American College of Radiology. (1998). Breast Imaging Reporting and Data System (BI-RADS). Reston, VA: American College of Radiology.
Google Scholar
Artal, P., Chen, L., Fernandez, E. J., Singer, B., Manzanera, S., & Williams, D. R. (2004). Neural compensation for the eye’s optical aberrations. Journal of Vision, 4(4), 281–287.
Article
PubMed
Google Scholar
Atick, J. J. (1990). Could information-theory provide an ecological theory of sensory processing. Network – Computation in Neural Systems, 3, 213–251.
Article
Google Scholar
Bex, P. J., Solomon, S. G., & Dakin, S. C. (2009). Contrast sensitivity in natural scenes depends on edge as well as spatial frequency structure. Journal of Vision, 9(10), 1.1–19.
Bochud, F. O., Abbey, C. K., & Eckstein, M. P. (2004). Search for lesions in mammograms: statistical characterization of observer responses. Medical Physics, 31(1), 24–36.
Article
PubMed
Google Scholar
Bouwman, R. W., van Engen, R. E., Dance, D. R., Young, K. C., Veldkamp, W. J., et al. (2014). Evaluation of human contrast sensitivity functions used in the nonprewhitening model observer with eye filter. In H. Fujihata, T. Hara, & C. Muramatsu (Eds.), Breast Imaging. IWDM 2014. Lecture Notes in Computer Science (Vol. 8539). Cham, Switzerland: Springer.
Google Scholar
Boyd, N. F. (2011). Tamoxifen, mammographic density, and breast cancer prevention. Journal of the National Cancer Institute, 103, 704–705.
Article
PubMed
Google Scholar
Boyd, N. F., Guo, H., Martin, L. J., Sun, L., Stone, J., Fishell, E., …Yaffe, M. J. (2007). Mammographic density and the risk and detection of breast cancer. The New England Journal of Medicine, 356(3), 227–236.
Burgess, A. (1994). Statistically defined backgrounds: performance of a modified nonprewhitening observer model. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 11(4), 1237–1242.
Article
PubMed
Google Scholar
Burgess, A. E., Jacobson, F. L., & Judy, P. F. (2001). Human observer detection experiments with mammograms and power-law noise. Medical Physics, 28(4), 419–437.
Article
PubMed
Google Scholar
Burgess, A. E., Li, X., & Abbey, C. K. (1997). Visual signal detectability with two noise components: anomalous masking effects. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 14(9), 2420–2442.
Article
PubMed
Google Scholar
Burgess, A. E., Wagner, R. F., Jennings, R. J., & Barlow, H. B. (1981). Efficiency of human visual signal discrimination. Science, 214(4516), 93–94.
Article
PubMed
Google Scholar
Chawla, A. S., & Samei, E. (2007). Ambient illumination revisited: A new adaptation‐based approach for optimizing medical imaging reading environments. Medical Physics, 34(1), 81–90.
Article
PubMed
Google Scholar
Chen, L., Abbey, C. K., Nosratieh, A., Lindfors, K. K., & Boone, J. M. (2012). Anatomical complexity in breast parenchyma and its implications for optimal breast imaging strategies. Medical Physics, 39(3), 1435–1441.
Article
PubMed
PubMed Central
Google Scholar
Chen L., Boone J. M., Abbey C. K., Hargreaves J., Bateni C., Lindfors K. K., …Gazi P. (2015). Simulated lesion, human observer performance comparison between thin-section dedicated breast CT images versus computed thick-section simulated projection images of the breast. Phys Med Biol, 60(8), 3347–3358.
Clifford, C. W., Webster, M. A., Stanley, G. B., Stocker, A. A., Kohn, A., Sharpee, T. O., …Schwartz, O. (2007). Visual adaptation: neural, psychological and computational aspects. Vision Research, 47(25), 3125–3131.
De Valois, R. L., Morgan, H., & Snodderly, D. M. (1974). Psychophysical studies of monkey vision. 3. Spatial luminance contrast sensitivity tests of macaque and human observers. Vision Research, 14(1), 75–81.
Article
PubMed
Google Scholar
Drew, T., Evans, K., Vo, M. L., Jacobson, F. L., & Wolfe, J. M. (2013). Informatics in radiology: what can you see in a single glance and how might this guide visual search in medical images? Radiographics, 33(1), 263–274.
Article
PubMed
PubMed Central
Google Scholar
Eckstein, M. P. (2011). Visual search: a retrospective. Journal of Vision, 11(5), 14.
Article
PubMed
Google Scholar
Elliott, S. L., Georgeson, M. A., & Webster, M. A. (2011). Response normalization and blur adaptation: Data and multi-scale model. Journal of Vision, 11(2), 7.
Article
PubMed
Google Scholar
Field, D. J. (1987). Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of America A. Optics and Image Science, 4(12), 2379–2394.
Article
PubMed
Google Scholar
Field, D. J., & Brady, N. (1997). Visual sensitivity, blur and the sources of variability in the amplitude spectra of natural scenes. Vision Research, 37(23), 3367–3383.
Article
PubMed
Google Scholar
Harisinghani, M. G., Blake M. A., Saksena M., Hahn P. F., Gervais D., Zalis M., …Mueller P. R. (2004). Importance and effects of altered workplace ergonomics in modern radiology suites. Radiographics, 24(2), 615–627.
Hersh, M., & Marla, R. (2004). Imaging the dense breast. Applied Radiology, 33, 23–27.
Google Scholar
Horowitz, T. S. (2017). Prevalence in visual search: From the clinic to the lab and back again. Japanese Psychological Research, 59(2), 65–108.
Article
Google Scholar
Jiang, Z., Das, M., & Gifford, H. C. (2017). Analyzing visual-search observers using eye-tracking data for digital breast tomosynthesis images. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 34(6), 838–845.
Article
PubMed
Google Scholar
Kelly, D. (1975). Spatial frequency selectivity in the retina. Vision Research, 15(6), 665–672.
Article
PubMed
Google Scholar
Knill, D. C., Field, D., & Kersten, D. (1990). Human discrimination of fractal images. Journal of the Optical Society of America A. Optics and Image Science, 7(6), 1113–1123.
Article
PubMed
Google Scholar
Kohn, A. (2007). Visual adaptation: physiology, mechanisms, and functional benefits. Journal of Neurophysiology, 97(5), 3155–3164.
Article
PubMed
Google Scholar
Kompaniez, E., Abbey, C. K., Boone, J. M., & Webster, M. A. (2013). Adaptation aftereffects in the perception of radiological images. PLoS One, 8(10), e76175.
Article
PubMed
PubMed Central
Google Scholar
Kompaniez-Dunigan, E., Abbey, C. K., Boone, J. M., & Webster, M. A. (2015). Adaptation and visual search in mammographic images. Atention Perception and Psychophysics, 77, 1081–1087.
Article
Google Scholar
Krupinski, E. A. (2011). The role of perception in imaging: past and future. Seminars in Nuclear Medicine, 41(6), 392–400.
Article
PubMed
Google Scholar
Krupinski, E. A., Berger, W. G., Dallas, W. J., & Roehrig, H. (2003). Searching for nodules: what features attract attention and influence detection? Academic Radiology, 10(8), 861–868.
Article
PubMed
Google Scholar
Kundel, H. L., Nodine, C. F., Conant, E. F., & Weinstein, S. P. (2007). Holistic component of image perception in mammogram interpretation: gaze-tracking study. Radiology, 242(2), 396–402.
Article
PubMed
Google Scholar
McDermott, K. C., Malkoc, G., Mulligan, J. B., & Webster, M. A. (2010). Adaptation and visual salience. Journal of Vision, 10(13), 17.
Article
PubMed
PubMed Central
Google Scholar
Mello-Thoms, C. (2006). How does the perception of a lesion influence visual search strategy in mammogram reading? Academic Radiology, 13(3), 275–288.
Article
PubMed
Google Scholar
Metheany, K. G., Abbey, C. K., Packard, N., & Boone, J. M. (2008). Characterizing anatomical variability in breast CT images. Medical Physics, 35(10), 4685–4694.
Article
PubMed
PubMed Central
Google Scholar
Monnin, P., Bochud, F., & Verdun, F. (2010). Using a NPWE model observer to assess suitable image quality for a digital mammography quality assurance programme. Radiation Protection Dosimetry, 139(1–3), 459–462.
Article
PubMed
Google Scholar
Monnin, P., Marshall, N., Bosmans, H., Bochud, F., & Verdun, F. (2011). Image quality assessment in digital mammography: part II. NPWE as a validated alternative for contrast detail analysis. Physics in Medicine and Biology, 56(14), 4221.
Article
PubMed
Google Scholar
Mon-Williams, M., Tresilian, J. R., Strang, N. C., Kochhar, P., & Wann, J. P. (1998). Improving vision: neural compensation for optical defocus. Proceedings of the Biological Sciences, 265(1390), 71–77.
Article
Google Scholar
Nodine, C. F., & Kundel, H. L. (1987). Using eye movements to study visual search and to improve tumor detection. Radiographics, 7(6), 1241–1250.
Article
PubMed
Google Scholar
Pesudovs, K., & Brennan, N. A. (1993). Decreased uncorrected vision after a period of distance fixation with spectacle wear. Optometry and Vision Science, 70(7), 528–531.
Article
PubMed
Google Scholar
Porter, J., Guirao, A., Cox, I. G., & Williams, D. R. (2001). Monochromatic aberrations of the human eye in a large population. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 18(8), 1793–1803.
Article
PubMed
Google Scholar
Radhakrishnan, A., Dorronsoro, C., Sawides, L., Webster, M. A., & Marcos, S. (2015). A cyclopean neural mechanism compensating for optical differences between the eyes. Current Biology: CB, 25(5), R188–R189.
Article
PubMed
PubMed Central
Google Scholar
Rieke, F., & Rudd, M. E. (2009). The challenges natural images pose for visual adaptation. Neuron, 64(5), 605–616.
Article
PubMed
Google Scholar
Robson, J. G., & Graham, N. (1981). Probability summation and regional variation in contrast sensitivity across the visual field. Vision Research, 21(3), 409–418.
Article
PubMed
Google Scholar
Rovamo, J., Virsu, V., & Nasanen, R. (1978). Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision. Nature, 271(5640), 54–56.
Article
PubMed
Google Scholar
Sawides, L., de Gracia, P., Dorronsoro, C., Webster, M. A., & Marcos, S. (2011). Vision is adapted to the natural level of blur present in the retinal image. PLoS One, 6(11), e27031.
Article
PubMed
PubMed Central
Google Scholar
Sawides, L., Marcos, S., Ravikumar, S., Thibos, L., Bradley, A., & Webster, M. (2010). Adaptation to astigmatic blur. Journal of Vision, 10(12), 22.
Article
PubMed
PubMed Central
Google Scholar
Sharpee, T. O., Sugihara, H., Kurgansky, A. V., Rebrik, S. P., Stryker, M. P., & Miller, K. D. (2006). Adaptive filtering enhances information transmission in visual cortex. Nature, 439(7079), 936–942.
Article
PubMed
PubMed Central
Google Scholar
Siddiqui, K. M., Chia, S., Knight, N., & Siegel, E. L. (2006). Design and ergonomic considerations for the filmless environment. Journal of the American College of Radiology, 3(6), 456–467.
Article
PubMed
Google Scholar
Simoncelli, E. P., & Olshausen, B. A. (2001). Natural image statistics and neural representation. Annual Review of Neuroscience, 24, 1193–1216.
Article
PubMed
Google Scholar
Solomon, S. G., & Kohn, A. (2014). Moving sensory adaptation beyond suppressive effects in single neurons. Current Biology: CB, 24(20), R1012–R1022.
Article
PubMed
PubMed Central
Google Scholar
Tadmor, Y., & Tolhurst, D. J. (1994). Discrimination of changes in the second-order statistics of natural and synthetic images. Vision Research, 34(4), 541–554.
Article
PubMed
Google Scholar
Tolhurst, D. J., Tadmor, Y., & Chao, T. (1992). Amplitude spectra of natural images. Ophthalmic & Physiological Optics, 12(2), 229–232.
Article
Google Scholar
van der Schaaf, A., & van Hateren, J. H. (1996). Modelling the power spectra of natural images: statistics and information. Vision Research, 36(17), 2759–2770.
Article
PubMed
Google Scholar
van Nes, F. L., Koenderink, J. J., Nas, H., & Bouman, M. A. (1967). Spatiotemporal modulation transfer in the human eye. Journal of the Optical Society of America, 57(9), 1082–1088.
Article
PubMed
Google Scholar
Van Peteghem, N., Bosmans, H., & Marshall, N. (2016). NPWE model observer as a validated alternative for contrast detail analysis of digital detectors in general radiography. Physics in Medicine and Biology, 61(21), N575.
Article
PubMed
Google Scholar
Wainwright, M. J. (1999). Visual adaptation as optimal information transmission. Vision Research, 39(23), 3960–3974.
Article
PubMed
Google Scholar
Wark, B., Lundstrom, B. N., & Fairhall, A. (2007). Sensory adaptation. Current Opinion in Neurobiology, 17(4), 423–429.
Article
PubMed
PubMed Central
Google Scholar
Watson, A. B., & Ahumada, A. J. (2011). Blur clarified: a review and synthesis of blur discrimination. Journal of Vision, 11(5), 10.
Article
PubMed
Google Scholar
Webster, M. A. (2011). Adaptation and visual coding. Journal of Vision, 11(5), 3.
Article
PubMed
Google Scholar
Webster, M. A. (2014). Probing the functions of contextual modulation by adapting images rather than observers. Vision Research, 104, 68–79.
Article
PubMed
Google Scholar
Webster, M. A. (2015). Visual adaptation. Annual Review of Vision Science, 1, 547–567.
Article
PubMed
PubMed Central
Google Scholar
Webster, M. A., Georgeson, M. A., & Webster, S. M. (2002). Neural adjustments to image blur. Nature Neuroscience, 5(9), 839–840.
Article
PubMed
Google Scholar
Webster, M. A., & Marcos, S. (2017). Neural adaptation to blur. In P. Artal (Ed.), Handbook of Visual Optics, Volume Two: Instrumentation and Vision Correction (p. 307). Boca Raton, FL: CRC Press.
Google Scholar
Webster, M. A., & Miyahara, E. (1997). Contrast adaptation and the spatial structure of natural images. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 14(9), 2355–2366.
Article
PubMed
Google Scholar
Webster, M. A., Mizokami, Y., Svec, L. A., & Elliott, S. L. (2006). Neural adjustments to chromatic blur. Spatial Vision, 19(2–4), 111–132.
Article
PubMed
Google Scholar
Wilson, H. R., & Giese, S. C. (1977). Threshold visibility of frequency gradient patterns. Vision Research, 17(10), 1177–1190.
Article
PubMed
Google Scholar
Wissig, S. C., Patterson, C. A., & Kohn, A. (2013). Adaptation improves performance on a visual search task. Journal of Vision, 13(2), 6.
Article
PubMed
PubMed Central
Google Scholar
Wolfe, J. M., Evans, K. K., Drew, T., Aizenman, A., & Josephs, E. (2016). How do radiologists use the human search engine? Radiation Protection Dosimetry, 169(1–4), 24–31.
Article
PubMed
PubMed Central
Google Scholar