Alfieri, L., Brooks, P. J., Aldrich, N. J., & Tenenbaum, H. R. (2011). Does discovery-based instruction enhance learning? Journal of Educational Psychology, 103(1), 1–18. http://doi.org/10.1037/a0021017.
Article
Google Scholar
Alibali, M. W., & DiRusso, A. A. (1999). The function of gesture in learning to count: More than keeping track. Cognitive Development, 14(1), 37–56. http://doi.org/10.1016/S0885-2014(99)80017-3.
Article
Google Scholar
Alibali, M. W., & Nathan, M. J. (2012). Embodiment in mathematics teaching and learning: Evidence from learners’ and teachers’ gestures. Journal of the Learning Sciences, 21(2), 247–286. http://doi.org/10.1080/10508406.2011.611446.
Article
Google Scholar
Barsalou, L. W. (1999). Perceptions of perceptual symbols. Behavioral and Brain Sciences, 22(04), 637–660.
Article
Google Scholar
Bertsch, S., Pesta, B. J., Wiscott, R., & McDaniel, M. A. (2007). The generation effect: A meta-analytic review. Memory & Cognition, 35(2), 201–210. http://www.ncbi.nlm.nih.gov/pubmed/17645161.
Article
Google Scholar
Black, J. B., Segal, A., Vitale, J., & Fadjo, C. (2012). Embodied cognition and learning environment design. In D. Jonassen & S. Lamb (Eds.), Theoretical foundations of student-centered learning environments (pp. 198–223). New York: Routledge.
Google Scholar
Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79(4), 1016–1031. http://doi.org/10.1111/j.1467-8624.2008.01173.x.
Article
PubMed
Google Scholar
Broaders, S. C., Cook, S. W., Mitchell, Z., & Goldin-Meadow, S. (2007). Making children gesture brings out implicit knowledge and leads to learning. Journal of Experimental Psychology: General, 136(4), 539–550.
Article
Google Scholar
Calvo-Merino, B., Glaser, D. E., Grezes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: An FMRI study with expert dancers. Cerebral Cortex, 15(8), 1243–1249.
Article
PubMed
Google Scholar
Carbonneau, K. J., Marley, S. C., & Selig, J. P. (2013). A meta-analysis of the efficacy of teaching mathematics with concrete manipulatives. Journal of Educational Psychology, 105(2), 380–400. http://doi.org/10.1037/a0031084.
Article
Google Scholar
Chan, M. S., & Black, J. B. (2006). Direct-manipulation animation: Incorporating the haptic channel in the learning process to support middle school students in science learning and mental model acquisition. In Proceedings of the 7th International Conference on Learning Sciences (pp. 64–70). Bloomington: International Society of the Learning Sciences.
Google Scholar
Chu, M., & Kita, S. (2011). The nature of gestures’ beneficial role in spatial problem solving. Journal of Experimental Psychology: General, 140(1), 102–116. http://doi.org/10.1037/a0021790.
Article
Google Scholar
Cook, S. W., Mitchell, Z., & Goldin-Meadow, S. (2008). Gesturing makes learning last. Cognition, 106(2), 1047–1058. http://doi.org/10.1016/j.cognition.2007.04.010.
Article
PubMed
Google Scholar
Cook, S. W., Yip, T. K. Y., & Goldin-Meadow, S. (2012). Gestures, but not meaningless movements, lighten working memory load when explaining math. Language and Cognitive Processes, 27(4), 594–610. http://doi.org/10.1080/01690965.2011.567074.
Article
PubMed
Google Scholar
Craik, F. I., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11(6), 671–684.
Article
Google Scholar
Dackermann, T., Fischer, U., Huber, S., Nuerk, H.-C., & Moeller, K. (2016). Training the equidistant principle of number line spacing. Cognitive Processing, 17(3), 243–258. http://doi.org/10.1007/s10339-016-0763-8.
Article
PubMed
Google Scholar
Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371. http://doi.org/10.1037/0096-3445.122.3.371.
Article
Google Scholar
Domahs, F., Krinzinger, H., & Willmes, K. (2008). Mind the gap between both hands: Evidence for internal finger-based number representations in children’s mental calculation. Cortex, 44(4), 359–367. http://doi.org/10.1016/j.cortex.2007.08.001.
Article
PubMed
Google Scholar
Domahs, F., Moeller, K., Huber, S., Willmes, K., & Nuerk, H.-C. (2010). Embodied numerosity: implicit hand-based representations influence symbolic number processing across cultures. Cognition, 116(2), 251–266. http://doi.org/10.1016/j.cognition.2010.05.007.
Article
PubMed
Google Scholar
Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., …Japel, C. (2007). School readiness and later achievement. Developmental Psychology, 43(6), 1428–1446. http://doi.org/10.1037/0012-1649.43.6.1428
Espejo-Trung, L. C., Elian, S. N., & Luz, M. A. A. C. (2015). Development and application of a new learning object for teaching operative dentistry using augmented reality. Journal of Dental Education, 79(11), 1356–1362.
Falloon, G. (2015). What’s the difference? Learning collaboratively using iPads in conventional classrooms. Computers & Education, 84, 62–77. http://doi.org/10.1016/j.compedu.2015.01.010.
Article
Google Scholar
Fayol, M., Barrouillet, P., & Marinthe, C. (1998). Predicting arithmetical achievement from neuro-psychological performance: A longitudinal study. Cognition, 68(2), 63–70. http://doi.org/10.1016/S0010-0277(98)00046-8.
Article
Google Scholar
Fischer, M. H. (2008). Finger counting habits modulate spatial-numerical associations. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 44(4), 386–392. http://doi.org/10.1016/j.cortex.2007.08.004.
Article
PubMed
Google Scholar
Fischer, M. H., & Brugger, P. (2011). When digits help digits: spatial-numerical associations point to finger counting as prime example of embodied cognition. Frontiers in Psychology, 2, 260. http://doi.org/10.3389/fpsyg.2011.00260.
Article
PubMed
PubMed Central
Google Scholar
Fischer, U., Moeller, K., Bientzle, M., Cress, U., & Nuerk, H.-C. (2011). Sensori-motor spatial training of number magnitude representation. Psychonomic Bulletin & Review, 18(1), 177–183. http://doi.org/10.3758/s13423-010-0031-3.
Article
Google Scholar
Fischer, U., Moeller, K., Huber, S., Cress, U., & Nuerk, H.-C. (2015). Full-body movement in numerical trainings: A pilot study with an interactive whiteboard. International Journal of Serious Games, 2(4), 23–35. http://doi.org/10.17083/ijsg.v2i4.93.
Article
Google Scholar
Fuster, J. M. (2003). Cortex and mind: Unifying cognition. New York: Oxford University Press.
Google Scholar
Gibson, J. J. (2014). The ecological approach to visual perception: Classic edition. New York: Taylor & Francis.
Google Scholar
Glenberg, A. M. (2010). Embodiment as a unifying perspective for psychology. WIREs Cognitive Science, 1(4), 586–596. http://doi.org/10.1002/wcs.55.
PubMed
Google Scholar
Glenberg, A. M., & Kaschak, M. P. (2002). Grounding language in action. Psychonomic Bulletin & Review, 9(3), 558–565.
Glenberg, A. M., Gutierrez, T., Levin, J. R., Japuntich, S., & Kaschak, M. P. (2004). Activity and imagined activity can enhance young children’s reading comprehension. Journal of Educational Psychology, 96(3), 424–436. http://doi.org/10.1037/0022-0663.96.3.424.
Article
Google Scholar
Goldin-Meadow, S., & Beilock, S. L. (2010). Action’s influence on thought: The case of gesture. Perspectives on Psychological Science: A Journal of the Association for Psychological Science, 5(6), 664–674. http://doi.org/10.1177/1745691610388764.
Article
PubMed
Google Scholar
Goldin-Meadow, S., Cook, S. W., & Mitchell, Z. A. (2009). Gesturing gives children new ideas about math. Psychological Science, 20(3), 267–272.
Goldin-Meadow, S., Nusbaum, H., Kelly, S. D., & Wagner, S. (2001). Explaining math: Gesturing lightens the load. Psychological Science, 12(6), 516–522.
Article
PubMed
Google Scholar
Goldin-Meadow, S., & Singer, M. A. (2003). From children’s hands to adults’ ears: gesture’s role in the learning process. Developmental Psychology, 39(3), 509–520.
Article
PubMed
Google Scholar
Goldin-Meadow, S., & Wagner, S. M. (2005). How our hands help us learn. Trends in Cognitive Sciences, 9(5), 234–241. http://doi.org/10.1016/j.tics.2005.03.006.
Article
PubMed
Google Scholar
Holt, J. C. (1982). How children fail. New York: Delta/Seymour Lawrence.
Google Scholar
Hommel, B. (2009). Action control according to TEC (theory of event coding). Psychological Research, 73(4), 512–526. http://doi.org/10.1007/s00426-009-0234-2.
Article
PubMed
PubMed Central
Google Scholar
Hommel, B. (2015). The theory of event coding (TEC) as embodied-cognition framework. Frontiers in Psychology, 6, 1318. http://doi.org/10.3389/fpsyg.2015.01318.
PubMed
PubMed Central
Google Scholar
Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The Theory of Event Coding (TEC): A framework for perception and action planning. The Behavioral and Brain Sciences, 24(5), 849–878.
Article
PubMed
Google Scholar
Hostetter, A. B., & Alibali, M. W. (2008). Visible embodiment: Gestures as simulated action. Psychonomic Bulletin & Review, 15(3), 495–514.
Article
Google Scholar
Johnson-Glenberg, M. C., Birchfield, D. A., Tolentino, L., & Koziupa, T. (2014). Collaborative embodied learning in mixed reality motion-capture environments: Two science studies. Journal of Educational Psychology, 106(1), 86–104. http://doi.org/10.1037/a0034008.
Article
Google Scholar
Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2008). Development of number combination skill in the early school years: When do fingers help? Developmental Science, 11(5), 662–668. http://doi.org/10.1111/j.1467-7687.2008.00715.x.
Article
PubMed
Google Scholar
Karlsson Wirebring, L., Lithner, J., Jonsson, B., Liljekvist, Y., Norqvist, M., & Nyberg, L. (2015). Learning mathematics without a suggested solution method: Durable effects on performance and brain activity. Trends in Neuroscience and Education, 4(1–2), 6–14. http://doi.org/10.1016/j.tine.2015.03.002.
Article
Google Scholar
Kim, S.-S., Min, W.-K., Kim, J.-H., & Lee, B.-H. (2014). The effects of VR-based Wii fit yoga on physical function in middle-aged female LBP patients. Journal of Physical Therapy Science, 26(4), 549–552. http://doi.org/10.1589/jpts.26.549.
Article
PubMed
PubMed Central
Google Scholar
Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86. http://doi.org/10.1207/s15326985ep4102_1.
Article
Google Scholar
Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic Books.
Google Scholar
Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: Tasks, learning, and teaching. Review of Educational Research, 60(1), 1–64. http://doi.org/10.3102/00346543060001001.
Article
Google Scholar
Lindgren, R. (2015). Getting into the cue: Embracing technology-facilitated body movements as a starting point for learning. In V. R. Lee (Ed.), Learning technologies and the body: Integration and implementation in formal and informal learning environments (pp. 39–54). New York: Routledge.
Google Scholar
Link, T., Moeller, K., Huber, S., Fischer, U., & Nuerk, H.-C. (2013). Walk the number line—an embodied training of numerical concepts. Trends in Neuroscience and Education, 2(2), 74–84. http://doi.org/10.1016/j.tine.2013.06.005.
Article
Google Scholar
Loetscher, T., Schwarz, U., Schubiger, M., & Brugger, P. (2008). Head turns bias the brain’s internal random generator. Current Biology, 18(2), R60–R62. http://doi.org/10.1016/j.cub.2007.11.015.
Article
PubMed
Google Scholar
Manches, A., O’Malley, C., & Benford, S. (2010). The role of physical representations in solving number problems: A comparison of young children’s use of physical and virtual materials. Computers & Education, 54(3), 622–640.
Article
Google Scholar
Martin, T., & Schwartz, D. L. (2005). Physically distributed learning: Adapting and reinterpreting physical environments in the development of fraction concepts. Cognitive Science, 29(4), 587–625. http://doi.org/10.1207/s15516709cog0000_15.
Article
PubMed
Google Scholar
Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning? The American Psychologist, 59(1), 14–19. http://doi.org/10.1037/0003-066X.59.1.14.
Article
PubMed
Google Scholar
McNeil, N. M., Uttal, D. H., Jarvin, L., & Sternberg, R. J. (2009). Should you show me the money? Concrete objects both hurt and help performance on mathematics problems. Learning and Instruction, 19(2), 171–184. http://doi.org/10.1016/j.learninstruc.2008.03.005.
Article
Google Scholar
Moeller, K., Fischer, U., Link, T., Wasner, M., Huber, S., Cress, U., …Nuerk, H-C. (2012). Learning and development of embodied numerosity. Cognitive Processing, 13(1), 271–274. http://doi.org/10.1007/s10339-012-0457-9
Montessori, M. (1964). The absorbent mind. Wheaton, IL: Theosphical Press.
Morris, C. D., Bransford, J. D., & Franks, J. J. (1977). Levels of processing versus transfer appropriate processing. Journal of Verbal Learning and Verbal Behavior, 16(5), 519–533. http://doi.org/10.1016/S0022-5371(77)80016-9.
Article
Google Scholar
Moyer, P. S., Bolyard, J. J., & Spikell, M. A. (2002). What are virtual manipulatives? Teaching Children Mathematics, 8(6), 372–377.
Google Scholar
Newman, S. D. (2016). Does finger sense predict addition performance? Cognitive Processing, 17(2), 139–146. http://doi.org/10.1007/s10339-016-0756-7.
Article
PubMed
Google Scholar
Noël, M.-P. (2005). Finger gnosia: A predictor of numerical abilities in children? Child Neuropsychology: A Journal on Normal and Abnormal Development in Childhood and Adolescence, 11(5), 413–430. http://doi.org/10.1080/09297040590951550.
Article
Google Scholar
Penner-Wilger, M., Fast, L., LeFevre, J-A., Smith-Chant, B. L., Skwarchuk, S., Kamawar, D., …Bisanz, J. (2007). The foundations of numeracy: Subitizing, finger gnosia, and fine-motor ability. In Proceedings of the 29th Annual Cognitive Science Society (pp. 1385–1390). Cognitive Science Society Austin, TX.
Perry, M., Breckinridge Church, R., & Goldin-Meadow, S. (1988). Transitional knowledge in the acquisition of concepts. Cognitive Development, 3(4), 359–400. http://doi.org/10.1016/0885-2014(88)90021-4.
Article
Google Scholar
Piaget, J. (1962). Play, dreams, and imitation in childhood. New York: W.W. Norton & Co.
Plass, J. L., O’Keefe, P. A., Homer, B. D., Case, J., Hayward, E. O., Stein, M., …Perlin, K. (2013). The impact of individual, competitive, and collaborative mathematics game play on learning, performance, and motivation. Journal of Educational Psychology, 105(4), 1050–1066. http://doi.org/10.1037/a0032688
Poltz, N., Wyschkon, A., Höse, A., von Aster, M., & Esser, G. (2015). Vom Fingergefühl zum Rechnen (From fingers to calculating). Lernen Und Lernstörungen, 4(3), 177–193. http://doi.org/10.1024/2235-0977/a000088.
Pyc, M. A., & Rawson, K. A. (2009). Testing the retrieval effort hypothesis: Does greater difficulty correctly recalling information lead to higher levels of memory? Journal of Memory and Language, 60(4), 437–447. http://doi.org/10.1016/j.jml.2009.01.004.
Article
Google Scholar
Ramani, G. B., & Siegler, R. S. (2008). Promoting broad and stable improvements in low-income children’s numerical knowledge through playing number board games. Child Development, 79(2), 375–394. http://doi.org/10.1111/j.1467-8624.2007.01131.x.
Article
PubMed
Google Scholar
Ramani, G. B., Siegler, R. S., & Hitti, A. (2012). Taking it to the classroom: Number board games as a small group learning activity. Journal of Educational Psychology, 104(3), 661–672. http://doi.org/10.1037/a0028995.
Article
Google Scholar
Ramani, G. B., Jaeggi, S. M., Daubert, E., & Buschkuehl, M. (2017). Domain-specific and domain-general training to improve kindergarten children’s mathematics. Journal of Numerical Cognition.
Richland, L. E. (2015). Linking gestures: Cross-cultural variation during instructional analogies. Cognition and Instruction, 33(4), 295–321. http://doi.org/10.1080/07370008.2015.1091459.
Article
Google Scholar
Ritchie, S. J., & Bates, T. C. (2013). Enduring links from childhood mathematics and reading achievement to adult socioeconomic status. Psychological Science, 24(3), 1301–1308. doi:10.1177/0956797612466268.
Article
PubMed
Google Scholar
Ruiter, M., Loyens, S., & Paas, F. (2015). Watch your step children! Learning two-digit numbers through mirror-based observation of self-initiated body movements. Educational Psychology Review, 27(3), 457–474. http://doi.org/10.1007/s10648-015-9324-4.
Article
Google Scholar
Segal, A. (2011). Do gestural interfaces promote thinking? Embodied interaction: Congruent gestures and direct touch promote performance in math. Ann Arbor: ProQuest LLC.
Google Scholar
Segal, A., Black, J., & Tversky, B. (2010). Do gestural interfaces promote thinking? Congruent gestures promote performance in math. Presented at the 51st annual meeting of the Psychonomic Society, St. Louis (Missouri, USA)
Shaki, S., & Fischer, M. H. (2014). Random walks on the mental number line. Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale, 232(1), 43–49. http://doi.org/10.1007/s00221-013-3718-7.
Article
PubMed
Google Scholar
Shepard, R. N., & Metzler, J. (1971). Mental Rotation of Three–Dimensional Objects. Science, 171(3972), 701–703. https://doi.org/10.1126/science.171.3972.701.
Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75(2), 428–444. http://doi.org/10.1111/j.1467-8624.2004.00684.x.
Article
PubMed
Google Scholar
Slamecka, N. J., & Graf, P. (1978). The generation effect: Delineation of a phenomenon. Journal of Experimental Psychology: Human Learning and Memory, 4(6), 592–604. http://doi.org/10.1037/0278-7393.4.6.592.
Google Scholar
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285. http://doi.org/10.1207/s15516709cog1202_4.
Article
Google Scholar
Uttal, D. H., O’Doherty, K., Newland, R., Hand, L. L., & DeLoache, J. (2009). Dual representation and the linking of concrete and symbolic representations. Child Development Perspectives, 3(3), 156–159. http://doi.org/10.1111/j.1750-8606.2009.00097.x.
Article
Google Scholar
Uttal, D. H., Scudder, K. V., & DeLoache, J. S. (1997). Manipulatives as symbols: A new perspective on the use of concrete objects to teach mathematics. Journal of Applied Developmental Psychology, 18(1), 37–54. http://doi.org/10.1016/S0193-3973(97)90013-7.
Article
Google Scholar
Valenzeno, L., Alibali, M. W., & Klatzky, R. (2003). Teachers’ gestures facilitate students’ learning: A lesson in symmetry. Contemporary Educational Psychology, 28(2), 187–204.
Article
Google Scholar
Wasner, M., Nuerk, H.-C., Martignon, L., Roesch, S., & Moeller, K. (2016). Finger gnosis predicts a unique but small part of variance in initial arithmetic performance. Journal of Experimental Child Psychology, 146, 1–16. http://doi.org/10.1016/j.jecp.2016.01.006.
Article
PubMed
Google Scholar
Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625–636.
Article
Google Scholar
Wyschkon, A., Poltz, N., Höse, A., von Aster, M., & Esser, G. (2015). Schwache Fingergnosie als Risikofaktor für zukünftiges Rechnen? (Weak Finger Gnosis as a Risk Factor for Future Numerical Achievement?) Lernen Und Lernstörungen, 4(3), 159–175. http://doi.org/10.1024/2235-0977/a000087.