Adam, J., Bore, M., Childs, R., Dunn, J., Mckendree, J., Munro, D., & Powis, D. (2015). Predictors of professional behaviour and academic outcomes in a UK medical school: A longitudinal cohort study. Medical Teacher, 37, 868–880. https://doi.org/10.3109/0142159X.2015.1009023.
Article
PubMed
Google Scholar
American Brain Tumor Association. http://www.abta.org/about-us/news/brain-tumor-statistics. Accessed 29 May 2017.
Anderson, N. C., Anderson, F., Kingstone, A., & Bischof, W. F. (2015). A comparison of scanpath comparison methods. Behavior Research Methods, 47, 1377–1392. https://doi.org/10.3758/s13428-014-0550-3.
Article
PubMed
Google Scholar
Beam, C. A., Krupinski, E. A., Kundel, H. L., Sickles, E. A., & Wagner, R. F. (2006). The place of medical image perception in 21st-century health care. Journal of the American College of Radiology, 3, 409–412. https://doi.org/10.1016/j.jacr.2006.02.029.
Article
PubMed
Google Scholar
Berbaum, K. S., Brandser, E. A., Franken, E. A., Dorfman, D. D., Caldwell, R. T., & Krupinski, E. A. (2001). Gaze dwell times on acute trauma injuries missed because of satisfaction of search. Academic Radiology, 8, 304–314. https://doi.org/10.1016/S1076-6332(03)80499-3.
Article
PubMed
Google Scholar
Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.
Article
PubMed
Google Scholar
Cavaro-Ménard, C., Tanguy, J. Y., & Le Callet, P. (2010). Eye-position recording during brain MRI examination to identify and characterize steps of glioma diagnosis, Medical imaging: Image perception, observer performance, and technology assessment (). San Diego, CA: SPIE 7627. https://doi.org/10.1117/12.844505.
Book
Google Scholar
Chaby, L., Hupont, I., Avril, M., Luherne-du Boullay, V., & Chetouani, M. (2017). Gaze behavior consistency among older and younger adults when looking at emotional faces. Frontiers in Psychology, 5, 548. https://doi.org/10.3389/fpsyg.2017.00548.
Google Scholar
Ciarrapico, A. M., Ugenti, R., Di Minco, L., Santori, E., Altobelli, S., Coco, I., … Simonetti, G. (2017). Diagnostic imaging and spending review: Extreme problems call for extreme measures. La Radiologia Medica, 122, 288–293. https://doi.org/10.1007/s11547-016-0721-7.
Article
PubMed
Google Scholar
Cristino, F., Mathôt, S., Theeuwes, J., & Gilchrist, I. D. (2010). ScanMatch: A novel method for comparing fixation sequences. Behaviour Research Methods, 42, 692–700. https://doi.org/10.3758/BRM.42.3.692.
Article
Google Scholar
Crowe, E. M., Alderson, W., Rossiter, J., & Kent, C. (2017). Expertise effects inter-observer variability at peripheral tumor locations. Expertise Affects Inter-ObserverAgreement at Peripheral Locations within a Brain Tumor. Frontiers in psychology, 8, 1628. https://doi.org/10.3389/fpsyg.2017.01628.
Crowley, R. S., Naus, G. J., Stewart, J., & Friedman, C. P. (2003). Development of visual diagnostic expertise in pathology-an information-processing study. Journal of the American Medical Informatics Association, 10, 39–51. https://doi.org/10.1197/jamia.M1123.
Article
PubMed
PubMed Central
Google Scholar
Davies, A., Brown, G., Vigo, M., Harper, S., Horseman, L., Splendiani, B., … Jay, C. (2016). Exploring the relationship between eye movements and electrocardiogram interpretation accuracy. Scientific Reports, 6, 38227. https://doi.org/10.1038/srep38227.
Article
PubMed
PubMed Central
Google Scholar
Donovan, T., & Litchfield, D. (2013). Looking for cancer: Expertise related differences in searching and decision making. Applied Cognitive Psychology, 27, 43–49. https://doi.org/10.1002/acp.2869%201013606-1013606 https://doi.org/10.1117/12.2254527.
Drew, T., Evans, K., Võ, M. L. H., Jacobson, F. L., & Wolfe, J. M. (2013). Informatics in radiology: What can you see in a single glance and how might this guide visual search in medical images? Radiographics, 33, 263–274. https://doi.org/10.1148/rg.331125023.
Article
PubMed
PubMed Central
Google Scholar
Drew, T., Võ, M. L. H., Olwal, A., Jacobson, F. L., Seltzer, S. E., & Wolfe, J. M. (2013). Scanner and drillers: Characterzing expert visual search through volumetric images. Journal of Vision, 13, 3–3. https://doi.org/10.1167/13.10.3.
Article
PubMed
PubMed Central
Google Scholar
Drew, T., Võ, M. L. H., & Wolfe, J. M. (2013). The invisible gorilla strikes again sustained inattentional blindness in expert observers. Psychological Science, 24, 1848–1853. https://doi.org/10.1007/s00426-011-0379-7.
Article
PubMed
PubMed Central
Google Scholar
Evans, K. K., Tambouret, R. H., Evered, A., Wilbur, D. C., & Wolfe, J. M. (2011). Prevalence of abnormalities influences cytologists' error rates in screening for cervical cancer. Archives of Pathology & Laboratory Medicine, 135, 1557–1560. https://doi.org/10.5858/arpa.2010-0739-OA.
Article
Google Scholar
Gandomkar, Z., Tay, K., Brennan, P. C., & Mello-Thoms, C. (2017). A model based on temporal dynamics of fixations for distinguishing expert radiologists’ scanpaths. In M. A. Krupinski, & R. M. Nishikawa (Eds.), Medical Imaging 2017: Image Perception, Observer Performance, and Technology Assessment, 10136, 1013606. International Society for Optics and Photonics. https://doi.org/10.1117/12.2254527.
Kleiner, M., Brainard, D., & Pelli, D. (2007). What’s new in Psychtoolbox-3? Perception, 36(14), 1.
Google Scholar
Krupinski, E. A. (1996). Visual scanning patterns of radiologists searching mammograms. Academic Radiology, 3, 137–144. https://doi.org/10.1016/S1076-6332(05)80381-2.
Article
PubMed
Google Scholar
Krupinski, E. A. (2005). Visual search of mammographic images: Influence of lesion subtlety1. Academic Radiology, 12, 965–969. https://doi.org/10.1016/j.acra.2005.03.071.
Article
PubMed
Google Scholar
Krupinski, E. A. (2006). Using the human observer to assess medical image display quality. Journal of the Society for Information Display, 14, 927–932. https://doi.org/10.1889/1.2372427.
Krupinski, E. A. (2010). Current perspectives in medical image perception. Attention, Perception, & Psychophysics, 72, 1205–1217. https://doi.org/10.3758/APP.72.5.1205.
Article
Google Scholar
Krupinski, E. A., Berbaum, K. S., Caldwell, R. T., Schartz, K. M., Madsen, M. T., & Kramer, D. J. (2012). Do long radiology workdays affect nodule detection in dynamic CT interpretation? Journal of the American College of Radiology, 9, 191–198. https://doi.org/10.1016/j.jacr.2011.11.013.
Article
PubMed
PubMed Central
Google Scholar
Krupinski, E. A., Tillack, A. A., Richter, L., Henderson, J. T., Bhattacharyya, A. K., Scott, K. M., … Weinstein, R. S. (2006). Eye-movement study and human performance using telepathology virtual slides. Implications for medical education and differences with experience. Human Pathology, 37, 1543–1556. https://doi.org/10.1016/j.humpath.2006.08.024.
Article
PubMed
Google Scholar
Kübler, T., Eivazi, S., & Kasneci, E. (2015). Automated visual scanpath analysis reveals the expertise level of micro-neurosurgeons. In MICCAI workshop on interventional microscopy, Munich, Germany.
Kundel, H. L. (1974). Visual sampling and estimates of the location of information on chest films. Investigative Radiology, 9, 87–93.
Article
PubMed
Google Scholar
Kundel, H. L., & Nodine, C. F. (2004). Modeling visual search during mammogram viewing. In D. P. Chakraborty, & M. P. Eckstein (Eds.), Medical imaging 2004: Image perception, observer performance and technology assessment, (pp. 110–115). SPIE 5372. https://doi.org/10.1117/12.538063.
Kundel, H. L., Nodine, C. F., & Carmody, D. (1978). Visual scanning, pattern recognition and decision-making in pulmonary nodule detection. Investigative Radiology, 13, 175–181.
Article
PubMed
Google Scholar
Kundel, H. L., Nodine, C. F., Conant, E. F., & Weinstein, S. P. (2007). Holistic component of image perception in mammogram interpretation: Gaze-tracking study 1. Radiology, 242, 396–402. https://doi.org/10.1148/radiol.2422051997.
Article
PubMed
Google Scholar
Kundel, H. L., Nodine, C. F., Krupinski, E. A., & Mello-Thoms, C. (2008). Using gaze-tracking data and mixture distribution analysis to support a holistic model for the detection of cancers on mammograms. Academic Radiology, 15, 881–886. https://doi.org/10.1016/j.acra.2008.01.023.
Article
PubMed
Google Scholar
Leong, J. J. H., Nicolaou, M., Emery, R. J., Darzi, A. W., & Yang, G. Z. (2007). Visual search behaviour in skeletal radiographs: A cross-speciality study. Clinical Radiology, 62, 1069–1077. https://doi.org/10.1016/j.crad.2007.05.008.
Article
PubMed
Google Scholar
Litchfield, D., Ball, L. J., Donovan, T., Manning, D., & Crawford, T. (2010). Viewing another person’s eye movements improves identification of pulmonary nodules in chest x-ray inspection. Journal of Experimental Psychology: Applied, 16, 251–262. https://doi.org/10.1037/a0020082.
PubMed
Google Scholar
Litchfield, D., Ball, L. J., Donovan, T., Manning, D. J., & Crawford, T. (2008). Learning from others: Effects of viewing another person’s eye movements while searching for chest nodules. Medical Imaging, 691715–691724. https://doi.org/10.1117/12.768812.
Madsen, A. M, Larson, A. M, Loschky, L. C, & Rebello, N. S. (2012). Using ScanMatch scores to understand differences in eye movements between correct and incorrect solvers on physics problems. Paper presented at the Symposium on Eye Tracking Research and Applications, Santa Barbara. https://doi.org/10.1145/2168556.2168591.
Manning, D., Ethell, S., Donovan, T., & Crawford, T. (2006). How do radiologists do it? The influence of experience and training on searching for chest nodules. Radiography, 12, 134–142. https://doi.org/10.1016/j.radi.2005.02.003.
Article
Google Scholar
Matsumoto, H., Terao, Y., Yugeta, A., Fukuda, H., Emoto, M., Furubayashi, T., … Ugawa, Y. (2011). Where do neurologists look when viewing brain CT images? An eye-tracking study involving stroke cases. PLoS One, 6, e28928. https://doi.org/10.1371/journal.pone.0028928.
Article
PubMed
PubMed Central
Google Scholar
Mazzara, G., Velthuizen, R., Pearlman, J., Greenberg, H., & Wagner, H. (2004). Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation. International Journal of Radiation Oncology, Biology, and Physics, 59, 300–312. https://doi.org/10.1016/j.ijrobp.2004.01.026.
Article
Google Scholar
Murakami, R., Hirai, T., Toya, R., Nakamura, H., & Yamashita, Y. (2012). Double reading for gross tumor volume assessment in radiotherapy planning. Journal of Solid Tumors, 2, 38–43. https://doi.org/10.5430/jst.v2n4p38.
Article
Google Scholar
Nakashima, R., Komori, Y., Maeda, E., Yoshikawa, T., & Yokosawa, K. (2016). Temporal characteristics of Radiologists’ and Novices’ lesion detection in viewing medical images presented rapidly and sequentially. Frontiers in Psychology, 7, 1553. https://doi.org/10.3389/fpsyg.2016.01553.
Article
PubMed
PubMed Central
Google Scholar
Nodine, C. F., & Kundel, H. L. (1987). Using eye movements to study visual search and to improve tumor detection. Radiographics, 7, 1241–1250. https://doi.org/10.1148/radiographics.7.6.3423330.
Article
PubMed
Google Scholar
Nodine, C. F., Kundel, H. L., Lauver, S. C., & Toto, L. C. (1996). Nature of expertise in searching mammograms for breast masses. Academic Radiology, 3, 1000–1006. https://doi.org/10.1016/S1076-6332(96)80032-8.
Article
PubMed
Google Scholar
Nodine, C. F., Kundel, H. L., Mello-Thoms, C., Weinstein, S. P., Orel, S. G., Sullivan, D. C., & Conant, E. F. (1999). How experience and training influence mammography expertise. Academic Radiology, 6, 575–585.
Article
PubMed
Google Scholar
Nodine, C. F., Mello-Thoms, C., Kundel, H. L., & Weinsten, S. P. (2002). Time course of perception and decision making during mammographic interpretation. American Journal of Roentgenology, 179, 917–923. https://doi.org/10.2214/ajr.179.4.1790917.
Article
PubMed
Google Scholar
Nyamsuren, E., & Taatgen, N. A. (2013). The effect of visual representation style in problem-solving: A perspective from cognitive processes. PLoS One, 8, e80550. https://doi.org/10.1371/journal.pone.0080550.
Article
PubMed
PubMed Central
Google Scholar
Ostrom, Q. T., Gittleman, H., Fulop, J., Liu, M., Blanda, R., Kromer, C., … Barnholtz-Sloan, J. S. (2015). CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Journal of Neuro-Oncology, 17, 1–62. https://doi.org/10.1093/neuonc/nov189.
Article
Google Scholar
Parkhurst, D., Law, K., & Niebur, E. (2002). Modelling the role of salience in the allocation of overt visual attention. Vision Research, 42, 107–123. https://doi.org/10.1016/S0042-6989(01)00250-4.
Article
PubMed
Google Scholar
Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442.
Article
PubMed
Google Scholar
Penny, W. D., Ashburner, J., Kiebel, S., Hendson, R., Glaser, D. E., Phillips, C., & Friston, K. (2001). Statistical parametric mapping: An annotated bibliography. London: Wellcome Department of Imaging Neuroscience, University College London.
Google Scholar
Pihko, E., Virtanen, A., Saarinen, V. M., Pannasch, S., Hirvenkari, L., Tossavainen, T., … Hari, R. (2011). Experiencing art: The influence of expertise and painting abstraction level. Frontiers in Human Neuroscience, 5, 94. https://doi.org/10.3389/fnhum.2011.00094.
Article
PubMed
PubMed Central
Google Scholar
Ravesloot, C. J., van der Gijp, A., van der Schaaf, M. F., Huige, J. C., Vincken, K. L., Mol, C. P., … van Schaik, J. P. (2015). Support for external validity of radiological anatomy tests using volumetric images. Academic Radiology, 22, 640–645. https://doi.org/10.1016/j.acra.2014.12.013.
Article
PubMed
Google Scholar
Ravesloot, C. J., Van Der Schaaf, M. F., Van Schaik, J. P., Ten Cate, O. T. J., Van Der Gijp, A., Mol, C. P., & Vincken, K. L. (2015). Volumetric CT-images improve testing of radiological image interpretation skills. European Journal of Radiology, 84, 856–861. https://doi.org/10.1016/j.ejrad.2014.12.015.
Article
PubMed
Google Scholar
Reingold, E. M., & Sheridan, H. (2011). Eye movements and visual expertise in chess and medicine. In S. P. Liversedge, I. Gilchrist, & S. Everling (Eds.), Oxford handbook on eye movements, (pp. 528–550). New York, NY: Oxford University Press.
Google Scholar
Snowden, P. T., Davies, I., & Roling, P. (2000). Perceptual learning of the detection of features in X-ray images: A functional role for improvements in adults’ visual sensitivity? Journal of Experimental Psychology: Human Perception and Performance, 26, 379–390. https://doi.org/10.1037/0096-1523.26.1.379.
Google Scholar
Sridharan, S., Bailey, R., McNamara, A., & Grimm, C. (2012). Subtle gaze manipulation for improved mammography training. In Proceedings of the symposium on eye tracking research and applications. Santa Barbara. 75–82.
Stuijfzand, B. G., Van Der Schaaf, M. F., Kirschner, F. C., Ravesloot, C. J., Van Der Gijp, A., & Vincken, K. L. (2016). Medical students’ cognitive load in volumetric image interpretation: Insights from human-computer interaction and eye movements. Computers in Human Behavior, 62, 394–403. https://doi.org/10.1016/j.chb.2016.04.015.
Article
Google Scholar
Swensson, R. G. (1980). A two-stage detection model applied to skilled visual search by radiologists. Attention, Perception, & Psychophysics, 27, 11–16. https://doi.org/10.3758/BF03199899.
Article
Google Scholar
The MathWorks, Inc (2013). MATLAB Version 2013a. Natick, MA: The MathWorks, Inc.
Google Scholar
Tourassi, G. D., Mazurowski, M. A., Harrawood, B. P., & Krupinski, E. A. (2010). Exploring the potential of context-sensitive CADe in screening mammography. Medical Physics, 37, 5728–5736. https://doi.org/10.1118/1.3501882.
Article
PubMed
PubMed Central
Google Scholar
van der Gijp, A., Ravesloot, C. J., van der Schaaf, M. F., van der Schaaf, I. C., Huige, J. C., Vincken, K. L., … van Schaik, J. P. (2015). Volumetric and two-dimensional image interpretation show different cognitive processes in learners. Academic Radiology, 22, 632–639. https://doi.org/10.1016/j.acra.2015.01.001.
Article
PubMed
Google Scholar
Vaughan, S., Sanders, T., Crossley, N., O’neill, P., & Wass, V. (2015). Bridging the gap: The roles of social capital and ethnicity in medical student achievement. Medical Education, 49, 114–123. https://doi.org/10.1111/medu.12597.
Article
PubMed
Google Scholar
Voisin, S., Pinto, F., Morin-Ducote, G., Hudson, K. B., & Tourassi, G. D. (2013). Predicting diagnostic error in radiology via eye-tracking and image analytics: Preliminary investigation in mammography. Medical Physics, 40(10), 101906. https://doi.org/10.1118/1.4820536.
Article
PubMed
Google Scholar
Weltens, C., Menten, J., Feron, M., Bellon, E., Demarel, P., Maes, F., … van der Schueren, E. (2001). Interobserver variations in gross tumor volume delineation of brain tumors on computed tomography and impact of magnetic resonance imaging. Radiotherapy and Oncology, 60, 49–59. https://doi.org/10.1016/S0167-8140(01)00371-1.
Article
PubMed
Google Scholar
Wolfe, J. M., & Horowitz, T. S. (2004). What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience, 5, 495–501. https://doi.org/10.1038/nrn1411.
Article
PubMed
Google Scholar
Wolfe, J. M., Horowitz, T. S., Van Wert, M. J., Kenner, N. M., Place, S. S., & Kibbi, N. (2007). Low target prevalence is a stubborn source of errors in visual search tasks. Journal of Experimental Psychology: General, 136, 623–638. https://doi.org/10.1037/0096-3445.136.4.623.
Article
Google Scholar
Wolfe, J. M., Vo, M. L. H., Evans, K. K., & Greene, M. R. (2011). Visual search in scenes involves selective and nonselective pathways. Trends in Cognitive Sciences, 15, 77–84. https://doi.org/10.1016/j.tics.2010.12.001.
Article
PubMed
PubMed Central
Google Scholar
Wooding, D. S., Roberts, G. M., & Phillips-Hughes, J. (1999). Development of the eye-movement response in the trainee radiologist. SPIE Medical Imaging, 3663, 136–145.
Google Scholar
Zhou, L., Zhang, Y. Y., Wang, Z. J., Rao, L. L., Wang, W., Li, S., … Liang, Z. Y. (2016). A Scanpath analysis of the risky decision-making process. Journal of Behavioral Decision Making, 29, 169–182. https://doi.org/10.1002/bdm.1943.
Article
Google Scholar