This study adds to the existing literature on the role gesture plays in learning. This study is the first to examine the effect of gesture on undergraduate students learning of a complex statistical concept (analysis of variance; ANOVA). The population of college students in this study is unique, reflecting low-income status, first generation, and ethnic diversity. Moreover, this is the first study examining the effect of gesture on learning in college students in the context of a college classroom. Previous studies have examined the effect of gesture in children’s learning, some of which examined instruction in a one-on-one setting (Cook & Goldin-Meadow, 2006; Koumoustakis et al., 2013) and some in a classroom setting (Church, Ayman-Nolley, & Mahootian, 2004; Cook, Duffy, & Fenn, 2013). Previous research examining gesture in instruction with adults have only used a one-on-one tutorial context (Carlson, Jacobs, Perry, & Breckinridge Church, 2014).
Examining how gesture enhances learning has important implications for science, technical, engineering, and mathematics (STEM) education, where the playing field is not level among individuals with few versus many economic resources (Chen, 2013). Gesture, which spontaneously occurs with speech during communication of math and science concepts, conveys concrete, embodied, and intuitive representations that compliment speech content (Alibali & Nathan, 2012; Alibali, Nathan, Fujimori, Stein, & Raudenbush, 2011; Hostetter & Alibali, 2008). Moreover, previous research on children shows that when gesture is included in instruction of math, learning is significantly more likely than when it is not (e.g. Cook et al., 2013; Koumoutsakis, Church, Alibali, Singer, & Ayman-Nolley, 2016). Thus, research on gesture in education may be able to level the playing field by making abstract and complex math and science concepts accessible (Church et al., 2004).
Moreover, online instruction was an educational innovation expected to decrease the divide between those with few and those with many economic resources. Examination of gesture effects on learning can have important ramifications for online instruction. Some online learning settings include either written or spoken language for which the speaker (and therefore his/her gestures) is not visible. In fact, when gesture’s effectiveness in instruction was compared between a video and face-to-face venue, it was found that without gesture, video instruction was wholly inadequate for mathematics learning in elementary school children compared to video instruction with gesturing (Koumoutsakis et al., 2016). The current research examines how college students who are diverse and an under-represented population respond to digital instruction with and without gesture. Thus, we see this research as contributing to our understanding of how gesture can enhance learning using a digital medium, a medium that opens access to students from diverse populations.
Gesture enhances learning of a complex statistical concept
Educators are always eager to adopt pedagogical methods that improve their ability to convey information. One important realization is that instructional input can come in the form of many types of visual and verbal representations. How these representations are linked may be the key to making even the most abstract concepts understandable. This is particularly true in the teaching of mathematics where visual representations such as graphs have to be linked with abstract symbolic representations such as equations and verbal descriptions done by an instructor or student (Alibali et al., 2014) and particularly relevant in the efforts of STEM education where mathematical concepts need to be linked with other science disciplines (Walkington, Nathan, Wolfgram, Alibali, & Srisurichan, 2011).
A plethora of research has shown that information during communicative activities is conveyed non-verbally as well as verbally (cf., Goldin-Meadow, 2005; Kelly, Manning, & Rodak, 2008). In particular, spoken communication is often accompanied by representational gesture or gesture that conveys imagery related to accompanying speech (McNeill, 1992). Research efforts have focused on what role these gestures play in communication.
One area of research particularly relevant to this study is communication in an educational setting. Teachers and students frequently gesture when they talk about academic topics such as math and science (Crowder & Newman, 1993). As it turns out, this gesturing during teaching situations correlates with learning (Church, 1999; Church et al., 2004; Singer & Goldin-Meadow, 2005; Cook & Goldin-Meadow, 2006; Cook et al., 2013; Goldin-Meadow, Alibali & Church, 1993; Koumoutsakis et al., 2016; Novack & Goldin-Meadow, 2015). For example, gesture provided as input to the learner was significantly beneficial for elementary aged children’s learning of math concepts (Church et al., 2004; Cook et al., 2013; Koumoutsakis et al., 2016; Singer & Goldin-Meadow, 2005; Valenzeno, Alibali, & Klatzky, 2003) and science concepts (Singer, Radinsky, & Goldman, 2008). Although little research has been done on the role of gesture input for adult learning, some has shown that gesture produced during instruction benefits the learning of spatial concepts—specifically, physical causality instantiated in gear problems (Alibali, Spencer, Knox, & Kita, 2011; Carlson et al., 2014) and complex math concepts such as polynomials (Louden et al., 2015; Rueckert, Church, Saucedo, & Alibali, 2015).
The current study extends previous research on gesture’s role in instruction to young adults’ learning of a commonly taught statistical concept, ANOVA. For students who want to pursue graduate education or careers in STEM, having a solid understanding of statistics is particularly crucial. However, a recent review discovered that many students find statistics courses particularly difficult and often do not gain a deep understanding of the topic (Garfield & Ben-Zvi, 2007). In the United States, even our best students are choosing non-STEM careers over STEM careers (Bettinger, 2010) and the rate at which students choose STEM careers is much lower than other countries (Chen, 2013). This trend appears to be particularly strong for female students, students from low-income backgrounds and for students who perform poorly in college STEM classes (Chen, 2013). Thus, finding alternative methods for teaching STEM-related classes that help make abstract and seemingly opaque concepts accessible would be an important teaching innovation. We argue that using representational gesture in combination with speech during instruction is a teaching tool that appears to improve learning, especially learning of STEM-related topics such as math and science. However, the usefulness of gesture as a teaching tool has not been well explored in the college classroom. The purpose of the present study is to extend what is known about the benefits of gesture for learning to adults learning a complex statistical concept (ANOVA) in a real classroom setting.