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Abstract

To successfully interact with software agents, people must call upon basic concepts about goals and intentionality
and strategically deploy these concepts in a range of circumstances where specific entailments may or may not
apply. We hypothesize that people who can effectively deploy agency concepts in new situations will be more
effective in interactions with software agents. Further, we posit that interacting with a software agent can itself
refine a person’s deployment of agency concepts. We investigated this reciprocal relationship in one particularly
important context: the classroom. In three experiments we examined connections between middle school students’
concepts about agency and their success learning from a teachable-agent-based computer system called “Betty’s
Brain”. We found that the students who made more intentional behavioral predictions about humans learned more
effectively from the system. We also found that students who used the Betty’s Brain system distinguished human
behavior from machine behavior more strongly than students who did not. We conclude that the ability to

effectively deploy agency concepts both supports, and is refined by, interactions with software agents.
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Significance
In recent years, we have seen a steady stream of new,
increasingly intelligent technologies intended to improve
our lives in various ways. One important forum for these
technologies is the classroom, where teachable agent
software is used to help students learn. A teachable
agent is a graphical character in a computer environ-
ment that can be taught concepts by students and then,
using artificial intelligence, answer questions, complete
quizzes, and provide explanations based on what the stu-
dent has taught it. The idea is that explaining material to
teachable agents might provide students with educational
benefits similar to those obtained by explaining material
to other students.

But teachable agents are not other students. Interacting
with these agents can be challenging, because they behave
in some respects like humans and in other respects like
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machines. We found that students who demonstrated a
stronger understanding of human intentionality on a
behavioral prediction measure learned more effectively
from teachable agent software. We also found that the
process of interacting with teachable agents can influence
how students deploy agency concepts. Together, these
findings suggest an important reciprocal relationship
between students' use of software agents and students' un-
derstanding of them.

Introduction

The rapid technological development of the past two
decades has spawned a variety of software agents that
can perceive and act with some degree of autonomy
(Rudowsky, 2004; Russel & Norvig, 2010; Woolridge &
Jennings, 1995). When people interact with these
software agents, they may call upon many of the cogni-
tive skills that underlie human-to-human interaction
(e.g., Kuchenbrandt, Eyssel, Bobinger, & Neufeld, 2013;
Malle, 2015). People may, for example, have to interpret a
software agent’s request, reason about its goals, or make
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predictions about its behavior. But the unique properties
of software agents can make these tasks challenging.
Software agents, by design, behave in some respects like
humans but in other respects like machines, and different
software agents may reflect different aspects of human
thought. As a result, interacting with software agents
requires people both to call upon concepts of how human
and mechanical agents operate and to deploy these
concepts effectively given the pragmatics of the interaction.

For example, when one encounters a software agent
during a service call, a successful interaction requires
more than a simple decision of whether to treat the
agent as a person or a machine. It also requires explicit
consideration of particular ways in which the agent is
likely to be person-like. For instance, the service-call
agent may have some forms of knowledge and may be
able to respond to emotions, but it is unlikely to know
much about topics irrelevant to the typical service call
or to have non-auditory sensory functions.

Further, your interaction with the automated system
may elicit responses that are incompatible with how you
thought the system was operating. These responses will
help you calibrate how you conceptualize this particular
automated system, and they may also help you refine
your deployment of agency concepts in future inter-
actions with other systems (Epley, Waytz, & Cacioppo,
2007; Gopnik & Wellman, 1994; Levin, Saylor, Adams, &
Biswas, 2013; Levin, Saylor, & Lynn, 2012). This form of
learning about agents has rarely been explored empiri-
cally, but it may be quite important, especially given
recent arguments that it could induce a fundamental
change in our understanding of the ontological distinction
between living and nonliving things (Kahn et al., 2012).

In this paper, we examine the reciprocal relationship
between agency concepts and agent interactions in one
particularly important context: the classroom. We report
three experiments in which middle school students used
an established teachable-agent-based computer learning
environment called Betty’s Brain (Blair, Schwartz, Biswas,
& Leelawong, 2007; Leelawong & Biswas, 2008) for lessons
on scientific topics. We find that students with stron-
ger pragmatic understanding of human agency—that
is, students who make more intentional predictions
about human behavior on a behavioral prediction
measure—learn more effectively from the teachable
agent system. We also find that the process of interacting
with the system sharpened students’ distinctions between
human behavior and mechanical behavior.

Conceptualizing agents

When considering how people conceptualize software
agents, it is helpful to start with a definition of “software
agents”. Although researchers have relied upon a range
of definitions, one relatively uncontroversial definition is
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that software agents are programmed entities that
include some form of autonomy, ability to learn, and
ability to interact socially with human users (see Nwana,
1996 for review). As this definition suggests, when users
need to understand software agents, they likely draw
upon their understandings of human thinking.

A variety of findings suggest that, when an unfamiliar
entity exhibits minimal cues of agency (e.g., an entity has
“eyes”, appears to make goal-directed movements, or be-
haves unpredictably), people are quick to anthropomorphize
it, using their knowledge about human thought and
behavior as a framework for understanding and drawing
inferences about the entity’s internal operations (Barrett &
Lanman, 2008; Epley et al., 2007; Gray, Gray, & Wegner,
2007; Heider & Simmel, 1944; Jipson & Gelman, 2007;
Kahn et al,, 2012; Levin, Saylor, Adams, & Biswas, 2013;
Levin et al, 2012; Martini, Gonzalez, & Wiese, 2016;
Melson et al., 2009). For example, when asked to describe
shapes moving around a screen in a pre-determined
pattern, people tend to do so in human, goal-oriented
terms, saying things like “the big triangle was chasing the
little one” or “the big triangle is aggressive” (Heider &
Simmel, 1944). On one view, this can be understood as
extending “theory of mind” to perceived agents, imputing
beliefs, desires, and goals that can explain and support
predictions about their behavior (Baron-Cohen, Leslie, &
Frith, 1985; Gopnik & Wellman, 1992, 1994; Wimmer &
Perner, 1983).

A key concept underlying theory of mind is the distinc-
tion between intentional and nonintentional representa-
tions. Intentional representations are characteristic of
human thought and are closely linked to their referents.
One referent cannot be freely substituted for another, as
the representation—referent link is embedded in a rich set
of contextual knowledge and perceptual experiences
(Dennett, 1991). Non-intentional representations, on the
other hand, are more characteristic of computers. These
representations are less closely linked to their referents,
serving as symbolic placeholders that the system acts
upon with little importance placed on their semantic con-
tent (Searle, 1986). One way of summarizing this contrast
is to suggest that intentional representations reflect truly
situated semantic knowledge about the world while
non-intentional representations are more like pointers to
a representing system that does not really “know” the true
meaning of the representations. In this paper, we refer to
the ability or tendency of an entity to use, or behave as
though it is using, intentional representations as “agency”
(Schlosser, 2015). Speaking generally, the use of intentional
representations enables agents to engage in the types of co-
herent, goal-directed behavior characteristic of humans,
while the use of non-intentional representations does not.

Although the distinction between intentional and non-
intentional representations is abstract, it is possible to
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understand it more concretely by considering how chil-
dren begin to generate different expectations for humans
and inanimate objects over their first few years of life
(Kuhlmeier, Bloom, & Wynn, 2004; Spelke, Phillips, &
Woodward, 1995; Woodward, 1998). For example, Wood-
ward (1998) repeatedly showed nine-month-old infants ei-
ther a human hand or an inanimate reaching device (e.g., a
stick) moving toward one of a pair of objects (a teddy bear
or a ball). Then, on the critical trial, the locations of the
two objects were switched, and the hand or inanimate stick
either moved toward the same object in its new location or
toward the other object in the same location. Woodward
hypothesized that when the hand moves toward the previ-
ously reached-for object in the new location, the action is
explainable based on a goal that is supported by an
intentional representation of the object (the person wants
that object). Alternatively, the hand that moves toward a
different object in the previously reached-for location is be-
having consistently with non-intentional representations:
rather than acting upon a particular object, this agent is re-
peatedly acting on a location, meaning that the goal object
can be freely substituted across trials without consequence.
Woodward found that infants viewing the critical trial
looked longer (indicating surprise) when the hand moved
to the new object at the old location, suggesting that the in-
fants interpreted the reach by the hand as a goal-driven
intentional action. Importantly, the same action by an in-
animate stick produced no such effect, implying that the in-
fants were limiting the inference of goal-directed
intentional action to the human agent.

While much research has demonstrated that children
develop the basic concepts of goal-directedness and
theory of mind at young ages, this does not mean that
these concepts are fully elaborated or that they are con-
sistently applied to new situations (Birch & Bloom, 2007;
Christensen & Michael, 2016; Keysar, Lin, & Barr, 2003).
Indeed, there are reliably measurable individual differ-
ences both in older childrens’ (Baron-Cohen, O’Riordan,
Stone, Jones, & Plaisted, 1999) and adults’ (Baron-Cohen
& Wheelwright, 2004) theory of mind, an observation
that led Apperly (2012) to emphasize the importance of
“the varying capacity to deploy [theory of mind]
concepts in a timely and contextually appropriate
manner” (p. 385).

Similarly, people likely vary in their capacity to apply
these concepts in support of interactions with artificial
agents such as software agents. We propose two factors
that may be particularly relevant to this capacity. First,
on the assumption that people use their understanding
of human cognition as a base for understanding artificial
agents (Epley et al, 2007), they must know enough
about the set of skills that comprise human cognition to
explicitly judge which of these skills a given software
agent may possess. This is important because software
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agents vary considerably—they may simulate intentions
but lack emotion, they may simulate knowledge but lack
any capability of making decisions “on their own”, and
they may be able to “think” in some ways but be unable
to sense information in their surroundings. Having a
good understanding of these skills and the dividing lines
between them can prevent users from over- or under-
generalizing when considering evidence about a software
agent’s capabilities. Second, people must have some
sense of how the pragmatics of different situations will
call upon these various skills. For example, in a situation
where an intelligent animated software agent assists with
a word processing program, the user would benefit from
understanding that the software agent’s role will require
it to have knowledge about word processing and to
make decisions about whether to interrupt the user with
hints, but will not require the agent to possess emotions
or the ability to see.

People who more easily recognize the purposes that
software agents serve and the subset of human-like skills
most relevant to those purposes will likely interact with
software agents more effectively for a number of reasons.
First, people with these abilities may be better able to “get
inside the head” of a software agent, and therefore reap
benefits analogous to those afforded by theory of mind in
human-to-human social interactions. Second, if people
cannot judge the subset of skills that a software agent is
likely to exhibit in a given setting, they may become frus-
trated with agents that lack expected skills, or, conversely,
with agents that do more than expected (de Graaf, Ben
Allouch, & van Dijk, 2016; Scheeff, Pinto, Rahardja,
Snibbe, & Tow, 2002). Further, even in the absence of a
negative emotional response, poor pragmatic understand-
ing of agents may cause cognitive inefficiencies, either as a
result of engaging in capacity-absorbing social responses
that do not facilitate problem solving (Herberg, Levin, &
Saylor, 2012), or by engaging in cognitive elaborations on
agents that interfere with more basic information process-
ing (Baker, Hymel, & Levin, 2016).

Measuring pragmatic understanding of agency

In previous work, we constructed and validated a measure
of how readily adults deploy knowledge about different
types of agents to novel situations. This measure asks
participants to predict the behavior of multiple types of
agents (e.g., a human, a computer, and a robot) in a series
of scenarios (e.g., Levin, Killingsworth, Saylor, Gordon, &
Kawamura, 2013). The scenarios were designed so
that participants’ behavioral predictions would differ
depending on whether the agent exhibited intentional,
goal-directed behavior or non-intentional, mechanical
behavior. For example, one of the scenarios—the
“object-goal” scenario—closely followed Woodward’s
(1998) experiment, asking participants to imagine that
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a particular agent had repeatedly selected one of two
objects and then asking which object the agent would
select when the locations of the two objects were
switched. If participants believe the agent to be acting in
an intentional and goal-directed manner, they should pre-
dict that the agent will maintain the same goal (choose the
same object), but if participants believe the agent to be
acting in a rote or non-intentional manner, they should
predict the agent would maintain its movement pattern
without regard to goal state by reaching to the new
object at the old location. Other scenarios focused on
categorization, with participants predicting whether
agents would classify objects using taxonomic categories
(for example, “office supplies”), or more surface-level,
feature-based categories (for example, “rectilinear objects”;
Bloom, 1997; Deak & Bauer, 1996).

On average, adult participants made more “intentional”
behavioral predictions for the human and more “non-in-
tentional” behavioral predictions for mechanical agents,
providing evidence of construct validity (Levin, Saylor, et
al., 2013). Additional work has demonstrated the robust-
ness of the pattern of predictions (Levin, Harriott, Paul,
Zhang, & Adams, 2013) and demonstrated that neither
perceived limits in current technology nor perceived
intelligence of the agents fully accounts for the differences
in predictions, as the same pattern occurs when partici-
pants consider agents from the distant future (Levin, Kill-
ingsworth, & Saylor, 2008).

Importantly, however, this pattern of predictions is not
obvious or universal, even among adults. While some par-
ticipants consistently made “intentional” predictions for
humans and “non-intentional” predictions for mechanical
agents, others did not. This variability demonstrates that,
although basic concepts of goal-directed behavior are
typically in place—and limited to humans—at a young age
(e.g., Woodward, 1998), elaboration and effective deploy-
ment of these concepts varies across development and
into adulthood (Apperly, 2012; Keysar et al., 2003).

A key feature of the behavioral prediction measure is
that “correct” responses require explicit recognition that
the situation tests a specific agency concept. For ex-
ample, consider the object-goal scenario based on the
Woodward (1998) study. In the case of a human, the
nominally correct prediction is that the person will
maintain the same goal and reach to the old object, now
in a new location. At some level, this is a simple predic-
tion that relies on basic concepts of goal-directedness
that even infants understand (Woodward, 1998). But the
basic concept of goal-directedness does not totally deter-
mine the agent’s actions in this situation because a
person could, for some reason, have the goal of reaching
to a given location (for example, to change the weight
distribution on the table where the objects rest). A
correct response requires recognizing not only that such
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a goal would be atypical, but also that the pragmatic in-
tent of the question is to assess typical goals. We
observe that this need to coordinate basic knowledge
about goal-directedness with the pragmatics of a specific
situation is similar to the demands that teachable agents
place upon learners in educational contexts. Specifically,
in the case of a teachable agent, it is likely helpful for
learners to understand how the pedagogical setting that
the agent inhabits constitutes a pragmatic constraint that
determines how the agent’s mental processes will operate.
For example, it is useful for students to effectively merge
their understanding that the Betty system is meant to
teach causal biological relationships with their under-
standing that Betty can be said to have the goal of learning
biology, while she does not have goals related to culti-
vating personal relationships or getting lunch.

Finally, we note that participants’ behavioral predictions
can be modified by experience with agents (Levin et al,,
2008; Levin, Harriott, et al., 2013). This is consistent with
more general evidence suggesting that experience may
increase or decrease attributions of agency to machines
(Nass & Moon, 2000; Somanader, Saylor, & Levin, 2011;
for review, see Epley et al,, 2007; Jaeger & Levin, 2016).
This is also an important component of pragmatic under-
standing of agency: people can re-calibrate the concepts
they apply to a particular agent based on cues from the
agent and the environment. The studies we report in
this article investigate how experience with software
agents affects understanding of agency as well as the
reverse relationship.

Teachable agents and pragmatic understanding of
agency

The present studies focus on the role that pragmatic
understanding of agency plays in the middle school
classroom, where several well-known technology-based
learning systems seek to help students learn material by
having them teach it to “teachable agents”. A teachable
agent is a graphical character in a computer environment
that can be taught concepts by students. Using artificial
intelligence, the teachable agent answers questions, com-
pletes quizzes, and provides explanations based entirely
on what the student has taught it (for review, see Chase,
Chin, Oppezzo, & Schwartz, 2009). The teachable agent is
often viewed as an extension of the learning-by-teaching
paradigm in which students not only learn more effect-
ively by providing explanations to other students (Webb,
1983), but also learn more effectively by merely preparing
to explain material to other students (Bargh & Schul,
1980; Bransford, Brophy, & Williams, 2000).

Schwartz et al. (2009) argue that learning by teaching
is effective because it invokes metacognitive monitoring
of both the student’s own knowledge and their partner’s
(i.e., the teachable agent’s) knowledge. Betty’s Brain, an
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extensively studied teachable agent system, is thought to
be an effective teaching tool because it invokes this type
of metacognitive monitoring, among other reasons (for
review, see Blair et al., 2007).!

The use of teachable agent software, however, may
present unique challenges for some students. Students
with weaker pragmatic understanding of agency may be
at a disadvantage because they are less able to optimally
deploy agency concepts that facilitate learning. Further,
the cognitive effort involved in deploying the appropriate
concepts at the appropriate times, along with the effort
of monitoring cues from the software to determine which
concepts are most helpful in what circumstances, may
disproportionately tax the cognitive resources of these
students. This would leave fewer resources available for
the metacognitive monitoring critical to the learning-by-
teaching paradigm—monitoring which is itself resource-
intensive (Schwartz et al., 2009).

For these reasons, we hypothesize that pragmatic un-
derstanding of agency facilitates learning from teachable
agent systems. There are, however, several possibilities
as to which understandings of agency (understandings
about a human, a computer, or a particular teachable
agent) are most relevant to learning. Students’ under-
standings of human agents are the broadest and most
commonly used. Indeed, understanding of human
intentionality underlies much of everyday thought and
provides a foundation for theory of mind. Students ge-
nerally have far more knowledge about how people
operate than how computers or teachable agents operate.
The ability to draw on this broad knowledge of human
intentionality should help students interact with software
agents like Betty, who are in many ways designed to
imitate humans. It is also possible, however, that students’
understandings of computers facilitate learning: teachable
agents are, ultimately, symbols in computer systems. It
may be that understanding the non-intentional represen-
tations used by computer systems helps students navigate
some of the teachable agents’ limitations. Another inter-
esting possibility is that students’ understandings of the
particular teachable agent (e.g. Betty in Betty’s Brain) are
most relevant to learning—at least if the students’ expe-
rience with the teachable agent system allows them to
build a robust understanding of the particular agent.
Further, it seems plausible that learning could be facili-
tated by either an intentional understanding of Betty
(enabling students to better “play along” with the idea
that Betty is human in the context of the software) or a
non-intentional understanding of Betty (by enabling
students to better recognize and cope with some of
Betty’s limitations in the learning environment).

We also hypothesize that using teachable agent software
will improve students’ pragmatic understandings of
agency (Levin, Saylor, et al., 2013). Specifically, we expect
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that time spent dealing with software agents—and grap-
pling with the attendant difficulties in deploying the ap-
propriate agency concepts—will help refine students’
agency concepts, and their deployment of those concepts
in other contexts. Again, there are a number of ways this
learning could manifest itself. One possibility is that it
could increase intentional attributions to Betty as
students’ interactions with her increase their attributions
of her agency. This would be consistent with research
from Nass and Moon (2000) documenting automatic
social responses caused by interactions with computers.
However, it is also possible that students will learn about
some of the differences between people and artificial
agents as they come to know Betty’s limitations. In such a
case, one might expect a decrease in attributions of agency
to Betty, and possibly even an increase in attributions of
agency to people as the interaction clarifies for students
the salience of goals in everyday behavior.

Experiment 1

In Experiment 1, students covered class material on
climate change and food webs either through the Betty’s
Brain teachable agent system (experimental condition)
or traditional classroom teaching methods (control con-
dition). We measured students’ learning through the use
of pre- and posttests of the covered content.” After sub-
mitting the content posttest, students completed our be-
havioral prediction measure, making predictions about
each of a human, a computer, and Betty. Finally, students
completed a property attribution questionnaire, which
assessed the extent to which students attributed human-
like abilities (e.g., the ability to think, to see, or to feel) to a
computer (all students) and to Betty (students in experi-
mental condition). This questionnaire was added to test
whether any observed relationships between the behav-
ioral prediction measure and learning would remain when
controlling for broader attributions of intelligence and
knowledge to computers and/or the Betty system. We also
wanted to assess any differences in attributions of
intelligence and knowledge between Betty and computers
in general.

Method

Participants

Participants were recruited from five classrooms in a
Nashville, Tennessee public middle school. A total of 108
seventh graders (57 experimental and 51 control) were
enrolled in the study, and 74 students (69%) completed all
measures. Because measures were given on different days,
specific analyses may include different numbers of partici-
pants. Age and sex were not collected from the partici-
pants. Informed consent was obtained from all students
and at least one legal guardian of each student.
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Materials

Betty’s Brain teachable agent system Betty’s Brain is a
software-based learning environment in which students
create causal concept maps to teach Betty, an interactive
teachable agent. The software was designed to promote
and reinforce metacognitive techniques, such as know-
ledge state monitoring, as students must ensure that
Betty “understands” the material sufficiently for her to
perform well on quizzes. Students use the Betty’s Brain
program by reading provided texts and identifying the
causal relationships among concepts described in those
texts. Students put together concepts and their causal
relationships by using a visual interface to create a con-
cept map (Fig. 1). In the concept map, students create
nodes that represent a concept and draw links between
concepts to specify relationships. Students are able to
ask Betty questions about the relationship between con-
cepts (e.g., if A increases, what happens to B?), and Betty
answers based on the current concept map. Students are
also able to direct Betty to take “quizzes”—sets of
questions made up by a mentor agent named Mr. Davis.
Mr. Davis grades the quizzes and lets Betty and the
student know which answers are right and wrong. This
exercise of iteratively constructing knowledge, checking
its correctness, and then revising the knowledge has
been shown to improve learning (Biswas, Leelawong,
Schwartz, & Vye, 2005; Leelawong & Biswas, 2008;
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Leelawong, Davis, et al., 2002; Segedy, Kinnebrew, &
Biswas, 2013).

Importantly, Betty is designed to simulate, in some
ways, a human student. Betty is represented by an ani-
mated face, and she interacts with students in a variety
of ways that suggest she is a self-motivated agent, with
her own beliefs, desires, and goals. Betty encourages
students to read the resources and learn new infor-
mation so they can teach it to her. She initiates con-
versations with students by restating recently taught
knowledge and describing how that knowledge affects
her broader understanding of the relevant material (i.e.,
the causal chains in the students’ concept map). Betty
monitors her learning and spontaneously expresses con-
cern (whether correct or incorrect) that what she is
learning does not appear to make sense (Blair et al,
2007). Betty also requests that students ask her ques-
tions to ensure she understands and can apply the new
causal relations they have taught her. Students can ask
Betty to explain how she derives her answers, and she
responds using speech, animation, and text. Betty
expresses a desire to improve her scores on quizzes and
disappointment if this goal is not met.

Of course, while Betty’s behavior appears in some ways
human-like, it is in other ways mechanical. For example,
while Betty has a face, her facial expression is not
variable. Betty’s mood and motivation level remain con-
stant throughout the learning session. And, of course,
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Betty’s knowledge is constrained by what students input in
their concept maps. When students ask Betty questions,
her answers are always logically drawn from the student’s
concept map (she uses a qualitative reasoning algorithm
described in Leelawong & Biswas, 2008).

Behavioral Prediction Questionnaire After completing
lessons on the Betty’s Brain system, students completed a
pencil-and-paper behavioral prediction questionnaire
(adapted from the behavioral prediction measure de-
scribed above) to assess their pragmatic understanding of
agency. The first page of the questionnaire contained
pictures and a short description of each of three agents: a
human, a computer, and Betty. Students then responded
to three prediction scenarios for each of the three agents,
a total of nine scenarios. Examples of the behavioral
prediction scenarios are included in Additional file 1 (one
sample scenario is included for each of the three agents).

We summed the total number of intentional predictions
each student made for each agent, producing, for each
student, three outcome scores ranging from 0 to 3. For
example, a student who made all intentional behav-
ioral predictions for a person and all non-intentional be-
havioral predictions for a computer and for Betty would
have a score of 3 for person behavioral predictions, a score
of 0 for computer behavioral predictions, and a score of 0
for Betty behavioral predictions.

Property Attribution Questionnaire Students also
completed a property attribution questionnaire, which
was created for this study but drew upon similar ques-
tionnaires used by Baker et al. (2016) and Epley, Akalis,
Ways, and Cacioppo (2008). This questionnaire assessed
students’ beliefs about the capabilities of a computer—
whether it can see, think, remember, count, feel (emotion-
ally), know things, have intelligence, and understand a
person’s desires. Students in the experimental condition
also responded to the same set of questions about Betty.
Students responded to all but the “know”, “intelligence”,
and “desire” items on a four-point Likert scale, ranging
from “definitely cannot” to “definitely can”. For the “know”
and “intelligence” items, the response options compared
the agents capabilities to a human’s using a five-point
Likert scale ranging from “less than a human” to “more
than a human.” The “desire” item used a three-point
Likert scale ranging from 1, which indicated a high level
of understanding of human desires, to 3, which indicated
a low level. For this question, students were asked to con-
sider whether a computer (or Betty) would be “able to
understand what you were thinking about. For example,
your friend might understand that you are looking
forward to your birthday, or that you would like to get a
good grade on your homework. Do you think that a com-
puter could understand things like this about you?”

(2019) 4:14

Page 7 of 20

Procedure
Students were assigned by classroom into either the ex-
perimental or control condition. Students covered the
same course material in both conditions: one unit on
arctic climate change and one unit on aquatic food webs.
Students in both conditions first took a content pretest
to establish their baseline knowledge of arctic climate
change. The content pretest included both a multiple-
choice component and a short-answer component. The
multiple-choice component consisted of 14 multiple
choice questions of varying degrees of difficulty, and
students could earn between 0 and 34 points based on
their responses.”> The two short-answer questions asked
students to explain, step-by-step, the relationship between
causes and effects of climate change, and students could
earn up to 11 points by identifying links in the causal
chains. Samples of multiple-choice and short-answer
questions from the unit on arctic climate change are
included in Additional file 1. After a brief introduction to
arctic climate change, students in the experimental condi-
tion underwent one class period of training in the Betty’s
Brain program, while students in the control condition
continued with normal lessons. Experimental students
then spent four full class periods constructing their con-
cept maps and teaching Betty, while control group stu-
dents spent the same amount of time doing traditional
textbook-based exercises taught by their regular classroom
teachers using their preferred approach. After completing
these lessons, students in both conditions took a content
posttest identical to the pretest. Both groups then repeated
the series of activities for the aquatic food web lessons.
After completing the content posttest for the second
unit, students were given the behavioral prediction ques-
tionnaire asking them to make predictions about a
human, a computer, and Betty. Control participants, who
had no previous exposure to Betty, were given a brief de-
scription of Betty before completing the questionnaire.
Specifically, these students were told that Betty is an ani-
mated character and that she is part of a computer pro-
gram that helps students learn by teaching things to her.
Finally, students responded to the property attribution
questionnaire. Those in the control condition rated a
computer and those in the experimental condition rated
both a computer and Betty.

Results

Behavioral predictions

To examine how participants’ behavioral predictions
varied across agents and conditions, we conducted a 2 x 3
mixed ANOVA. The ANOVA included condition (control
vs. experimental) as a between-subjects factor, agent type
(human vs. computer vs. Betty) as a within-subjects factor,
and intentional behavioral predictions as the dependent
variable. We found no main effect of condition (F(1,71) =
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0.046, p = 0.83) and a significant main effect of agent type
(F(2,142) = 11.521, p < 0.001). With respect to agent type,
post hoc comparisons revealed that students made more
intentional behavioral predictions for the human agent
(M = 63%, 1.88 of 3) than for Betty (M =41%, 1.22 of 3;
Bonferroni-corrected p <0.001) or for the computer
(M =43%, 1.29 of 3; Bonferroni-corrected p = 0.002).

We were also interested in whether students in the
experimental condition (those who interacted with Betty)
showed greater pragmatic understanding of agency—that
is, a greater tendency to distinguish humans from
machines on the behavioral prediction measure—than
students in the control condition. Our ANOVA revealed
no significant interaction between condition and agent
(F(2, 142)=0.85, p=0.36). However, we observed that,
descriptively, participants in the experimental condition
made more intentional predictions for the person (65% vs.
59%) and fewer intentional predictions for both Betty
(39% vs. 42%) and the computer (40% vs. 47%) than
participants in the control condition. Table 1 provides a
summary of participants’ behavioral predictions split by
condition and agent.

Behavioral predictions and learning

Students’ performance on the content pre- and posttest
is summarized in Table 2. Students in both conditions
generally performed better on the posttest than the
pretest, reflecting learning. Specifically, paired ¢ tests
revealed that students in the Betty condition improved
from pretest to posttest on multiple choice questions
(t(51) =4.21, p<0.001) and short answer questions
(t(51) =2.25, p =0.03). Students in the control condition
also improved from pretest to posttest on the multiple
choice questions (t(47) =2.72, p=0.009), but did not
improve on the short answer component (t(47) = 1.57,
p=0.12).

Table 1 Mean percentage of intentional behavioral predictions
(out of 3) made by participants for each agent (a human, a
computer, and Betty) in each condition (control vs. Betty), for all
three experiments

Human Computer Betty

Experiment 1

Control (N=31) 59% 47% 42%

Betty (N=42) 65% 40% 39%
Experiment 2

Control (N=139) 52% 49% 52%

Betty (N=97) 67% 47% 42%
Experiment 3

Betty (N=75) 72% 43% 50%
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We tested whether students’ behavioral predictions were
related to their learning by running three regressions. Each
regression predicted students’ posttest content scores using
three predictor variables: content pretest scores, condition
(control vs. experimental), and intentional behavioral
prediction for one of the three agents (human, computer,
or Betty). Pretest and posttest content scores reflected av-
erages of students’ standardized scores on the multiple
choice and short answer components.

As reported in Table 3, we found that behavioral pre-
dictions for a person (but not for Betty or for a com-
puter) significantly predicted learning. That is, students
who made more intentional behavioral predictions for a
person also performed better on their content posttests
(controlling for their content pretests). To evaluate
whether the relationship between person behavioral pre-
dictions and learning differed across our experimental
conditions, we re-ran the regression with a prediction—
condition interaction term added to the regression
model. The interaction term was not statistically signifi-
cant (p=0.109, p = 0.308). However, analyses run separ-
ately on the control and experimental (Betty’s Brain)
conditions tentatively suggest that person behavioral
predictions may be more predictive of learning in the
experimental condition. As shown in Table 3, person
behavioral predictions significantly predicted learning
in the experimental condition but not in the control
condition.

We ran two additional regressions to probe whether the
predictiveness of person behavioral predictions was
specific to either the multiple choice or short answer com-
ponents of the posttest. These regressions used students’
standardized sub-scores on the separate components of
the posttest as outcome variables (and controlled for the
corresponding pretest sub-score). Intentional behavioral
predictions for a person were a significant predictor of
learning on both the multiple choice (B =0.229, p = 0.004)
and short answer ( =0.207, p =0.027) components of
the test.

Property attribution questionnaire

Finally, we analyzed students’ responses to the eight-item
property attribution questionnaire. We analyzed only
responses from students in the experimental group (those
who interacted with Betty), because only those students
responded to the questionnaire for both Betty and a
computer. A 2 x 8 within-subjects ANOVA (agent (Betty
vs. computer) x question) revealed a significant main
effect of agent (F(1,37)=17.446, p <0.001), with stu-
dents generally attributing more human-like properties to
a computer than to Betty (means=2.455 and 1.994, re-
spectively). The ANOVA also revealed a significant main
effect of question (F(7,259)=19.364, p<0.001), and a
significant interaction (F(7,259) =16.828, p <0.001). As
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Table 2 Mean scores on content pretests and content posttests (multiple choice components (MC), short answer components (SA),

and overall content scores (OC)) by group (control vs. experimental (Betty)) for Experiments 1-3

MC Pre MC Post SA Pre SA Post OC Pre OC Post
Experiment 1
Control (N=51) 15.30 (5.95) 16.81 (7.54) 146 (1.45) 1.72 (1.62) 0.04 (81) —0.02 (86)
Betty (N=57) 15.11 (5.71) 17.60 (6.49) 1.20 (1.54) 1.51 (1.51) —0.05 (.78) 0.02 (.79)
Experiment 2
Control (N=39) 551 (2.20) 6.63 (247) 2.37 (1.55) 2.08 (1.86) -0.14 (67) —-027 (77)
Betty (N=97) 6.77 (2.51) 7.82 (2.77) 292 (2.07) 3.07 (232) 0.02 (94) 0.07 (91)
Experiment 3
Betty (N=75) 528 (2.23) 6.68 (2.21) 3.16 (2.18) 4.62 (2.87) 0.00 (.84) 0.00 (.90)

Standard deviations appear in parentheses after means. The overall content (OC) scores reflect averages of students’ standardized scores on the multiple choice

and short answer components

Table 3 Regressions predicting content posttest scores using
content pretest scores, condition, and intentional behavioral
predictions for particular agents in Experiment 1

Beta t p
Person behavioral predictions
Overall
R?= 0678, F(3,69) = 48410, p < 0.001
Person behav. pred. 0.218 3.097 0.003
Pretest 0.749 10.709 <0.001
Condition 0.042 0.606 0.547

Betty condition only
R?=0.748, F(2,38) = 56.292, p < 0.001

Person behav. pred. 0.267 3.245 0.002
Pretest 0.788 9.579 <0.001

Control condition only
R? = 0.585, F(2,29) = 20475, p < 0.001

Person behav. pred. 0.150 1.186 0.245
Pretest 0.703 5551 <0.001

Betty behavioral predictions

Overall

R’ = 0637, F(3,69) = 40.295, p < 0.001
Betty behav. pred. 0.059 0814 0419
Pretest 0.791 10.880 <0.001
Condition 0.069 0.946 0347

Computer behavioral predictions

Overall

R? = 0636, F(3,69) = 40.160, p < 0.001
Computer behav. pred. 0.053 0.716 0476
Pretest 0.802 10.935 <0.001
Condition 0.072 0.987 0327

The “Betty condition only” and “Control condition only” follow-up regressions
include only participants in the named condition

shown Fig. 2, students believed the computer to be more
knowledgeable, more intelligent, and more likely to see
than Betty. In addition, students rated Betty as marginally
more likely than the computer to think, though this diffe-
rence fell short of statistical significance. There were no
significant differences in students’ estimates of the
computer’s and Betty’s abilities to remember, count, feel,
and understand desire.

We also tested whether students’ property attributions
might relate to or affect the observed link between
behavioral predictions and learning. No individual items
from the property attribution questionnaire predicted
learning, so we calculated the mean of all of the eight
ratings that were done for both the computer and Betty.
This can be considered a measure of the degree to which
participants globally attribute a range of intellectual
skills to Betty and to a computer. We tested whether the
mean property attributions were correlated with results
of the behavioral predictions for humans, computers, and
Betty, and found that they were not. In order to test for re-
lationships between explicit attributions to software agents
and content learning, we added mean property attributions
for both Betty and the computer to the regression using
person behavioral predictions to predict learning (i.e., stu-
dents’ posttest scores, controlling for the corresponding
pretest scores). The person behavioral predictions again sig-
nificantly predicted learning (=0.268, p=0.003), while
students’ property attributions did not.

Discussion

We found that students who made more intentional
behavioral predictions for humans learned more effect-
ively from the Betty’s Brain system. In addition, although
the effect was not statistically significant in this experi-
ment, students who used the Betty system made more
intentional behavioral predictions for a human and fewer
intentional behavioral predictions for a computer and for
Betty than students who did not use the system. This
could imply that using the Betty system refines children’s
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Experiment 1 property attributions for
Betty and a computer
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Fig. 2 Results of property attribution questionnaire for Betty condition in Experiment 1. The error bars represent standard errors

understanding of agency, helping them understand the
overall differences between how human intelligence and
machine intelligence manifest in specific situations. We
revisit this topic in Experiment 2 below.

Finally, the pattern of results from the property attri-
bution questionnaire allowed us to gain insight into how
the students think about computers and Betty, and what
their expectations of these agents might be. Interestingly,
the students who had experience with Betty’s Brain rated
Betty as being marginally more likely to think than the
computer, while rating the computer as more intelligent
and knowledgeable than Betty. Thus, it seems that the
students who interacted with Betty began to consider
her as separate from the hardware and programming,
attributing a kind of independent information processing
to her character. Betty’s lower intelligence and know-
ledge ratings may be due to her initial ignorance of the
material (as the Betty agent only knows what she is
taught by the student) and difficulties they may have
experienced in trying to get Betty to give correct an-
swers. In addition, students likely discovered that despite
having an animated face, Betty could not see them, and
therefore rated her ability to see as less than a computer
which might be expected to at least process visual infor-
mation via a web cam.

Experiment 2

In order to examine the reliability of our Experiment 1
findings, a second experiment was conducted. The inter-
vention was largely similar to that of Experiment 1, with

some minor differences. First, some students used the
version of Betty’s Brain system that was used in Experi-
ment 1, while others used a new version. This new
version was updated to provide more feedback to students.
However, this updated version produced no detectable
effects beyond the original Betty system and was therefore
grouped together with the older version in all analyses.

Second, students in the control condition of Experi-
ment 2 used a control version of the Betty’s Brain system
that did not contain any agents. The use of this system
allowed us to create a baseline condition that would
isolate effects of using Betty’s Brain from the effects of
using any educational computer software.

Third, the multiple choice component of the content
pretest/posttest was modified from Experiment 1 to
Experiment 2. Specifically, for Experiment 2, the multiple
choice component was reduced from 14 items to 11
items, and was scored on an 1l-point scale, with
students receiving 1 point for each correct response
and 0 points for each incorrect response.*

Fourth, in Experiment 2, all students underwent training
in basic causal reasoning and completed causal reasoning
pre- and posttests. In these tests, students answered ques-
tions about causal concept maps that were similar in form
to those they created in Betty’s Brain, but concerning
different content (for an example map and questions, see
Additional file 1). We used these tests to examine whether
any learning advantage associated with the behavioral
prediction scenarios would be broad enough to include
facilitation on causal reasoning tests. Several previous
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findings suggest this possibility. First, research exploring
how knowledge supports abstract reasoning in adults sug-
gests that many forms of basic causal reasoning are sup-
ported by relatively broad schemas (Cheng & Holyoak,
1985), and second, researchers exploring the development
of causal reasoning in children have proposed a broad
causal reasoning system that can take input from any of a
number of more specific systems (Gopnik, Sobel, Schultz,
& Glymour, 2001). On both of these views, it is possible
that there will be a link between reasoning about how
goals cause behavior on the behavioral prediction measure
and a more general understanding of causal links.

Method

Participants

We recruited 207 students from ten seventh and eighth
grade classrooms in the same Nashville, Tennessee pub-
lic middle school. A total of 136 students (97 experimen-
tal, 39 control) completed the study and were included
in our analyses. Of the 136 students, 25% were classified
as “honor students”, and 24 had previous experience
with Betty’s Brain. The study underwent the same
approval and consenting process as Experiment 1.

Materials

For this experiment, we included a causal reasoning
training exercise and a causal reasoning pretest and
posttest. The causal reasoning test was an 18-item mul-
tiple choice test in which students were asked to reason
about causal maps ranging in complexity from two
nodes and one link to ten-node maps in which distant
nodes were connected by multiple links.

The content pretest and posttest were generally
administered as they were in Experiment 1, with the
modifications to the multiple choice component de-
scribed above. The behavioral prediction questionnaire
was administered just as it was in Experiment 1. The
property attribution questionnaire was also the same as in
Experiment 1 except that it contained nine items rather
than eight. The additional item probed students’ attri-
butions of semantic knowledge to an agent (a computer
or Betty), asking whether the agent knows what things like
sunshine and dogs are and what they are like.

Tennessee Comprehensive Achievement Program
(TCAP) scores were collected for most participants. This
is a standardized test issued to students in grades 3
through 8 in Tennessee. The TCAP is in multiple-choice
format and covers reading, mathematics, science, and
social studies.

Procedure

Students were assigned to one of three conditions by
classroom. The control condition used a version of the
Betty’s Brain software that contained no agents and
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issued no feedback® but allowed the students to create
concept maps. The first experimental condition used the
same version of Betty’s Brain described in Experiment 1.
The second experimental condition used an updated
version of Betty’s Brain that provided more extensive
feedback to the students but was otherwise very similar
to the first experimental condition.® Because the updated
version of Betty’s Brain produced no effects that
differentiated it from the original version, we group the
two together as one experimental condition in all
statistical analyses.

The classroom intervention schedule was identical to
that of Experiment 1, except that all students received
causal reasoning training before beginning work on their
concept maps. During the training, students were walked
through a 23-slide PowerPoint presentation that intro-
duced concepts in causal reasoning using box-and-arrow
diagrams. The presentation began with a basic descrip-
tion of nodes, as well as positive and negative links
between nodes, and ended with examples of complex
diagrams that included branching and multiple paths.

Students covered the same substantive material in all
experimental conditions.

Results

Behavioral predictions

As in Experiment 1, we conducted a 2x3 mixed
ANOVA with condition (control vs. experimental) as a
between-subjects factor, agent type (human vs. computer
vs. Betty) as a within-subjects factor, and intentional
behavioral predictions as the dependent variable. Similar
to Experiment 1, we found no main effect of condition
(F(1,134) = 0.096, p =0.76) and a significant main effect
of agent type (F(2,268) =5.984, p =0.003). With respect
to agent type, students made more intentional behavioral
predictions for the human agent (M = 62%, 1.87 of 3) than
they did for Betty (M = 45%, 1.36 of 3; Bonferroni-corrected
p=0.009) or for the computer (M=47%, 142 of 3;
Bonferroni-corrected p = 0.018).

Importantly, our ANOVA also revealed a significant
interaction between condition and agent (F(2, 268) =
5.225, p=0.006). As predicted, students in the experi-
mental condition drew significantly sharper distinctions
between humans and machines than those who did not.
Specifically, in the experimental condition, students made
more intentional predictions for the person (M =67%,
2.00 of 3) than for the computer (M =47%, 1.40 of 3;
Bonferroni-corrected p <0.001) or for Betty (M= 42%,
1.27 of 3; Bonferroni-corrected p <0.001), whereas in
the control condition students’ intentional predictions
for a person (M= 52%, 1.55 of 3) did not differ from
their predictions for a computer (M =49%, 1.46 of 3) or
for Betty (M =52%, 1.56 of 3). Table 1 above provides a
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summary of participants’ behavioral predictions split by
condition and agent.

Because there may have been some baseline differ-
ences in test scores between the Betty and control con-
ditions (Table 2), we verified that the effect of condition
on intentional behavioral predictions remains even when
controlling for TCAP scores, content pretest scores, and
content posttest scores. We tested this using three
follow-up regressions,” each of which used one of these
three control variables and condition to predict the
difference between students’ intentional behavioral pre-
dictions for a person and their intentional behavioral
predictions for machines (i.e., the average of intentional
behavioral predictions for Betty and for a computer). All
three models were significant (TCAP model, (F(2,113) =
3.865, p = 0.024; Content Pretest model, F(2,132) = 6.537,
p =0.002; Content Posttest model, F(2, 129)=7.202,
p=0.001), and condition was a significant predictor in
each (TCAP model, =0.213, p = 0.022; Content Pretest
model, f=0.223, p=0.008; Content Posttest model,
B =0.223, p=0.019). The same pattern results when the
regressions are run with intentional behavioral predictions
for a person as the outcome variable (TCAP model,
F(2,113) =4.561, p = 0.012; condition B =0.237, p =0.010;
Content Pretest model, F(2,132) = 8.845, p < 0.001; con-
dition B=0.206, p=0.013; Content Posttest model,
F(2,129) = 7.091, p = 0.001; condition {3 = 0.197, p = 0.022).

Behavioral predictions and learning

Students’ performance on the content pre- and posttest
is summarized in Table 2, and students’ performance on
the causal reasoning pre- and posttest is summarized in
Table 4. With respect to the content test, paired t tests
revealed that students in both conditions improved
significantly from pretest to posttest on the multiple
choice component (Betty: t(91) =5.06, p <.001; control:
t(37) =3.93, p<.001), but not on the short answer com-
ponent (Betty: t(82) =0.97, p =.33; control: t(33) =2.28,
p =.03). With respect to causal reasoning test, students
in both conditions improved significantly from pretest to
posttest (Betty condition: t(89) =3.09, p =.003; control
condition: t(33) = 2.28, p =.03).

Table 4 Mean scores on causal reasoning (CR) pretests and
posttests for Experiments 2-3
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CR Pre CR Post
Experiment 2
Control (N=39) 6.28 (3.06) 757 (3.63)
Betty (N=97) 8.29 (3.73) 9.22 (3.82)
Experiment 3
Betty (N=75) 1.83 (1.25) 2.90 (1.06)

Standard deviations appear in parentheses after means. Note that Experiment
2 features an 18-item causal reasoning pre- and posttest, while Experiment 3
featured a condensed six-item version
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In this experiment, there were between-condition
differences on the content posttests. Specifically, students
in the Betty condition scored higher on the content post-
test than students in the control condition, t(130) = 1.996,
p=.048, and did not score significantly higher on the
content pretest, t(97.90)=1.141, p=.257. However,
improvement from content pretest to content posttest
was generally similar across conditions (t(100.46) = 1.185,
p=.239). Students in the Betty condition also scored
higher than students in the control condition on both the
causal reasoning posttest, t(126) =2.25, p =.026, and the
causal reasoning pretest, t(76.16) = 3.167, p =.002. Again,
improvement from pretest to posttest was similar across
conditions, t(122) = -.705, p = .482.

As with Experiment 1, we tested for relationships
between intentional behavioral predictions and learning
outcomes. We ran three regressions that paralleled those
we ran in Experiment 1, with each regression including
behavioral predictions for one of the three agents
(human, Betty, or computer), condition, and content pre-
test scores and as predictors of content posttest scores.
We also ran a second set of three regressions that
included behavioral predictions, condition, and causal
reasoning pretest scores as predictors of causal reasoning
posttest scores.

Intentional behavioral predictions did not significantly
predict content posttest scores in this experiment.®
However, as reported in Table 5, intentional behavioral
predictions for a person were a significant predictor of
causal reasoning posttest scores, controlling for causal
reasoning pretest scores. To test whether the relation-
ship between person behavioral predictions and learning

Table 5 Regressions predicting causal reasoning posttest scores
using causal reasoning pretest scores, condition, and intentional
behavioral predictions for a person in Experiment 2

Beta t p
Person behavioral predictions
Overall
R’ = 0474, F(3,120) = 35.976, p < 0.001
Person behav. pred. 0.175 2492 0014
Pretest 0.628 8975 <0.001
Condition -0016 -0.228 0.820

Betty condition only
R?=0.542, F(2,87) = 51406, p < 0.001

Person behav. pred. 0213 2.889 0.005
Pretest 0.666 9.014 <0.001
Control condition only
R?=0.225, F(2,31)=4.502, p=0.019
Person behav. pred. 0.050 0.308 0.760
Pretest 0462 2.863 0.007

The “Betty Condition Only” and “Control Condition Only” follow-up regressions
include only participants in the named condition



Jaeger et al. Cognitive Research: Principles and Implications

varied across conditions, we re-ran our regression with a
prediction-condition interaction term added to the
model. The interaction was not statistically significant
(p=.150, p=.27). However, similar to Experiment 1,
intentional behavioral predictions for a person signifi-
cantly predicted causal reasoning posttest scores in the
experimental condition and not in the control condition
(Table 5).

One possible explanation of our findings to this point
is that students with higher general intelligence both
learn more about causal reasoning from the Betty’s Brain
system and make better behavioral predictions for a
person. To address this possibility, we conducted a new
regression, predicting students’ causal reasoning posttest
scores in the experimental (Betty) condition, controlling
for students’ TCAP scores in reading, math, science, and
social studies, in addition to causal reasoning pretest
scores. Intentional behavioral predictions for a person
again significantly predicted learning in this regression
(p=0.235, p=0.004), while none of the TCAP scores
were significant predictors.” This provides evidence
against the idea that the relationship between person
behavioral predictions and learning is simply mediated
by general intelligence.

Finally, we ran two additional regressions on our full
sample to examine whether person behavioral predictions
were predictive of content posttest scores for either the
multiple choice or short answer component, controlling
for the corresponding pretest score. Person behavioral
predictions were significant predictors for the short-
answer questions (=0.205, p=0.016), but not the
multiple-choice questions (B =0.074, p = 0.354).
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Property attribution questionnaire

A 2 x9 within-subjects ANOVA (agent (Betty vs. com-
puter) x question) revealed a significant main effect of
agent (F(1,91) =36.151, p<0.001), with students ge-
nerally attributing more human-like properties to a
computer than to Betty (means = 2.448 and 2.043, respect-
ively). Further, the ANOVA revealed a significant main
effect of question (F(7,637)=37.031, p<0.001), and a
significant interaction (F(7,637) =41.122, p<0.001). As
shown in Fig. 3, students believed the computer to be
more knowledgeable, more intelligent, and more likely to
be able to see than Betty. Students also reported that Betty
was more likely to have feelings than a computer.

In addition, as in Experiment 1, we calculated the means
of all of the property attribution ratings for both the com-
puter and Betty and found those means did not correlate
with behavioral predictions for any of the agents. The rela-
tionship between person behavioral predictions and learn-
ing on the causal reasoning measure remained significant
when controlling for average property attributions to Betty
(P for person behavioral predictions =0.213, p = 0.005; {3
for property attribution ratings for Betty =0.010, p =
0.892). The same was true when controlling for average
property attributions to the computer (B for person behav-
ioral predictions = 0.216, p = 0.004; [ for property attribu-
tion ratings for the computer = 0.083, p = 0.258).

Actions associated with success using the Betty system

Experiments 1 and 2 both provide evidence that pragmatic
understanding of human agency predicts successful use of
an agent-based tutoring system. This led us to ask whether
students with stronger pragmatic understandings of
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Fig. 3 Results of property attribution questionnaire for Betty condition in Experiment 2. The error bars represent standard errors
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human agency used the Betty’s Brain software differently
than other students. A median split was used to divide the
Experiment 2 participants into a “High Intentionality”
group (students who believed the human agent to
have more intentional representation) and a “Low
Intentionality” group (students who believed the human
agent to have less intentional representation) based on
their behavioral predictions. Students in the High
Intentionality group more frequently queried the soft-
ware agent (high intentionality mean =21.37 and low
intentionality mean =9.07, t(41.53) =2.84, p=0.007).
Queries include voluntary interactions with the agent,
such as asking Betty a question about the relationship
between concepts, which she then answers using the
student’s concept map. The difference was specific to
queries: the High Intentionality group and Low
Intentionality group did not differ with respect to the
overall number of actions taken in the Betty’s Brain
system (total actions include not only queries but
reading passages, editing causal maps, etc.).

Human behavioral predictions remained a significant
predictor of causal reasoning learning in the Betty condi-
tion when controlling for number of queries (p =0.217,
p =0.006), and the number of queries was not a signifi-
cant predictor in this model, f =-0.018, p = 0.86. Simi-
larly, human behavioral predictions remained a
significant predictor of learning when controlling for the
overall number of actions students took in the Betty’s
Brain system (p = 0.221, p = 0.005), and the total number of
actions taken was not predictive, = 0.095, p = 0.21. Thus,
it is unlikely that the relationship between intentional
behavioral predictions for humans and increased learning
from Betty’s Brain is simply a consequence of engagement
or number of interactions with the agent.

Discussion
As in Experiment 1, students who made more intentional
behavioral predictions for a person tended to learn more
from using the Betty’s Brain system. In Experiment 2,
however, this effect manifested in the causal reasoning test
(where it was present even when controlling for TCAP
scores, when controlling for the number of times students
queried Betty, and when controlling for the number of
actions that students made in the Betty’s Brain system).
The relationship between behavioral predictions and
learning on the content test did not replicate in Experi-
ment 2, although intentional predictions for a person were
significant predictors of learning on the short-answer
component. We defer discussing this in depth until the
results of Experiment 3 have been presented to reinforce
the consistency of the link between behavioral predictions
and posttest performance.

Additionally, in Experiment 2, students who interacted
with Betty demonstrated stronger pragmatic understandings
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of agency than students who did not. That is, students
in the Betty condition distinguished between human
behavior and machine behavior on the behavioral pre-
diction questionnaire more than their counterparts in
the control condition. While this pattern was present
but not statistically significant in Experiment 1, it was
statistically significant in Experiment 2 (p = 0.004). The
difference was driven in part by a smaller proportion of
intentional predictions for Betty in the experimental
condition, but also in part by a higher proportion of
intentional predictions for the person in the experimen-
tal condition. This is consistent with the idea that
experience with ambiguous agents like Betty brings the
practical distinction between intentional and mechan-
ical conduct into sharper relief. It could also be the case
that the smaller proportion of intentional predictions
for Betty in the experimental group is related to stu-
dents’ impressions of Betty’s intelligence and knowledge
(which they rated significantly lower than the computer
in both Experiments 1 and 2).

Finally, with respect to the property attribution question-
naire, students in Experiment 2 again signified beliefs about
Betty’s agency that go beyond her software implementation.
Students again rated a computer as more intelligent and
knowledgeable than Betty. Further, students rated Betty as
more likely to “feel” than a computer.

Experiment 3

Experiment 3 had two basic purposes. First, because of
inconsistency in the specific learning outcomes asso-
ciated with intentional behavioral predictions, we wanted
to test again whether scores on content and causal
reasoning tests were related to behavioral predictions.
Second, in both Experiments 1 and 2, the behavioral
prediction questionnaire was given after the students
used the Betty system. Therefore, it is possible that indi-
vidual differences in performance on the Betty exercise
led to differences in intentional predictions on the behav-
ioral prediction questionnaire. To address this possibility,
participants in Experiment 3 completed the behavioral
prediction scenarios before completing the Betty exercise.
Experiment 3 was otherwise similar to Experiment 2,
except that the causal reasoning pretest/posttest was con-
densed from 18 items to 6 and all students in Experiment
3 used the Betty system with agents.

Method

Participants

A total of 75 fifth and sixth grade students from the
same Nashville, Tennessee middle school completed the
experiment. Of these, 71 completed the Betty’s Brain con-
tent pre- and posttests. The study underwent the same ap-
proval and consenting process as Experiments 1 and 2.
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Materials
Materials used were the same as in Experiment 2.

Procedure

Procedures for Experiment 3 were similar to Experiment
2 with three exceptions. First, students used only the Betty
system with agents. There were no controls. Second, the
causal reasoning pretest/posttest was condensed from 18
items to 6. Third, and most importantly, students com-
pleted the behavioral prediction scenarios before, rather
than after, the teachable agent learning sessions.

Results
Behavioral predictions
A one-way repeated-measures ANOVA revealed that
participants’ behavioral predictions varied across agent
types (F(1,74) =581.80, p<0.001). Students made, on
average, 72% (2.17 of 3) intentional behavioral predictions
for a person, 43% (1.29 of 3) for a computer, and 50%
(1.51 of 3) for Betty. Post hoc tests revealed that partici-
pants made significantly more intentional predictions for
the person than for the computer (Bonferroni-corrected
p <0.001) or for Betty (Bonferroni-corrected p < 0.001).
As noted above, all participants in Experiment 3 used
a version of the Betty system that included a teachable
agent. As a result, we could not test the effect of using
the Betty system on students’ behavioral predictions in
this experiment.

Behavioral predictions and learning

Students’ performance on the content pre- and posttest
is summarized in Table 2, and students’ performance on
the causal reasoning pre- and posttest is summarized in
Table 4. With respect to the content test, paired ¢ tests
revealed that students improved from pretest to posttest
on both multiple choice questions (t(70)=6.28, p<
0.001) and short answer questions (t(70)=4.09, p<
0.001). With respect to the causal reasoning test, an-
other paired ¢ test revealed significant improvement
(t(70) = 5.92, p < 0.001).

As shown in Table 6, person behavioral predictions
again predicted learning on the causal reasoning test.
Person behavioral predictions were also nearly signifi-
cant predictors of learning on the multiple choice com-
ponent of the content test, but not the short answer
component. In no case did behavioral predictions for
Betty or the computer predict learning.

Property attribution questionnaire

A 2 x9 within-subjects ANOVA (agent (Betty vs. com-
puter) x question) revealed a significant main effect of
agent (F(1,72) = 10.148, p = 0.002), with students generally
attributing more human-like properties to a computer
than to Betty (means = 2.335 and 2.139, respectively). The
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Table 6 Regressions predicting causal reasoning and content
posttest scores using the corresponding pretest scores and
intentional behavioral predictions for a person in Experiment 3

Beta t p
Person behavioral predictions
Causal reasoning posttest
R? =0.089, F(2,68) = 3.340, p = 0.041
Person behav. pred. 0.265 2.293 0.025
Pretest 0.138 1.193 0237

Content multiple choice posttest
R?=0.445, F(2,68) = 27.237, p < 0.001

Person behav. pred. 0.169 1.833 0.071
Pretest 0614 6.669 <0.001
Content short answer posttest
R?=0.101, F(2,68) = 3.800, p = 0.027
Person behav. pred. 0.076 0.658 0.512
Pretest 0.297 2558 0.013

ANOVA also revealed a significant main effect of question
(F(8,576) = 31.855, p < 0.001), and a significant interaction
between agent and question (F(8,576) = 43.900, p < 0.001).
As shown in Fig. 4, students rated the computer as more
likely to see, more intelligent, and more knowledgeable
than Betty. In contrast, students believed that Betty was
more likely to think, to remember, to have feelings, and to
have semantic representations than a computer.

Similar to the previous studies, we calculated the mean
of all property attribution ratings for Betty and for the
computer and tested for relationships between these
means and behavioral predictions. We found none. The
relationship between person behavioral predictions and
learning causal reasoning remained significant when
controlling for average property attributions to Betty (
for person behavioral predictions = 0.272, p = 0.023; B for
property attribution ratings for Betty = 0.060, p = 0.612).
The same was true when controlling for average pro-
perty attributions to the computer (B for person be-
havioral predictions =0.268, p =0.026; p for property
attribution ratings for the computer = - 0.023, p = 0.846).

Discussion

Experiment 3 largely replicated Experiment 2. Students
who made more intentional behavioral predictions for a
person again tended to learn more through use of the
Betty’s Brain system, and those effects again manifested
on the causal reasoning test. Person behavioral predic-
tions were again marginally predictive of learning on
one component of the content test, though in this
experiment it was the multiple choice component. For
the third time in three studies, there was no relationship
between participants’ explicit property attributions and
posttest performance, nor between their explicit pro-
perty attributions and their behavioral predictions. Finally,
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Experiment 3 property attributions for
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Fig. 4 Results of property attribution questionnaire in Experiment 3. The error bars represent standard errors

participants continued to distinguish between Betty and
a computer in the property attribution questionnaire,
and continued to rate Betty as less intelligent, less
knowledgeable, and less likely to see than a computer.

General discussion

The three experiments reported here produced several
basic findings about the connections between students’
use of agency concepts and learning from teachable soft-
ware agents. From our perspective, the most important
finding is the consistent link between students’ learning
outcomes with the Betty’s Brain system and their prag-
matic understanding of other people’s agency (i.e., the
number of intentional behavioral predictions they made
about a human agent). All three experiments demon-
strated a link between behavioral predictions for a
human and one or more measures of learning. But it is
not clear why this link was strongest for learning about
causal reasoning (observed in Experiments 2 and 3) and
less consistent for learning about science content.’® This
may simply be due to variation that can be expected
across any set of attempts to observe moderate relation-
ships near the limits of statistical detectability. In
addition, it appears as though the overall amount of
learning was sometimes modest, making it difficult to
observe strong relationships between learning and any
other measure. So, we would argue that the link between

an understanding of human agency and content learning
from teachable-agent-based software should be consi-
dered tentative, but, in our view, likely, given the pattern
of findings across these experiments (see Table 7 for a
summary of significant findings across experiments).

One question about this link is why? That is, why
would behavioral predictions about a person relate most
closely to learning from the Betty system when predic-
tions about Betty or a computer might seem to be more
likely candidates given their similarity with the features
of the learning system?

Students who can understand and predict the actions of
intentional agents could be at an advantage in learning
because they are better able to understand how Betty
operates. After all, Betty is, in many respects, programmed
to act like a human. Thus, students who more readily
deploy concepts about intentional, “human-like” behavior
in novel situations may be quicker to understand Betty’s
behavior (e.g., why Betty misses a question in a quiz) and,
more broadly, how the Betty’s Brain system is intended to
work. In a sense, these students may be better at “playing
along” with the idea that Betty is human in the context of
the educational software, strategically applying intentional
agency concepts to facilitate learning.

Alternatively, it may be that deploying the appropriate
concepts of agency at the correct time and monitoring
cues from the Betty software to determine which concepts
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Table 7 Summary of findings across experiments
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Experiment 1

Experiment 2

Experiment 3

Behavioral predictions
Differ across agent?
Differ across conditions? ns

Agent x condition
interaction?

ns

Person behavioral predictions and learning

Predict content learning?

*%

Multiple choice

Short answer

*%

Overall

Predict causal reasoning N/A

learning?

Property attribution questionnaire

KKK

Differ across agent?

KKK

Differ across properties?

Agent x property interaction? = ***

Students rated computer as more
likely to:

See

Be intelligent

Know things

*%

ns

*¥

ns

ns

Students rated computer as more

N/A
N/A

ns

ns

Students rated computer as more

likely to: likely to:

See See

Be intelligent Be intelligent

Know things Know things

Students rated Betty as more likely  Students rated Betty as more likely

to: to:

Feel Feel

Have semantic knowledge Have semantic knowledge
Remember
Think

#p=0.071, *p < 0.05, **p < 0.01, ***p < 0.001; ns not significant

are most helpful in what circumstances taxes students’
cognitive resources. Perhaps students who more readily
understand the behaviors of intentional agents can apply
the appropriate concepts to Betty using fewer cognitive re-
sources. This would leave more resources available for the
metacognitive monitoring at the heart of the learning-by-
teaching paradigm—monitoring that Betty is specifically
designed to elicit and that is known to be resource-inten-
sive (Schwartz et al., 2009). In short, then, perhaps stu-
dents with stronger pragmatic understandings of agency
can spend fewer resources on understanding Betty and
more resources on learning class material. This would be
consistent with research from Herberg et al. (2012), who
found that explaining the solution to a problem to a nom-
inally intentional audience can sometimes interfere with
subsequent performance.

Regardless of the precise mechanism, our results indi-
cate that a pragmatic understanding of agency facilitates
learning from software agents. This pragmatic under-
standing extends beyond basic concepts of goal-directed
behavior, as evidenced by the variability in students’
responses on the behavioral prediction questionnaire. We
suggest it is useful to think of this variability as reflecting

differences in “agent fluency”. Knowing basic object labels
in a second language does not necessarily mean that one
can converse fluently with a native speaker. Similarly,
while middle school students undoubtedly grasp basic
concepts of goal-directedness and intentionality, they vary
in their elaboration of these concepts and their ability to
effectively apply them to make predictions in specific
novel situations (as do adults; Levin, Saylor, et al., 2013).

It is interesting that students’ behavioral predictions were
most consistently predictive of scores on the causal reason-
ing test. Prior research has shown that students tend to
learn causal reasoning from Betty’s Brain (Chin et al,, 2010),
but to our knowledge no prior research has linked causal
learning from a software agent to learners’ concepts of
agency. One possible explanation of this link is that the
broad reasoning skills underlying theory of mind develop-
ment can encompass both reasoning about agents and
more abstract causal reasoning (Gopnik et al., 2001).
On this account, skills useful in understanding the
intentionality of a novel, somewhat-anthropomorphic
agent like Betty also facilitate learning the novel causal
reasoning scheme instantiated in the causal reasoning
pre- and posttests. However, future research could
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contrast this hypothesis with a more general resource
allocation hypothesis.

In addition to demonstrating links between pragmatic
understanding of agency and learning, we have also col-
lected data demonstrating a relationship between inter-
action with a software agent and pragmatic understanding
of agency. Specifically, we found evidence that experience
with the Betty system increased the contrast between
students’ behavioral predictions for people and their
predictions for machines. In Experiment 1 this difference
was not statistically significant, but in Experiment 2 there
was a significant increase in human-machine differen-
tiation in students who used the Betty system relative to a
no-Betty control.

Thus, there appears to be a two-way relationship
between concepts about agents and learning. This is
particularly interesting in view of the hypothesis that
interaction with novel software agents, such as robots,
may induce a broad revolution in understanding of
agency, and, more generally, life itself (Kahn, Friedman,
Perez-Granados, & Freier, 2006). Although this kind of
broad revolution is possible, such revolutions are not
often observed, and a more modest hypothesis is that
experience with software agents will help learners clarify
their existing understanding of what it means to be
human and to think, or perhaps facilitate shifts among
different existing understandings (e.g., Taber, 2001). One
reason to be skeptical of the possibility of a broad
conceptual revolution is that, in our studies, students’
behavioral predictions were uncorrelated with explicit
attributions to the agents on the property attribution
questionnaire. Therefore, it may be that the conceptual
change observed here avoids contact with explicit beliefs.

One potential limitation of our studies is that our
measure of pragmatic understanding of agency is not
narrowly tailored to the particular capabilities of the
agent Betty (or of teachable agents in educational soft-
ware more generally). While probing students’ predic-
tions about Betty’s ability to reason causally or use
strategies to meet goals would be quite interesting, our
use of a broader measure was deliberate. We chose a
broader measure because we were interested in how
even very broad agency concepts are called upon for,
and affected by, specific interactions with particular
agents, and because our findings using a broader meas-
ure are more likely generalizable to other contexts in-
volving technological agents.

Another important limitation inherent to the design of
our study is that it is difficult to conclusively demon-
strate that the agent concepts tapped by the behavioral
prediction questionnaire caused improved learning.
Given that we only assessed individual differences in
behavioral predictions and did not actually manipulate
them, it is possible that an unmeasured third factor
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caused both intentional predictions for people and suc-
cess in learning from the Betty system. In Experiment 2
we were able to control for broad academic achievement
scores, so these seem like an unlikely third factor. How-
ever, theory of mind is often linked with social and
language skills (for example, Garfield, Peterson, & Perry,
2001), and these may not be well-represented in
academic achievement tests. Thus, it is possible that these
broad skills underlie both intentional behavioral predic-
tions and success with the Betty system. Although we
would consider this a psychologically interesting finding,
we would nonetheless also advocate for follow-up research
that could more directly test causal hypotheses. It would
be interesting to assess whether training students in the
pragmatic engagement of agency concepts would lead to
improved learning from the Betty system. This would not
only be theoretically interesting, but it could lay the basis
for a successful intervention aimed at improving student
success with agent-based learning aids.

Conclusion
These three experiments represent the first assessment
of links between agency concepts and learning from a
computer-based teachable-agent learning system. All
three experiments revealed that students with a stronger
pragmatic understanding of human agency experienced
greater learning outcomes after using the Betty’s Brain
teachable-agent system. Combined with findings that
use of the system in turn refines students’ understanding
of agency, our results represent an important first step
toward understanding how knowledge about agents is
leveraged to support learning in technological contexts.
More broadly, the use of teachable agent systems like
Betty’s Brain is only one of an increasing variety of con-
texts in which people interact with software agents. This
paper provides an initial description of how agency con-
cepts shape, and are shaped by, these interactions. As soft-
ware agents become engrained in our daily lives, we can
benefit from a detailed, explicit understanding of how we
interact with them—and how those interactions might
affect us.

Endnotes

'For a more specific description of how the Betty’s
Brain system works, see the “Materials” section of
Experiment 1.

%Specifically, to quantify learning, we examine variability
in students’ posttest scores controlling for the correspon-
ding pretest scores.

3Prior to administering the content pretest, the mul-
tiple choice questions were classified as one of three types:
identification questions (four questions, worth 1 point
each), definition questions (five questions, worth 2 points
each), and explanation questions (five questions, worth 4
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points each). This scoring system was established in
accordance with the goals of another research project
using the same data set.

“This change in scoring system was motivated by the
goals of another project using the same data set and was
made prior to collection and analysis of data.

°An experimenter provided all feedback in the control
condition.

®Specifically, the feedback provided to students in the
enhanced version was altered to provide more specific
suggestions as to how students should proceed. Further,
students in the enhanced version were provided with
additional feedback if they were not showing improve-
ment over time or appeared to be making uninformed
edits to their concept maps. Finally, the enhanced
version afforded students more interactions with Betty
in two respects: (i) students were allowed to evaluate
Betty’s answers and (ii) Betty queried students’ confi-
dence after students made edits to their concept maps.

"We ran three separate regressions to avoid multicolli-
nearity problems, as TCAP scores, content pretest
scores, and content posttest scores were correlated with
one another (all s > 0.578).

®Intentional behavioral predictions for the person
came closest to significance, p = 0.096, p = 0.15.

°A regression run on the full sample (both the experi-
mental and control conditions) reveals the same pattern
of results, with intentional behavioral predictions for a
person significantly predicting learning (B = 0.194,
p = 0.009). However, looking only at students in the
control condition, intentional behavioral predictions for
a person were not a significant predictor of learning (p
= 0.046, p = 0.81).

%Person behavioral predictions were predictive of
overall content learning in Experiment 1, but were only
predictive of short answer improvement in Experiment 2
and nearly predictive of multiple choice improvement in
Experiment 3.

Additional file

Additional file 1: Sample behavioral prediction scenarios and
sample content questions. (DOCX 4003 kb)
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