conducting the train of thought: Working memory capacity, goal neglect, and mind wandering in an executive-control task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(1), 196–204. https://doi.org/10.1037/a0014104.
Article
PubMed
Google Scholar
McVay, J. C., Kane, M. J., & Kwapil, T. R. (2009). Tracking the train of thought from the laboratory into everyday life: An experience-sampling study of mind wandering across controlled and ecological contexts. Psychonomic Bulletin & Review, 16(5), 857–863. https://doi.org/10.3758/PBR.16.5.857.
Article
Google Scholar
Mills, C., Bixler, R., Wang, X., & D’Mello, S. K. (2016). Automatic Gaze-Based Detection of Mind Wandering during Film Viewing. (pp. 30–37). Presented at the International Conference on Educational Data Mining, Raleigh, NC: International Educational Data Mining Society.
Mills, C., & D’Mello, S. (2015). Toward a Real-Time (Day) Dreamcatcher: Sensor-Free Detection of Mind Wandering during Online Reading. Presented at the International Conference on Educational Data Mining, Madrid, Spain.
Google Scholar
Mills, C., D’Mello, S. K., & Kopp, K. (2015). The influence of consequence value and text difficulty on affect, attention, and learning while reading instructional texts. Learning and Instruction, 40, 9–20. https://doi.org/10.1016/j.learninstruc.2015.07.003.
Article
Google Scholar
Mills, C., Graesser, A., Risko, E. F., & D’Mello, S. K. (2017). Cognitive coupling during reading. Journal of Experimental Psychology: General, 146(6), 872–883. https://doi.org/10.1037/xge0000309.
Article
Google Scholar
Mills, C., Herrera-Bennett, A., Faber, M., & Christoff, K. (2018). Why the mind wanders: How spontaneous thought’s default variability may support episodic efficiency and semantic optimization. In The Oxford Handbook of Spontaneous Thought: Mind-wandering, Creativity, Dreaming, and Clinical Conditions, (pp. 11–22). New York: Oxford University Press.
Google Scholar
Mills, C., Raffaelli, Q., Irving, Z. C., Stan, D., & Christoff, K. (2018). Is an off-task mind a freely-moving mind? Examining the relationship between different dimensions of thought. Consciousness and Cognition, 58, 20–33. https://doi.org/10.1016/j.concog.2017.10.003.
Article
PubMed
Google Scholar
Mirman, D. (2016). Growth curve analysis and visualization using R. Bocan Raton: CRC Press.
Google Scholar
Mirman, D., Dixon, J. A., & Magnuson, J. S. (2008). Statistical and computational models of the visual world paradigm: Growth curves and individual differences. Journal of Memory and Language, 59(4), 475–494. https://doi.org/10.1016/j.jml.2007.11.006.
Article
PubMed
PubMed Central
Google Scholar
Mittner, M., Hawkins, G. E., Boekel, W., & Forstmann, B. U. (2016). A neural model of mind wandering. Trends in Cognitive Sciences, 20(8), 570–578. https://doi.org/10.1016/j.tics.2016.06.004.
Article
PubMed
Google Scholar
Mrazek, M. D., Zedelius, C. M., Gross, M. E., Mrazek, A. J., Phillips, D. T., & Schooler, J. W. (2017). Mindfulness in education: Enhancing academic achievement and student well-being by reducing mind-wandering. In J. C. Karremans, E. K. Papies, J. C. Karremans, & E. K. Papies (Eds.), Mindfulness in social psychology, (pp. 139–152). New York: Routledge/Taylor & Francis Group http://ezproxy.library.ubc.ca/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=psyh&AN=2017-21402-010&login.asp&site=ehost-live&scope=site.
Chapter
Google Scholar
Nisbett, R. E., & Wilson, T. D. (1977). Telling more than we can know: Verbal reports on mental processes. Psychological Review, 84(3), 231–259. https://doi.org/10.1037/0033-295X.84.3.231.
Article
Google Scholar
Nolen-Hoeksema, S., Wisco, B. E., & Lyubomirsky, S. (2008). Rethinking rumination. Perspectives on Psychological Science, 3(5), 400–424. https://doi.org/10.1111/j.1745-6924.2008.00088.x.
Article
PubMed
Google Scholar
Pachai, A. A., Acai, A., LoGiudice, A. B., & Kim, J. A. (2016). The mind that wanders: Challenges and potential benefits of mind wandering in education. Scholarship of Teaching and Learning in Psychology, 2(2), 134–146. https://doi.org/10.1037/stl0000060.
Article
Google Scholar
Papageorghiou, A. T., Ohuma, E. O., Altman, D. G., Todros, T., Ismail, L. C., Lambert, A., … Villar, J. (2014). International standards for fetal growth based on serial ultrasound measurements: the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project. The Lancet, 384(9946), 869–879. https://doi.org/10.1016/S0140-6736(14)61490-2.
Article
Google Scholar
Phillips, N. E., Mills, C., D’Mello, S., & Risko, E. F. (2016). On the influence of re-reading on mind wandering. Quarterly Journal of Experimental Psychology, 69(12), 2338–2357. https://doi.org/10.1080/17470218.2015.1107109.
Article
Google Scholar
Qu, W., Ge, Y., Xiong, Y., Carciofo, R., Zhao, W., & Zhang, K. (2015). The relationship between mind wandering and dangerous driving behavior among Chinese drivers. Safety Science, 78, 41–48. https://doi.org/10.1016/j.ssci.2015.04.016.
Article
Google Scholar
Riley, E., Esterman, M., Fortenbaugh, F. C., & DeGutis, J. (2017). Time-of-day variation in sustained attentional control. Chronobiology International, 34(7), 993–1001. https://doi.org/10.1080/07420528.2017.1308951.
Article
PubMed
Google Scholar
Schooler, J. W., Smallwood, J., Christoff, K., Handy, T. C., Reichle, E. D., & Sayette, M. A. (2011). Meta-awareness, perceptual decoupling and the wandering mind. Trends in Cognitive Sciences, 15(7), 319–326. https://doi.org/10.1016/j.tics.2011.05.006.
Article
PubMed
Google Scholar
Seli, P., Kane, M. J., Smallwood, J., Schacter, D. L., Maillet, D., Schooler, J. W., & Smilek, D. (2018). Mind-Wandering as a Natural Kind: A Family-Resemblances View. Trends in Cognitive Sciences, 22(6), 479–490. https://doi.org/10.1016/j.tics.2018.03.010.
Article
PubMed
PubMed Central
Google Scholar
Seli, P., Risko, E. F., Smilek, D., & Schacter, D. L. (2016). Mind-Wandering with and without intention. Trends in Cognitive Sciences, 20(8), 605–617. https://doi.org/10.1016/j.tics.2016.05.010.
Article
PubMed
PubMed Central
Google Scholar
Seli, P., Wammes, J. D., Risko, E. F., & Smilek, D. (2016). On the relation between motivation and retention in educational contexts: The role of intentional and unintentional mind wandering. Psychonomic Bulletin & Review, 23(4), 1280–1287. https://doi.org/10.3758/s13423-015-0979-0.
Article
Google Scholar
Shin, T. (2012). The application of various nonlinear models to describe academic growth trajectories: an empirical analysis using four-wave longitudinal achievement data from a large urban school district. Asia Pacific Education Review, 13(1), 65–76. https://doi.org/10.1007/s12564-011-9168-7.
Article
Google Scholar
Silva, E. J., Wang, W., Ronda, J. M., Wyatt, J. K., & Duffy, J. F. (2010). Circadian and wake-dependent influences on subjective sleepiness, cognitive throughput, and reaction time performance in older and young adults. Sleep, 33(4), 481.
Article
PubMed
PubMed Central
Google Scholar
Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis: modeling change and event occurrence. Oxford: Oxford University Press.
Book
Google Scholar
Smallwood, J., Fitzgerald, A., Miles, L. K., & Phillips, L. H. (2009). Shifting moods, wandering minds: Negative moods lead the mind to wander. Emotion, 9(2), 271–276. https://doi.org/10.1037/a0014855.
Article
PubMed
Google Scholar
Smallwood, J., McSpadden, M., & Schooler, J. W. (2008). When attention matters: The curious incident of the wandering mind. Memory & Cognition, 36(6), 1144–1150. https://doi.org/10.3758/MC.36.6.1144.
Article
Google Scholar
Smallwood, J., Nind, L., & O’Connor, R. C. (2009). When is your head at? An exploration of the factors associated with the temporal focus of the wandering mind. Consciousness and Cognition, 18(1), 118–125. https://doi.org/10.1016/j.concog.2008.11.004.
Article
PubMed
Google Scholar
Song, X., & Wang, X. (2012). Mind wandering in Chinese daily lives—An experience sampling study. PLoS One, 7(9), e44423. https://doi.org/10.1371/journal.pone.0044423.
Article
PubMed
PubMed Central
Google Scholar
Sousa, T. L. V., Carriere, J. S. A., & eSmilek, D. (2013). The way we encounter reading material influences how frequently we mind wander. Frontiers in Psychology, 4, 892. https://doi.org/10.3389/fpsyg.2013.00892.
Article
Google Scholar
Spronken, M., Holland, R. W., Figner, B., & Dijksterhuis, A. (2016). Temporal focus, temporal distance, and mind-wandering valence: Results from an experience sampling and an experimental study. Consciousness and Cognition, 41, 104–118. https://doi.org/10.1016/j.concog.2016.02.004.
Article
PubMed
Google Scholar
Stawarczyk, D., Majerus, S., Maj, M., Van der Linden, M., & D’Argembeau, A. (2011). Mind-wandering: Phenomenology and function as assessed with a novel experience sampling method. Acta Psychologica, 136(3), 370–381. https://doi.org/10.1016/j.actpsy.2011.01.002.
Article
PubMed
Google Scholar
Unsworth, N., & McMillan, B. D. (2013). Mind wandering and reading comprehension: Examining the roles of working memory capacity, interest, motivation, and topic experience. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(3), 832–842. https://doi.org/10.1037/a0029669.
Article
PubMed
Google Scholar
Valdez, P., Ramírez, C., & García, A. (2014). Circadian rhythms in cognitive processes: Implications for school learning. Mind, Brain, and Education, 8(4), 161–168. https://doi.org/10.1111/mbe.12056.
Article
Google Scholar
Valdez, P., Ramírez, C., García, A., Talamantes, J., Armijo, P., & Borrani, J. (2005). Circadian rhythms in components of attention. Biological Rhythm Research, 36(1–2), 57–65. https://doi.org/10.1080/09291010400028633.
Article
Google Scholar
Valdez, P., Reilly, T., & Waterhouse, J. (2008). Rhythms of mental performance. Mind, Brain, and Education, 2(1), 7–16. https://doi.org/10.1111/j.1751-228X.2008.00023.x.
Article
Google Scholar
Watson, J. M., Memmott, M. G., Moffitt, C. C., Coleman, J., Turrill, J., Fernández, Á., & Strayer, D. L. (2016). On Working Memory and a Productivity Illusion in Distracted Driving. Journal of Applied Research in Memory and Cognition, 5(4), 445–453. https://doi.org/10.1016/j.jarmac.2016.06.008.
Article
Google Scholar
White, H. R., Xie, M., Thompson, W., Loeber, R., & Stouthamer-Loeber, M. (2001). Psychopathology as a predictor of adolescent drug use trajectories. Psychology of Addictive Behaviors, 15(3), 210–218. https://doi.org/10.1037/0893-164X.15.3.210.
Article
PubMed
Google Scholar
Wright, K. P., Hull, J. T., & Czeisler, C. A. (2002). Relationship between alertness, performance, and body temperature in humans. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 283(6), R1370–R1377. https://doi.org/10.1152/ajpregu.00205.2002.
Article
PubMed
Google Scholar
Yanko, M. R., & Spalek, T. M. (2014). Driving with the wandering mind: The effect that mind-wandering has on driving performance. Human Factors, 56(2), 260–269. https://doi.org/10.1177/0018720813495280.
Article
PubMed
Google Scholar
Allison, P. D. (2014). Event history and survival analysis: regression for longitudinal event data. SAGE Publications.
Dziak, J. J., Li, R., Tan, X., Shiffman, S., & Shiyko, M. P. (2015). Modeling intensive longitudinal data with mixtures of nonparametric trajectories and time-varying effects., Modeling Intensive Longitudinal Data With Mixtures of Nonparametric Trajectories and Time-Varying Effects. Psychological Methods, Psychological Methods, 20(4), 444–469. https://doi.org/10.1037/met0000048.
Article
PubMed
Google Scholar
R Core Team (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing Retrieved from https://www.R-project.org/.
Google Scholar