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Abstract

Referential success is crucial for collaborative task-solving in shared environments. In face-to-face interactions,
humans, therefore, exploit speech, gesture, and gaze to identify a specific object. We investigate if and how the gaze
behavior of a human interaction partner can be used by a gaze-aware assistance system to improve referential
success. Specifically, our system describes objects in the real world to a human listener using on-the-fly speech
generation. It continuously interprets listener gaze and implements alternative strategies to react to this implicit
feedback. We used this system to investigate an optimal strategy for task performance: providing an unambiguous,
longer instruction right from the beginning, or starting with a shorter, yet ambiguous instruction. Further, the system
provides gaze-driven feedback, which could be either underspecified (“No, not that one!”) or contrastive (“Further
left!”). As expected, our results show that ambiguous instructions followed by underspecified feedback are not
beneficial for task performance, whereas contrastive feedback results in faster interactions. Interestingly, this approach
even outperforms unambiguous instructions (manipulation between subjects). However, when the system alternates
between underspecified and contrastive feedback to initially ambiguous descriptions in an interleaved manner
(within subjects), task performance is similar for both approaches. This suggests that listeners engage more intensely
with the system when they can expect it to be cooperative. This, rather than the actual informativity of the spoken
feedback, may determine the efficiency of information uptake and performance.

Keywords: Human–computer interaction, Natural language generation, Listener gaze, Referential success,
Multimodal systems

Significance statement
Can listener gaze facilitate goal-oriented human–machine
collaboration? To solve a task jointly, interlocutors often
need to establish a reference in a shared environment, e.g.,
to identify task-relevant objects. In such situated inter-
actions, interlocutors typically use natural language, but
other modalities, in particular gaze and gestures, sup-
port communicative success. In our work, we address the
domain of assembly assistance and in particular object
identification tasks. We show that an artificial speaker (a
natural language generation (NLG) system) can improve
task performance when providing gaze-aware proactive
feedback based on a listener’s inspections of an object.
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In particular, giving information incrementally in subse-
quent chunks is more efficient than giving the description
in one piece. Moreover, the feedback’s informativity not
only leads to more efficient interactions but also influ-
ences the overall expectation for the capabilities of the
NLG system. This expectation determines to what extent
the listener wants to cooperate and will engage with the
NLG system. The more intensely listeners engage with the
system, the more effective is the information uptake and
the better the task performance, even when some of the
system’s responses are less informative.

Introduction
In situated collaboration, spoken natural language is often
used to refer to task-relevant objects in the form of install-
ments. Installments are chunks of information uttered
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by a speaker to provide partial information to the lis-
tener in an incremental manner. Human speakers may
produce installments without planning an entire unam-
biguous utterance. This effect is increased when they
are under time pressure (Striegnitz et al. 2012). Using
installments, speakers can quickly adapt to changes in the
surroundings and in particular to the listeners’ feedback
and actions. As shown by Zarrieß and Schlangen (2016),
an artificial speaker can use installments to generate refer-
ring expressions effectively. This was considered intuitive
and enhanced the identification of real objects depicted in
static images.
In our research, we integrate listener feedback into the

interaction loop by addressing the question of whether
a listener’s gaze can successfully be used as a non-
verbal feedback cue for adaptive installment generation.
In particular, we investigate the interactions of an arti-
ficial speaker, i.e., a machine instructor, and a human
listener. There is some evidence from studies in virtual
environments that feedback from the artificial speaker
based on listener gaze can increase interaction efficiency
(Koller et al. 2012; Staudte et al. 2012; Garoufi et al.
2016). However, there are two remaining questions that
we address in the present paper: (1) Can the successful
use of listener gaze be replicated in real environments,
which are much more complex to handle technically? (2)
Can gaze-aware NLG be used to generate adaptive install-
ments that provide references both incrementally and in
the form of contrastive feedback? Specifically, we present
a NLG system that monitors the gaze of the human lis-
tener and provides installments only if necessary, that
is, if the listener’s gaze indicates wrong reference resolu-
tion. We further report on two experiments that evaluate
the efficiency and the general perception of this behav-
ior in comparison to long and exhaustive instructions.
The results suggest that communication efficiency bene-
fits from giving interactive and incremental instructions.
However, in our experiments, this is preferred less by the
users. Thus, there is a trade-off between efficiency and
users’ preference in terms of perception.
Our approach draws on previous findings from (i)

human–human interactions, which show that listener eye
movements are closely tied, and time-aligned, to the cur-
rent understanding of the comprehender and (ii) human–
machine interactions, especially from work with assistive
systems, in particular for assembly tasks, which show
more generally that systems employing gaze as a commu-
nicative signal are socially beneficial—though sometimes
less efficient. Below, we briefly review selected literature
from those areas.

Human–human interactions
To ensure communicative success in situated collabora-
tion, speakers tend to observe listeners to detect if their

communication message was received and understood
correctly (Clark 1996). Listeners reliably inspect objects
they believe are being referred to by the speaker
(Tanenhaus et al. 1995; Eberhard et al. 1995). Conse-
quently, speakers can monitor understanding and the
mapping of meaning to the world by considering listener
gaze (Clark and Krych 2004; Hanna and Brennan 2007;
Brown-Schmidt 2012). Most of these studies, however,
focus on the role of listener gaze as an index to the under-
lying comprehension processes. The benefit of gaze-based
feedback cues for the speaker and successful reaction
strategies are rarely examined. Human instruction givers
might not be prepared to use technical cues based on lis-
tener gaze beneficially, as has been shown by Koleva et
al. (2015). Coco et al. (2018), who examined the role of
feedback and alignment in a “spot the difference task,”
further found that their gaze aligned only if interlocutors
could not exchange verbal feedback. Both results indicate
that exploiting a technical augmentation of the listener
gaze (e.g., by visualizing a gaze cursor) is not something
that human speakers naturally do efficiently. In the studies
described, the instructors were faced with the additional
perception task of following gaze cursors, which might
have increased the cognitive load too much. In contrast to
this research, we focus on artificial speakers’ use of gaze
feedback.

Human–machine interactions
Gaze-based assistive systems have, along with the
advances in mobile eye tracking technologies, moved into
real-world environments in the last decade (Pfeiffer 2013).
Our work is related to work in attentive assistance systems
(Maglio et al. 2000) and human–robot and human–agent
interactions, where gaze is relevant for the social aspects
of interaction (Sidner et al. 2004) as well as for grounding
verbal utterances using mechanisms of joint attention
(Imai et al. 2003). Smart eyewear has been identi-
fied as a key technology for assistance systems (Pfeiffer
et al. 2016a) and recently has been combined with a real-
time analysis of eye tracking to support assembly tasks
(Renner and Pfeiffer 2017; Blattgerste et al. 2017). Work
on such assembly tasks has been done in both virtual
and real worlds (Kopp et al. 2003; Kirk et al. 2007). How-
ever, projects including and examining the role of listener
gaze are considerably less frequent. Fang et al. (2015)
proposed a collaborative referring expression genera-
tion algorithm for situated human–robot interactions
and used listener gaze to provide information incre-
mentally. Their results surprisingly showed a per-
formance drop when using listener gaze. This may,
however, be explained by the method they used to
interpret the gaze signal. We address this issue and
apply the procedure for inspection detection proposed
by Garoufi et al. (2016) to trigger verbal feedback
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that supplements instructions in our real-world assembly
scenario.

Contribution of this paper
We investigated the utility of listener gaze in a real-time
object identification task. In particular, we designed,
implemented, and employed an interactive NLG system
using augmented reality technologies (Pfeiffer 2012; Pfeiffer
and Renner 2014) to describe co-present objects to a
human listener, who needs them for assembly. The system
can monitor and react to listener gaze by generating ver-
bal feedback to accept or reject the listener’s intentions as
to which object to grasp next. We further compared two
levels of instructional ambiguity and tested their effective-
ness in two experiments: generating a long, unambiguous
instruction vs. generating a short, ambiguous instruction
followed by gaze-driven feedback. Furthermore, we exam-
ined the impact of feedback specificity by either providing
an underspecified “No, not that one!” or contrastive feed-
back expressing the spatial relation of the target relative
to the current gaze position (e.g., “Further left!”). We
predicted that the interaction with the generation sys-
tem would benefit from gaze-based feedback, despite the
small-scale setting and the noise typically emerging in
real-world and real-time interactions (in terms of move-
ment andmotion).We further hypothesized that this ben-
efit might be large enough to compensate even for short,
ambiguous instructions by the system and lead to simi-
lar if not shorter interaction times than for full exhaus-
tive unambiguous instructions. Lastly, we predicted that
contrastive feedback that provides additional referential
information (i.e., after ambiguous instructions), incre-
mentally and on demand, would bemost efficient and lead
to the shortest interaction times overall (cf. Zarrieß and
Schlangen (2016) on installments and their efficiency).

Experiment 1
To investigate how listener gaze can be used in a dynamic
task-oriented real-world interaction, we designed an
assembly-like task and implemented a multimodal inter-
active system called GazInG (an interactive NLG system
in a real environment), which can generate instructions in
natural language. This system instructed a naive human
listener to select and assemble building blocks. During
the assembly process, the repeated identification of a
specific object was required. By design, the scene was
overloaded with many similar objects so that exhaustive
object descriptions required naming two colors, sizes, and
object types as well as locations. GazInG is further capable
of monitoring and interpreting listener gaze and generat-
ing adaptive feedback. It relies on the EyeSee3D module,
which models the environment as a 3D situation model
using abstract geometry to represent the stimuli (see the
turquoise arrow in Fig. 1).

reconstructed
3D gaze ray

33D situation model
with proxy geometries

Fig. 1 Initial setup. The listener is seated in front of the workspace
before any objects have been collected. The picture shows a green
circle around the target and red circles around competitors. The
listener currently inspects the competitor object to the left as
highlighted in the virtual 3D model. EyeSee3D is used to reconstruct
the gaze ray in 3D (yellow). The target domain is modeled as a 3D
situation model with boxes as proxies for the assembled structures
(turquoise)

In Experiment 1 we compared long but unambigu-
ous instructions with ambiguous instructions that were
followed by gaze-based feedback, which was either sim-
ple (underspecified feedback group) or contrastive (con-
trastive feedback group).
Two groups of participants completed the experiment.

The underspecified feedback group received unambigu-
ous instructions paired with no feedback on one block of
trials, and ambiguous instructions paired with underspec-
ified feedback on another block of trials. The contrastive
feedback group received unambiguous instructions paired
with contrastive feedback on one block of trials, and
ambiguous instructions paired with contrastive feedback
in another block of trials.

Methods
Participants
Altogether, 48 participants, mainly students enrolled at
Saarland University, took part in the experiment. Of these,
24 were assigned to each group: the underspecified feed-
back (19 female) and the contrastive feedback (16 female)
groups. The average participant age of the underspecified
feedback group was 25 years (19–35 years), and of the
contrastive feedback group 24 years (20–31 years).
All participants were German native speakers and

reported normal or corrected-to-normal vision and no
red-green color blindness. Their participation was com-
pensated for with e8 (underspecified feedback group) or
e5 (contrastive feedback group) with the difference being
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due to the slightly shorter duration of the second group’s
experiment.

Setup and apparatus
Figure 1 depicts our setup. We chose LEGO DUPLO as
the target domain because the building blocks are of con-
venient, graspable size with easy to identify colors. At
the same time, they offer a multitude of combinations
and various ways of assembly. As the number and sim-
ilarity of available objects in the workspace was high, it
was not trivial to generate automatically unique identi-
fying instructions (see Appendices A and B). A layout
consisted of 20 composed objects with eight targets to
be collected. Each composed object comprised two basic
building blocks. The instructions did not provide guide-
lines on how to put together the selected elements but left
this to the listener’s creativity. This was made clear in the
task description. The participants had to build an individ-
ual LEGO model, based on the components the system
instructed them to pick.
We used a binocular head-mounted eye tracker (SMI

Eye Tracking Glasses) to collect gaze data. The tracker is
equipped with a high-resolution scene camera (1280 ×
960) recording at 24 Hz and two eye cameras recording
at 30 Hz. The user’s head position and orientation are
integrated by GazInG into a situation model in real time.
This is realized by instrumenting the environment with
low-cost printable fiducial markers (see the tablecloth in
Fig. 1). These are located in known positions relative to
the stimuli and are tracked by the scene camera of the eye
tracker using computer vision. Fusing the thus-derived
head position and orientation with eye tracking data from
the glasses reconstructs the user’s gaze direction. This
allows the system to cast a 3D gaze ray into the situation
model (see the yellow arrow in Fig. 1). The intersections of
the ray with the geometric models of the stimuli identify
gazed-at objects. At this point, GazInG has semantically
mapped the listener’s inspections. For further technical
details of the approach, see Pfeiffer and Renner (2014) and
Pfeiffer et al. (2016b). In this experiment, feedback was
triggered by pooled inspections with a dwell time larger
than 200ms.

Natural Language Generation GazInG uses a heuristic
approach to generate an instruction containing a referring
expression that describes a composed object consisting
of two basic building blocks on the fly given the domain
knowledge. The syntactic structure of the instructions is
predefined. The system is able to distribute the informa-
tion needed to identify a target over several chunks. The
first chunk, thus, realizes an ambiguous instruction, which
can then be incrementally extended. Such an ambigu-
ous instruction consists of a main clause that describes
the bottom object. Its size and color are used as pre-

modifiers and the head noun is randomly chosen from
a set of synonyms for the type of object, as shown in
Example (1). To output an unambiguous instruction, the
algorithm appends two further post-modifiers: (i) a prepo-
sitional phrase or a relative clause to describe the top
object and (ii) an adverbial phrase containing absolute
position information (see Example (2)).

Example (1) Pick the big red building block.

Example (2) Pick the big red building block with the
small yellow one on top at the back toward the left.
Inspections of target objects trigger positive feedback

(e.g., “Yes”, “Exactly” etc.), and inspections of competitors
trigger negative feedback signaling that the listener is con-
sidering a wrong object. This can be underspecified, e.g.,
“No, not that one!” or contrastive, providing relative posi-
tion information, e.g., “Further left!” In the former case,
the listener can exclude only the inspected competitor,
which might be sufficient for simple scenes where fewer
competitors are available in the visual context. In the latter
case, however, the listener’s attention is directed towards
the target from the relative gaze position. The system
thereby reduces inspections of other competitors before
the target is found and implements the notion of referring
in installments, i.e., in chunks of information rather than
one long referring expression.

Task
GazInG instructed a human listener to take a cer-
tain object; the listener performed grasping actions in
response and assembled the LEGO objects in their own
way. A total of eight objects had to be selected and taken
from a single layout. Assembly continued with subsequent
layouts. The final constructions were photographed and
entered into a competition. The most creative result won
a e10 Amazon voucher.

Procedure
We manipulated the instructional ambiguity within par-
ticipants by presenting either unambiguous or ambiguous
instructions to everyone. Further, we varied the gaze-
driven verbal feedback and feedback specificity between
groups. That is, the underspecified feedback group
received unambiguous instructions without feedback and
ambiguous instructions supplemented with underspec-
ified feedback (extending on the design of Garoufi
et al. 2016). On the other hand, the contrastive feedback
group received contrastive feedback in both instructional
ambiguity approaches. The feedback was more informa-
tive and meant to direct the listener’s attention toward the
intended target, particularly after ambiguous instructions.
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Participants were seated in front of the workspace and
asked to listen carefully to and follow the system’s instruc-
tions. They were instructed to act as a team with the
system and solve the task together as precisely as pos-
sible, i.e., to avoid taking the wrong building blocks.
Then participants put on the eye tracking glasses and
followed a three-point calibration procedure. Calibra-
tion was repeated between layouts and whenever needed.
Before performing the actual task, a short practice session
was completed: participants had to collect three targets
among six objects in total to familiarize themselves with
the task and the system’s pace.
The experiment consisted of two parts, one for each

type of instructional ambiguity. In each part, the partic-
ipants completed one layout, in which they searched for
eight target objects. The order was balanced across partic-
ipants. Each part consisted of working through one layout
(see Appendix A). Participants were instructed to select
an object as soon as they were sure which one was meant
by the system. They heard a confirmation after a correct
grasp action.
An example trial is presented in Fig. 2. In the follow-

ing examples, the labels presented in brackets refer to
the feedback specificity. Example (3) illustrates a typi-
cal interaction using unambiguous instructions for both
groups.

Example (3)
SYSTEM: Pick the big red building block with a small

yellow piece on top of it at the back toward the
left.

LISTENER: [inspects the target]
SYSTEM: [silence]/ Yes, exactly!

(underspecified/contrastive)
LISTENER: [grasps the target]
SYSTEM: Well done!

The underspecified feedback group experienced the
ambiguous instructions usually as shown in Example (4).

Example (4)
SYSTEM: Pick the big red building block.
LISTENER: [inspects a competitor]
SYSTEM: No, not that one! (underspecified)
LISTENER: [inspects a competitor]
SYSTEM: No, not that one! (underspecified)
LISTENER: [inspects the target]
SYSTEM: Yes, exactly!
LISTENER: [grasps the target]
SYSTEM: Well done!
The contrastive feedback groupmay require fewer turns

in the ambiguous instructions as shown in Example (5).

Example (5)
SYSTEM: Pick the big red building block.
LISTENER: [inspects a competitor]
SYSTEM: Further toward the left! (contrastive)
LISTENER: [inspects the target]
SYSTEM: Yes, that one!
LISTENER: [grasps the target]
SYSTEM: Well done!
After finishing a layout, participants filled in a ques-

tionnaire assessing their perception and impressions of
their interaction with the system. Participants answered
13 questions to judge the interaction in each instructional
ambiguity approach. Eight questions were followed by a
five-point Likert scale (1 indicating a very good and 5
a poor score), e.g., “How good/precise did you find the
spoken instructions?” or “How flexible did you find the
interaction?” In addition, there were five yes/no ques-
tions, such as “Was the system’s feedback confusing?”
to assess if the interaction with the system felt natural.

Fig. 2 An example trial. The system instructs the user with an instruction possibly supplemented with verbal feedback. The listener identifies and
grasps the target (left), which is assembled onto the other LEGO blocks (right). The circle represents the gaze cursor (not visible to the participant)
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The question “Were the instructions exhaustive, i.e., you
were able to identify a target upon hearing the instruc-
tion?” checked whether the participants paid attention. In
a final questionnaire, they were asked five yes/no ques-
tions to compare both interaction strategies and assess
user preferences. The experiment lasted between 30 and
45 minutes.

Analyses
All measures were collected on a per-item basis. Perfor-
mance wasmeasured using the total time from instruction
onset until a target was grasped, and whether the inter-
action ended successfully with the correct object selected.
The total time was further divided into three phases,
which differ depending on the instructional ambiguity
(Fig. 3). The first phase is determined by the duration of
the spoken instruction, from speech onset to speech off-
set. Secondly, we assessed identification, the time needed
from the offset of the instruction to the listener’s first
inspection of the target. Finally, the time from the first tar-
get inspection until the grasp of the target determined the
duration of the third phase.
We further counted the number of feedback occur-

rences per interaction and also assessed the time from
instruction offset to the first positive or first negative feed-
back instance, which marks the end of the (initial) visual
search for the target.
Statistical analyses were conducted in the R statis-

tical programming environment (R Core Team 2014).
We assessed statistical significance using linear mixed-
effects models using the lme4 package in R and model
comparison to determine the influence of instructional
ambiguity and feedback specificity. As proposed by Bates
et al. (2015), we started with the maximal model fit-
ting our assumptions with respect to the random effects
structure. If the models failed to converge, we simplified

the random structure by first removing the correlations
between random slopes and intercepts, followed by the
intercept terms, starting with the random effect for items
(if present).

Results
The results reported in this section are based on 722
unique trials after outliers had been removed (data points
that are 2.5 standard deviations above or below the mean)
from a total of 768.

Total time
The time to solve each task, i.e., to find and collect a
building block, indicates the degree of efficiency of the
communication with the system. All tasks were solved,
and there were only a few wrong grasps (8.7%), as well
as almost no need for repetition of an instruction, show-
ing that both interaction strategies are effective. Table 1
summarizes the response times for the interaction phases.
Specifically, the underspecified feedback group was faster
at solving the task after listening to an unambiguous
instruction (M = 14.31 s, standard deviation SD = 8.60 s)
than to an ambiguous instruction with underspecified
feedback (M = 17.56 s, SD = 10.44 s). For the contrastive
feedback group, the direction of the effect changed. The
ambiguous instruction now led to shorter task completion
time (M = 11.96 s, SD = 5.61 s) compared to following
the unambiguous instruction (M = 12.75 s, SD = 4.75 s).
Specifically, we constructed an individual model for each
group with instructional ambiguity as a fixed effect and
with random intercepts and slopes for subjects and items.
Both comparisons revealed the main effects of instruc-
tional ambiguity: for the underspecified feedback group,
χ2(1) = 4.008 with p < 0.05, and for the contrastive feed-
back group, χ2(1) = 4.502 with p < 0.05. For the subset
of ambiguous instructions in both groups, we fitted

TOTAL TIME
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Fig. 3 Interaction phases for both strategies. The spoken instruction, followed by identification, i.e., time to first target inspection, and the grasp of
the object after a verbal confirmation is given. The visual search starts either during or after instruction and can be interleaved with feedback,
depending on the approach
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Table 1 Mean durations of the interaction phases in Experiment 1

Instructional
ambiguity

Feedback
specificity

Instruction Identification Grasp Total time

[s] [s] [s] [s]

Unambiguous Absent 7.21 2.17 4.93 14.31

Ambiguous Underspecified 2.81 7.22 7.52 17.56

Uunambiguous Contrastive 7.23 1.27 4.25 12.75

Ambiguous Contrastive 2.80 4.21 4.94 11.96

The first two rows refer to the underspecified feedback group and the last two rows
refer to the contrastive feedback group

a linear mixed-effects model with feedback specificity
as a fixed effect and included random intercepts and
slopes for subjects and items. There was a main effect
of feedback specificity on total time revealed by model
comparison (χ2(1) = 15.907, p < 0.001), that is, con-
trastive feedback improved task completion time over
underspecified feedback.

Identification time
Next, we analyzed the time needed to find and inspect the
intended target after instruction offset. Unsurprisingly,
participants were quicker at identifying a target following
an unambiguous instruction, as it contains all the infor-
mation needed. In addition, they could start searching as
soon as they had heard the first part of the instruction.
Analogously to the analysis of the total time, we fitted lin-
ear mixed-effects models for each data set with the same
random structure. Model selection revealed two main
effects for our within-subject manipulation of instruc-
tional ambiguity: for the underspecified feedback group,
χ2(1) = 60.257 with p < 0.001, and for the contrastive
feedback group, χ2(1) = 92.868 with p < 0.001. Addi-
tionally, we analyzed our between-subject manipulation
and observed a main effect of feedback specificity for
the ambiguous approach (χ2(1) = 4.172, p < 0.05).
In other words, listeners needed three times longer after
hearing an ambiguous instruction (M = 7.22 s, SD =
8.37 s) to find the target object than after listening to an
unambiguous one (M = 2.17 s, SD = 5.12 s). This time
was shortened dramatically when gaze-driven contrastive
feedback followed the instructions, though listeners still
inspected the intended target sooner after the unambigu-
ous instructions (M = 1.27 s, SD = 2.21 s) than after the
ambiguous instruction (M = 4.21 s, SD = 3.80 s).

Feedback occurrences
We analyzed the number of negative feedback instances
that occurred after the ambiguous instructions across
groups, but surprisingly, there was no significant differ-
ence (p = 0.658).

We further examined how much time elapsed until
a feedback instance was triggered through listener gaze
after the ambiguous instructions, in both groups. Specifi-
cally, we contrasted this time for the first negative with the
first positive feedback instance in an interaction (see red
arrows in Fig. 4), since this indexes the visual search and
how actively and intensively participants engaged with the
instruction-giving system.
Figure 5 depicts the respective means. For the anal-

ysis, we fitted a model with feedback specificity as a
fixed effect and with random intercepts and slopes for
subjects and items. Importantly, we found a main effect
of feedback specificity (χ2(1) = 18.416, p < 0.001).
As expected, the pattern observed for the identification
time (determined by first target inspection) persists for
the time to first positive feedback instance because it is
precisely this inspection that triggers the first positive
feedback instance. The underspecified feedback group
provoked positive feedback later (M = 10.33 s, SD =
16.91 s) than the contrastive feedback group (M = 5.43 s,
SD = 5.97 s). This demonstrates how more specific feed-
back narrowed down the search for the target object and
shortened the time to find it. Furthermore, the investiga-
tion of the first occurrence of a negative feedback instance
revealed that listeners also inspected a competitor match-
ing the description faster after the contrastive feedback
(M = 1.97 s, SD = 2.68 s) than after the underspecified
(M = 4.07 s, SD = 5.77 s) feedback. This suggests that lis-
teners’ expectation of an informative response elicits more
deliberate and controlled use of gaze to engage better with
the system because it constantly responds to it with useful
information restricting the search space. They could use
their gaze feedback to probe actively.

Questionnaires
Overall the interaction with the system was perceived as
rather natural and the gaze-driven feedback was rated as
helpful and not confusing. Interestingly, there was a clear
preference in both groups for listening to and following an
unambiguous instruction. All participants (100%) in the
underspecified feedback group and most of the partici-
pants in the contrastive feedback group (87.5%) stated that
they preferred unambiguous instructions and indicated
them as more pleasant, although the contrastive feedback
group was faster when responding to ambiguous instruc-
tions. We ran a simple linear regression on the responses
of each group to the question “How good did you find
the interaction flow?” (Fig. 6) and observed a marginal
effect of instructional ambiguity for the underspecified
feedback group (β = −0.375, t(46) = −1.98, p = 0.0537).
Further, for the subset of ambiguous instructions, simple
linear regression revealed an effect of feedback speci-
ficity approaching significance (β = −0.333, t(46) =
−1.829, p = 0.0739). That is, when contrastive feedback
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Fig. 4 Typical trial and the differentiation of feedback specificity. The red arrows represent the durations considered in the feedback analysis

followed an ambiguous instruction, it was judged to be
better (M = 1.25, SD = 0.44) than when underspec-
ified feedback was provided (M = 1.58, SD = 0.77).
The former assessment was like the perception of the
unambiguous instructions by the contrastive feedback
group (M = 1.25, SD = 0.53) and the underspeci-
fied feedback group (M = 1.20, SD = 0.51). This, and
similar results from the other questions, demonstrates
that the informativity of the verbal feedback mitigates for
the instructional ambiguity when giving initially partial,
ambiguous instructions and so listeners experience it as
smoother.

Discussion
Our data provide some evidence for the successful use of
listener gaze in a real-world task. Instructional ambiguity
that refers to objects incrementally and reacts to listen-
ers’ gaze can be used to identify objects in the shared
space. Moreover, the performance results indicate that
feedback specificity is essential for efficiency. The results
reveal that contrastive feedback benefits task performance
because it not only warns the listener against grasping
a wrong object, but also includes a relative direction in
which to look further for the target. In contrast, under-
specified feedback merely prevents the user from wrong
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Fig. 5 Time interval from the instruction offset to the onsets of the first negative (triggered by a competitor inspection) and first positive (triggered
by a target inspection) feedback instances for the ambiguous instructions in Experiment 1 (log transformed with 95% confidence interval error bars)
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poor

neutral

good

Instructional Ambiguity
ambiguous    

unambiguous

Fig. 6Mean responses for “How good did you find the interaction flow?” for Experiment 1 on a five-point Likert scale, where 1 indicates a
good/positive rating and 5 a poor one. (95% confidence interval error bars)

grasps, and does not facilitate the search. Notably, the
combination of ambiguous instructions with contrastive
feedback numerically even outperformed unambiguous
instructions.
Interestingly, there was a mismatch in the perception

and performance measures with respect to unambigu-
ous and ambiguous instructions. Apparently, listeners felt
more confident in their own performance when follow-
ing unambiguous instructions. One reason for this might
be that the unambiguous instructions allowed partici-
pants to remain rather passive until the grasp action.
After an ambiguous instruction, in contrast, they had
to engage actively with the system to make progress
in the task. The former is considered as more conve-
nient despite being apparently less efficient compared
to the more interactive strategy, i.e., ambiguous instruc-
tions with specific contrastive feedback. Whether this
behavior emerges as a direct response to the system’s
behavior in a given trial or whether this is a result of a
more global adaptation to the system was investigated in
Experiment 2.

Experiment 2
By giving only ambiguous instructions, this experiment
further examined the impact of feedback specificity on
task performance. Feedback specificity was manipulated
within participants and in an interleaved and random-
ized order, item by item. Thus, participants did not know
in advance which type of feedback they might receive.

This aimed at assessing whether participants benefited
from the contrastive feedback in the first experiment
because more information was conveyed, so that this
system is inherently more efficient—or whether more
generally the participants adapted to the system, e.g.,
by increasing their attendance or willingness to col-
laborate and thus, to really take up and process the
information provided efficiently. If the former hypoth-
esis holds, then performance with contrastive feedback
would remain high (and higher than with underspecified
feedback), even if interleaved. If the latter hypothesis is
true, we would expect to see either low performance in
both approaches (since engagement decreases altogether)
or high performance in both approaches (since engage-
ment is high and leads to more efficient information
uptake).

Participants
Altogether, 24 German native speakers (16 female) par-
ticipated in the experiment. We made sure none of them
had already participated in Experiment 1. The aver-
age age of the participants was 24 years (18–32 years).
They reported normal or corrected-to-normal vision and
no red-green color blindness, and were compensated
with e7.

Procedure
The task was the same as in Experiment 1 and the pro-
cedure was almost identical. This time, the experiment
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consisted of four parts to produce a sufficient amount
of data per approach, and so two more layouts were
designed (see Appendix B). The order was balanced across
approach. In contrast to the procedure in Experiment 1,
there was no questionnaire, but after finishing all four
parts, the participants answered two questions: whether
they noticed any differences and whether they had a par-
ticular strategy for inspecting objects. The experiment
lasted around 40 minutes.

Results
The total number of observations was 768 and 737
remained after outliers had been removed (data points
that are 2.5 standard deviations above or below the mean).
Table 2 summarizes the response times for the three trial
phases (Fig. 3).

Total time
Figure 7 compares the total time needed to finish the
task for ambiguous instructions in both experiments. In
contrast to the data for the subset of ambiguous instruc-
tions from Experiment 1 (left), there was no significant
difference in performance for the two approaches in
Experiment 2 (right). When participants received under-
specified feedback, the task completion time was slightly
longer (M = 12.63 s, SD = 6.83 s) than following con-
trastive feedback (M = 12.33 s, SD = 6.52 s). We fitted
a model with feedback specificity as a fixed effect and
with random intercepts and slopes for subjects and items
but there was no significant effect of feedback specificity
(χ2(1) = 0.666, p = 0.414).

Identification time
We fitted a model with feedback specificity as a fixed
effect but, unlike Experiment 1, we did not find a
significant difference between the two approaches in
Experiment 2 (χ2(1) = 0.065, p = 0.799). In gen-
eral, listeners in this experiment were a bit slower to
inspect the target compared to those receiving con-
trastive feedback in Experiment 1, though they consid-
ered the target sooner when feedback was contrastive
(M = 4.47 s, SD= 5.32 s) than when it was underspecified
(M = 4.84 s, SD = 4.82 s).

Table 2 Mean durations of the three interaction phases and the
total time for Experiment 2

Feedback
specificity

Instruction Identification Grasp Total time

[s] [s] [s] [s]

Underspecified 2.81 4.84 4.98 12.63

Contrastive 2.79 4.47 5.07 12.33

Feedback occurrences
The type of instructions (instructional ambiguity) was not
manipulated in this experiment, i.e., the system systemat-
ically generated ambiguous instructions. However, verbal
feedback can be considered as a dependent variable, since
it is a direct consequence of participants’ visual search
behavior. Competitor inspections triggered negative feed-
back and target inspections triggered positive feedback.
It is the negative feedback that differs in specificity. As
was done for Experiment 1, we constructed a general-
ized linear mixed-effects model (with a logit link function)
fitted to feedback occurrences with feedback specificity
as a fixed effect. There was a significant effect of feed-
back specificity on the number of feedback occurrences
(β = 0.168, standard error of the mean SE = 0.070, z =
2.396, p = .017). That is, when listeners followed under-
specified feedback, their gaze triggered more negative
instances (M = 2.19 instances, SD = 1.56 instances), i.e.,
they considered more competitors before arriving at the
target, in comparison to when they followed contrastive
feedback (M = 1.74 instances, SD = 1.10 instances).
Furthermore, we ran a sequential analysis on feedback
occurrences to assess the first relevant inspections using
a linear mixed-effects model with feedback specificity
as a fixed effect. Unlike Experiment 1, there is no sig-
nificant difference with respect to our manipulation of
feedback specificity (χ2(1) = 0.100, p = 0.752). Inter-
estingly, listeners quickly inspected a competitor object
(Fig. 8) that triggered the first negative inspection and
this happened comparably soon in both types of feedback
(underspecified, M = 1.45 s, SD = 2.19 s; contrastive,
M = 1.79 s, SD = 3.34 s).

Discussion
The results suggest that the chance to receive more
informative feedback influences the overall willingness to
interact and cooperate with a system on solving a task. Lis-
teners seem to have greater expectations for the capabili-
ties of the system, which is reflected in their gaze behavior.
Thus, participants in themore difficult and rather unnatu-
ral approach (ambiguous instructions with underspecified
feedback) were now as efficient as those experiencing
the more informative approach (ambiguous instructions
with contrastive feedback). These findings provide some
evidence that participants can deal effectively with the
imperfect behavior of a system if they perceive it as help-
ful and efficient overall. In other words, it is not solely the
actual informativity of the spoken output in a given trial,
but the confidence in the system’s supportive behavior
more generally, that determines how efficient information
uptake is. In terms of the strategic use of gaze, it seems as
if none of the participants spotted the manipulation. This
became evident from the short written answers they gave
to the question “Did you notice any specific difference



Mitev et al. Cognitive Research: Principles and Implications            (2018) 3:51 Page 11 of 16

Fig. 7 Total time for the interactions for Experiment 1 with ambiguous instructions (left) and for Experiment 2 (right)

across the experiment?” after completing the online exper-
iment. The differences some participants mentioned con-
cerned the visual scenes and not the system’s verbal out-
put. Specifically, participants first looked at everything
but relied on the system’s instructions to find a target.
Thus, we assume that listeners adapted their engagement
and behavior rather naturally and unconsciously instead
of employing a tactic for where to look and which

object to inspect next in a specific experimental
approach.

General discussion
Interactive systems that use natural language in situ to
assist a user in solving a task can benefit from exploiting
listener gaze. Although the gaze signal is continuous and
rapid, Koller et al. (2012) showed that it can be exploited
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Fig. 8 Time interval from instruction offset to the onsets of the first negative and first positive feedback instances in Experiment 2
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effectively by a NLG system designed to give directions
to a listener and to refer to objects in a virtual environ-
ment. In their study, they showed that using listener gaze
led to higher success rates. Real-world interactions are
noisier and the system’s knowledge about the environment
is usually far from perfect. Thus, it is more challenging
to make use of listeners’ eye movements in such a setting.
Further, Koleva et al. (2015) report that even human
speakers did not benefit from seeing where the listeners
were looking when following the speakers’ spontaneous
instructions for selecting certain objects. Perhaps it is
difficult for a human speaker constantly to monitor and
interpret the gaze signal. Alternatively, the mediation of
gaze information by a gaze pointer overlaid on a scene
camera video, as used in that study, created an artificial
situation that speakers could not exploit intuitively and
efficiently.
In contrast, we employed an artificial speaker, that is, a

parametrized NLG system, which tracks users’ eye gaze to
real objects while simultaneously planning an utterance.
This system has the advantage of generating instructions
systematically and without the great variation that is typ-
ical of instructions from humans. Such control over the
(artificial) speaker allows us to integrate different modal-
ities in the interaction without much additional effort
while avoiding recursive effects between independent and
dependent variables (a variation by the speaker would
affect listener behavior, which in turn could affect the
speaker). Lastly, providing gaze-driven feedback triggered
by object inspections is computationally inexpensive for
our system but enables it to be even more interactive and
to engage better with the listener.
The results from our experimental investigations with

this system support this view and suggest that exploiting
listener gaze in real-world human–machine collabora-
tions can indeed be beneficial. Our results extend previous
research by looking at interactions with increased inter-
activity with an assistance system. Instead of generating
long unambiguous instructions with all the required infor-
mation, our system splits the information and provides it
on demand, by giving partial instructions and requiring a
non-verbal cue from the listener to progress the commu-
nication. While Experiment 1 showed that this might be
considered more demanding, even exhausting, as listeners
were more involved, the assessment of using such variants
of installments to refer to co-present objects (i.e., ambigu-
ous instruction with contrastive feedback) revealed that
the interaction flow was perceived positively and rated as
highly as following an unambiguous instruction. More-
over, instructional ambiguity that refers to objects incre-
mentally and reacts to listeners’ gaze can be used to
identify objects in the shared space more quickly.
Experiment 2 then examined whether the benefit of

contrastive feedback is inherent to it or whether there

is a learning effect specific to this system’s behav-
ior. Here, the system provided underspecified or con-
trastive feedback in an interleaved manner. Somewhat
surprisingly, the results revealed that both approaches
now led to equally high task performance. Participants
were equally efficient in completing the task when
listening to underspecified or contrastive feedback given
the different study designs; however, obtaining different
results is not that unusual (Charness et al. 2012). Specif-
ically, we interpret the performance gain in Experiment
2 as a natural adaptation to the system’s informative
behavior that extends to and even absorbs the not-so-
informative trials. Supportive evidence for this inter-
pretation comes from the sequential feedback analysis,
which shows that gaze was used more deliberately,
and this helps participants to advance quickly within
a trial.
Lastly, given that not only does the specificity of gaze-

driven feedback improve task performance, but the lis-
tener’s perception of an assistive system also influences
it, changing the form of the instructions could possibly
contribute further to efficiency. A direction for future
research could be to vary the syntactic structure and
the lexicalization when generating an ambiguous instruc-
tion to examine the effect of politeness in this context
(Pemberton 2011).

Conclusion
In this paper, we extend previous findings from vir-
tual environments and show that underspecified feed-
back (e.g., “No, not that one!”) combined with ambiguous
instructions cannot compete, in terms of interaction effi-
ciency, with unambiguous instructions even when these
are not followed by (confirmatory) feedback. Combining
an ambiguous instruction with contrastive feedback,
however, increased efficiency dramatically and this
approach even outperformed unambiguous instructions
(Experiment 1). Moreover, we provide evidence that con-
trastive feedback determines the overall strategy for effi-
cient information uptake by the human listener, even
if the system’s output varies in informativity (or rather
feedback specificity, as in Experiment 2). The expec-
tation of obtaining another piece of information in
response to their own behavior seems to influence
the listener’s readiness to team up with the system
to solve a task, and thus, to employ their eye gaze
intensively.
In summary, we have shown that listener gaze is a

reliable cue for indicating reference resolution and that
exploiting it to give contrastive feedback with a posi-
tion specification (e.g., “Further left!”) relative to the
listener’s current gaze point drastically improves per-
formance in task-oriented real-world human–machine
interactions.
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Appendix A: Layouts 1 and 2 used in Experiments 1 and 2

Fig. 9 First scene layout

Fig. 10 Second scene layout



Mitev et al. Cognitive Research: Principles and Implications            (2018) 3:51 Page 14 of 16

Appendix A: Layouts 3 and 4 used in Experiment 2

Fig. 11 Third scene layout

Fig. 12 Fourth scene layout
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