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Abstract

Many medical professions require practitioners to perform visual categorizations in domains such as radiology,
dermatology, and neurology. However, acquiring visual expertise is tedious and time-consuming and the
perceptual strategies mediating visual categorization skills are poorly understood. In this paper, the Ease algorithm
was developed to predict an item’s categorization difficulty (Ease value) based on the item’s perceptual similarity
to all within-category items versus between-category items in the dataset. In this study, Ease values were used to
construct an easy-to-hard and hard-to-easy training schedule for teaching melanoma diagnosis. Whereas previous
visual training studies suggest that an easy-to-hard schedule benefits learning outcomes, no studies to date have
demonstrated the easy-to-hard advantage with complex, real-world images. In our study, 237 melanoma and
benign images were collected for training and testing purposes. The diagnostic accuracy of images was verified by
an expert dermatologist. Based on their £ase values, the items were grouped into easy, medium, and hard categories,
each containing an equal number of melanoma and benign lesions. During training, participants categorized images
of skin lesions as either benign or melanoma and were given corrective feedback after each trial. In the easy-to-hard
training condition, participants learned to categorize all the easy items first, followed by the medium items, and finally
the hard items. Participants in the hard-to-easy training condition learned items in the reverse order. Post-training
results showed that training in both conditions transferred to the classification of new melanoma and benign images.
Participants in the easy-to-hard condition showed modest advantages both in the acquisition and retention of the
melanoma diagnosis skills, but neither scheduling condition exhibited a gross advantage. The Ease values of the items
predicted categorization accuracy after, but not before training, suggesting that the Ease algorithm is a promising tool

for optimizing medical training in visual categorization.

Keywords: Visual categorization, Melanoma diagnosis, Trial scheduling, Training procedure, Difficulty prediction

Significance

Numerous medical professions require practitioners to per-
form visual categorizations for their domain. For example,
dermatologists must recognize whether a skin lesion is
malignant or benign. However, the acquisition of visual
expertise can be time-consuming. This work aims to de-
velop practical training procedures that reduce the learning
burden placed on medical professionals. Traditionally, it is
impractical to implement a training procedure that assumes
the difficulty of learning each image is known. The Ease
algorithm provides a novel, cost-effective measure for
computing image difficulty and overcoming traditional
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limitations. The Ease algorithm is a simple category learn-
ing model that predicts the probability of a participant
making a correct classification. Importantly, the Ease
algorithm incorporates both the within-category and
between-category variabilities. The proposed method for
computing image difficulty makes it practical to imple-
ment and compare different difficulty-based scheduling
policies for real-world medical images. This work demon-
strates how Ease values can be used to compare two com-
monly used schedules: an easy-to-hard and a hard-to-easy
schedule. Results from a human training experiment pro-
vide no direct evidence in favor of one schedule.

Background
It has been estimated that it takes the average person
10,000 h of training (20 h for 50 weeks a year for ten years

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1186/s41235-018-0131-6&domain=pdf
http://orcid.org/0000-0002-9667-3909
mailto:brett.roads@colorado.edu
http://creativecommons.org/licenses/by/4.0/

Roads et al. Cognitive Research: Principles and Implications (2018) 3:38

=10,000 h) to become an expert (Ericsson, Krampe, &
Tesch-Romer, 1993). Of course, this number is not fixed.
Characteristics of the learner, such as their native ability
and motivation, can affect the amount of practice needed
to achieve mastery. The complexity of the skill domain
will also influence how much practice time is required for
a person to become an expert (e.g. more practice time is
needed to become a chess expert than a checkers expert).
Finally, the schedule and structure of the training itself
will also affect the length of training for expertise.

Previous work has demonstrated that the order of train-
ing trials influences the efficiency of the training and the
trainee’s ability to visually categorize trained and novel
exemplars (e.g. Birnbaum, Kornell, Bjork, & Bjork, 2013;
Carvalho & Goldstone, 2014, 2015; Kang & Pashler, 2012;
Pashler & Mozer, 2013; Wahlheim, Dunlosky, & Jacoby,
2011; Zulkiply & Burt, 2013). A common finding in the lit-
erature is that individuals who are trained with an
easy-to-hard schedule demonstrate better transfer than
groups who are trained exclusively with hard trials or with
a hard-to-easy schedule. The easy-to-hard effect has been
demonstrated in a variety of species, including dogs (Pavlov,
1927), pigeons (Lawrence, 1952), and rats (Liu, Mercado,
Church, & Orduna, 2008). Easy-to-hard training is also
more efficient if the transition from easy to difficult items is
gradual rather than abrupt (Lawrence, 1952). In humans,
the easy-to-hard phenomenon has been shown in visual
(Hornsby & Love, 2014; McLaren & Suret, 2000) and audi-
tory (Church, Mercado, Wisniewski, & Liu, 2013; Liu et al,,
2008) modalities. To account for the easy-to-hard effect, it
has been hypothesized that the easy items provide good in-
formation about category structure, are easily encoded in
memory, and serve as the foundation for learning more dif-
ficult items (Avrahami et al., 1997; Hornsby & Love, 2014).

In striking contrast, other researchers have argued that
a hard-to-easy schedule is more efficient for teaching
complex perceptual categories (Lee et al., 1988; Spiering
& Ashby, 2008). For example, when asked to classify
sine-wave gratings that combined the dimensions of
width and orientation, participants who began with hard
items showed better learning rates and superior transfer
compared to participants who were exposed to the
easy-to-hard learning condition (Spiering & Ashby,
2008). It is hypothesized that the difficult items encoun-
tered early in training forced participants to focus on
complex categorization rules and to quickly discard
simple, one-dimensional approaches. If categories follow
explicit, verbal rules, performance is equivalent regard-
less of whether the individuals are taught with an
easy-to-hard, hard-to-easy, or random schedule of
learning (Ashby, Alfonso-Reese, Turken, & Waldron,
1998; Spiering & Ashby, 2008). Hence, for the learner,
the optimal schedule is determined by the structure of
the to-be-learned categories.
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Melanoma, a lethal skin cancer when not detected in the
early curable phase, provides an ideal category domain for
testing the predictions of the easy-to-hard and hard-to-easy
learning methods. The conventional approach for teaching
the diagnostic features of melanoma is explicitly rule-based.
The ABCDE system directs observers to five key features of
a lesion: its asymmetrical shape (A); irregular border (B);
variegated color (C); a size that is >6 mm in diameter (D);
and evolving appearance (E). However, training programs
designed to improve ABCDE diagnostic skills of physicians,
medical students, and practitioners have been largely
ineffective (Rourke, Oberholtzer, Chatterley & Brassard,
2015). The primary weakness of the ABCDE approach is
that benign lesions may exhibit cancerous features (e.g.
asymmetry, jagged borders, multi-colored, >6 mm), and
melanoma lesions, especially in their early stages of
development, do not always fit the ABCDE criteria. Not
surprisingly, studies have shown that even expert judges
show relatively poor inter-observer reliability when
evaluating a lesion for its ABCD rules of variegated color
and irregular contour (Meyer, Piepkorn, Goldgar, Lewis,
Cannon-Albright, et al, 1996). Rather than being a
ruled-based category, melanoma and benign lesions belong
to the class of “fuzzy” categories where the visual features
are overlapping, probabilistic, and require perceptual inte-
gration (Ashby & O’Brian, 2005; Rosch, 1973; Rosch &
Mervis, 1975; Zadeh, 1965).

One challenge with comparing different difficulty-based
schedules is that it is non-trivial to determine a difficulty
score for every item in a real-world image dataset.
Typically, item difficulty is obtained using one of two
relatively time-intensive and labor-intensive methods. One
approach is to run an initial norming study with novice
participants who are trained to perform the categorization
task and record the accuracy statistics for each item (e.g.
Lindsey, Mozer, Huggins, & Pashler, 2013). One limitation
of the norming approach is that difficulty scores can only
be obtained after participants are trained to a pre-specified
level of performance and the difficulty scores will change if
new items are added to the set. Alternatively, experts can
be consulted to rank the relative difficulty of category items
(e.g. Evered, Walker, Watt, & Perham, 2014). However,
researchers must find qualified experts and may not have
the financial resources to compensate experts for their
services. In this study, an innovative alternative is intro-
duced that avoids these drawbacks. Based on the independ-
ent judgments of naive raters, the Ease algorithm uses a
multi-dimensional feature representation based on the im-
age’s perceived visual similarity to all images in the dataset.
The Ease algorithm vyields scores that reflect the
categorization difficulty of all images in the dataset and can
be leveraged by a training schedule.

The current study compares the effectiveness of
easy-to-hard and hard-to-easy training schedules in a visual
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category learning task using real-world skin lesion images.
First, Experiment 1 describes a novel Ease algorithm that
estimates the difficulty of an item by using a
multi-dimensional feature representation that captures the
visual similarity between items. In Experiment 2, the com-
puted Ease values are used to construct the easy-to-hard
and hard-to-easy training schedules. The two training
schedules are evaluated based on their effectiveness in
teaching melanoma diagnosis and retention of the diagnosis
performance.

Experiment 1: Computation of ease values

The method for predicting the difficulty of every item in a
pre-defined image dataset is presented in this experiment.
The difficulty of an exemplar is computed in three stages.
First, a set of human similarity judgments are collected.
Second, a psychological representation of similarity using
human similarity judgments is inferred. Third, the inferred
psychological representation of similarity is reused in a
simple category learning model in order to predict the dif-
ficulty associated with each exemplar. Each of these three
stages is discussed in turn and corresponding results are
presented for a pigmented skin lesion image dataset. The
recovered psychological representations reveal reasonable
predictions that are further validated by Experiment 2.

Methods

Image dataset

Images of four types of melanoma (acral lentiginous, lentigo
maligna, nodular, superficial spreading) and four types of
benign pigmented lesion (blue nevi, lentigo, melanocytic
nevi, seborrheic keratoses) were used in the current study.
Images of skin lesion were collected via Google image
search by using the name of the lesion type (e.g. lentigo
maligna) as the key words. The accuracy of the diagnosis of
all the images were then validated by an expert dermatolo-
gist. This validation procedure excluded 11 images from
the study, either because of the uncertainty of the diagnosis
from visual inspection of the images alone or the existence
of more than one type of melanoma lesion in the same
image (e.g. lentigo maligna with a nodular component).
The remaining 237 images (120 melanoma, 117 benign)
were scaled to fit within a frame of 300 x 300 pixels and
cropped to remove any body part information.

Collection of human similarity judgments

In the first stage, human similarity judgments are collected
for the images of interest. Inspired by approaches used in
the computer vision community (e.g. Wah et al, 2014),
human similarity judgments are collected by having
participants view displays composed of nine images
arranged in a 3 x 3 grid (Fig. 1). Each display is composed
of a query image (center image) and eight reference images
(surrounding images). Participants are asked to select the
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two reference images they believe are most similar to the
query image. When participants make their selection, they
also indicate which reference is most similar and second
most similar. Each participant evaluates multiple displays.
The images for each display are selected randomly from the
set of all possible images. A sufficient number of displays
are evaluated such that every image occurs in at least one
display.

A participant’s choices for the ith judged display is re-
corded using a vector of the following form:

Di = (%ﬂal% c, d7e7f7g7h)a

where ¢q is a scalar indicating the query image and a- &
are scalars indicating the reference images. The variables
a and b represent the references that the participant
chose as the most similar and second most similar. The
set of all judged displays, across multiple participants, is
indicated by D.

Inference of a psychological embedding
In the second stage, the set of all judged displays, D, is used
to infer a psychological representation of similarity, referred
to as a psychological embedding. A psychological embedding
is a multi-dimensional feature representation that models
the similarity between items. The ith item is represented as
a feature vector z;, which we refer to as an embedding point.
The entire embedding is denoted by the matrix Z. The
inference objective is to recover an embedding (Z) such that
similar items are located closer together than dissimilar
items. While there are an infinite number of potential visual
features, the algorithm identifies the subset of salient fea-
tures that sufficiently capture human-perceived similarity.
Many algorithms exist for determining a psychological
embedding, such as metric multidimensional scaling (e.g.
Glower, 1966; Torgerson, 1958), non-metric multidimen-
sional scaling (e.g. Kruskal, 1968a, 1968b), and t-distrib-
uted stochastic triplet embedding (Van Der Maaten &
Weinberger, 2012). Different embedding algorithms make
different assumptions about the way humans perceive
similarity. For example, the t-distributed stochastic triplet
embedding procedure assumes that the similarity between
two embedding points is described by an unnormalized
Student’s t-distribution. In this work, the similarity
function is constrained by existing psychological theory.
Following Roads and Mozer (2016), various psychological
models (e.g. Jones, Love, Maddox, 2006; Jones, Maddox,
Love, 2006; Nosofsky, 1986; Shepard, 1987) are integrated
into a general form to obtain:

s(zirz)) = exp(-llzi-z,,,) +7.

where f5, p, 7, and y are free parameters that control the
gradient of generalization. The norm liz; - zll,,, ,, denotes
the weighted Minkowski distance where the parameter p
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Fig. 1 Example similarity judgment displays shown to individuals. The center image is the query image while the surrounding images are the
reference images. Participants select the two reference images that are most similar to the query. a Initially only the query is highlighted. b After
the participant makes their selection, the selected references are also highlighted
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controls the type of distance (e.g. p =2 yields Euclidean
distance). The vector w is used to model attention
weights. The attention weights allow different feature
dimensions to be given varying importance in determin-
ing similarity. The weight vector is constrained such that
each element w; >0 and Y,w; = D, where D is the dimen-
sionality of the embedding. Points that are closer to-
gether in embedding space will have a higher similarity
than points that are farther apart. For conciseness, the
free parameters controlling the similarity function (i.e. /5,
p, T, and y) are denoted by the set variable 6.

Given a psychologically motivated similarity function, it is
possible to specify a simple behavioral model that predicts
the choices participants make when judging displays. The
likelihood of subject selections is modeled in the same spirit
as Luce’s ratio of strengths formulation (Luce, 1959). For a
given trial, the probability of selecting a given reference is
determined by the similarity between the query stimulus
and that reference. References that are more similar to the
query have a higher probability of being selected. Since
participants make two selections, the likelihood is a product
of the probability of making the first selection and the
probability of making the second selection:

$(24:240) s(2q,250)
ZreR,'S (ZQ’ Zy | 0) ZreR,-—th (ZQ’ ZV|0)

The set variable R; indicates the set of all references a—h
that were presented on the ith display. Before making the
first selection, participants have eight choices. After making
the first selection, participants must choose from among
the seven remaining references (R;~a). The likelihood of
all the judged displays is given by:

p(D|Z, 0) = Hp(Di|Z> 0)

p(DilZ,0) =

To infer a psychological embedding, gradient decent is
used to find the set of parameters Z and 0, that maximizes
the log-likelihood:

123)( Z logp(Di|Z, 6).

By maximizing the log-likelihood the algorithm pro-
duces a set of embedding points and a corresponding
similarity function that emulates human-perceived simi-
larity. One drawback of many embedding algorithms is
that the dimensionality must be specified beforehand. The
embedding algorithm presented here is no exception. In
order to determine the dimensionality of the embedding,
a separate embedding is inferred using different dimen-
sionality settings. Each embedding is tested on its ability
to predict a held-out set of similarity judgments using a
threefold cross-validation procedure. The dimensionality
that results in the best predictions is selected.

During inference, the attention weights provide an
unnecessary degree of freedom. The embedding algorithm
is capable of stretching and contracting the space without
the attention weights. If the similarity judgments were
derived from distinct populations (e.g. novices and experts),
a unique set of weights could be inferred for each popula-
tion, in the same spirit as the INDSCAL algorithm (Carroll
& Chang, 1970). Since it is assumed that there is only one
population, all attention weights are fixed to one. The at-
tention weights are included in the formulation of similarity
because they play an important role in the next stage.

Prediction of item difficulty

In the third stage, a simple category learning model is used
to predict the difficulty of learning each item in the image
dataset. In principle, any category learning model that pre-
dicts the probability of a correct categorization can be used
to predict item difficulty (e.g. Love, Medin, & Gureckis,
2004; Nosofsky, 1986, Shepard, 1987). The probability of
correct categorization can be used as a direct measure of
difficulty. If a category learning model predicts a low prob-
ability of correct categorization, then the item is relatively
difficult. Conversely, if the category learning model predicts
a high probability of correct categorization, then the item is
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relatively easy. However, category learning models have free
parameters that must be fit using behavioral data. In
contrast to typical approaches, the free parameters of the
proposed model are determined by a previously inferred
psychological embedding.

The proposed category learning model is a simplified
version of the Generalized Context Model (Nosofsky,
1986). Since the free parameters of the proposed model are
not being fit in the typical manner, we refer to the model as
the Ease algorithm. The Ease algorithm leverages similarity
functions to predict categorization probabilities and there-
fore a measure of difficulty. The Ease algorithm assumes
that every stimulus has an embedding point z; and a corre-
sponding label y; that indicates its category membership.
The Ease algorithm predicts the probability that the ith
stimulus will be categorized correctly:

_ Z}ESZ’S (zi7 z/)

o ZkeIﬂvs(ziazk) ’

where S; = {leZ ;|ly, =y} is the set of indices that
belong to the same category as the ith image and 7 is the
set of indices representing all the images in the embed-
ding. The numerator of the Ease algorithm adds up the
similarity between the ith stimulus and all other stimuli
that belong to the same category (S;), effectively produ-
cing a measure of within-category similarity. The denom-
inator of the Ease algorithm adds up the similarity
between the ith stimulus and all other stimuli (Z-;). The
Ease algorithm therefore compares how similar a stimulus
is to its own category members relative to all possible
categories. Importantly, the Ease algorithm uses the same
similarity function as the embedding procedure.

The same similarity function is employed in the Ease al-
gorithm and the choice model of the embedding procedure.
This aspect enables the reuse of the similarity function
learned during the embedding procedure, with one conse-
quential change. The Ease algorithm uses different atten-
tion weights. Following the approach used by Nosofsky
(1986), it is possible to compute the optimal attention
weights for a rational agent performing a categorization
task. The rational weights can be viewed as the attention
weights that an expert would use during categorization.
The reused similarity function, embedding points, and
rationally optimal weights produce a simple model capable
of generating Ease values.

Reusing a similarity function fit by similarity judgments
provides an advantage because similarity judgments are
easier to collect and reusable if the set of images changes.
The protocols for collecting similarity judgments can be
much shorter than training protocols. A training protocol
must be sufficiently long to observe a change in perform-
ance. This means that participants must complete an entire
(typically lengthy) training protocol in order to be included
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in the fitting procedure. In contrast, the protocol for col-
lecting similarity judgments can be arbitrarily short. Shorter
protocols mean a smaller time commitment for partici-
pants, potentially increasing the pool of willing participants.

A second advantage concerns reusability. In general,
the difficulty of an exemplar depends on the other
exemplars used in the experiment. Adding exemplars
can change the location of category boundaries and the
degree of overlap between different categories. If a
researcher derives difficulty scores from training data,
but later decides to use an expanded set of stimuli, the
previously derived difficulty scores may no longer reflect
the actual difficulty of the task. In contrast, all previously
collected similarity judgments can be reused. To infer an
updated embedding, more similarity judgments need to
be collected that include the new stimuli. Then, a new
embedding is inferred using the expanded set of similar-
ity judgments. Inferring a new embedding is computa-
tionally inexpensive (about 5 min for the dataset used in
Experiment 1). Lastly, a psychological embedding is
extremely versatile. While this work focuses on using
the inferred embedding in order to make difficulty
predictions, the embedding itself can also be used in
more sophisticated cognitive modeling and analysis of
visual features.

Results and discussion

Using the previously described approach, an inferred psy-
chological embedding was obtained for an image dataset
composed of 237 skin lesion images (120 melanoma, 117
benign). Similarity judgments were collected from 112
novice participants on Amazon Mechanical Turk. Each
participant completed 27 trials, yielding 3024 judged
displays. The sample size of 112 participants was chosen
based on computer simulations using a known, synthetic
ground truth. Applying the embedding algorithm to the
collected similarity judgments yields a three-dimensional
psychological embedding. A two-dimensional visualization
of the embedding (Fig. 2) illustrates the high degree of vis-
ual feature overlap between benign and malignant images,
indicative of a difficult category learning task.

Once the psychological embedding has been obtained,
the inferred similarity function and embedding points
are reused in the Ease algorithm. The Ease algorithm
predicts the relative difficulty of each image in the image
dataset. The items predicted to be the easiest are
surrounded by neighbors of the same class (Fig. 2). Items
that are predicted to be difficult have neighbors from the
opposite class. The overlap of visual features can be
partially understood by visually examining images with a
spectrum of predicted Ease values (Fig. 3). The hardest
items from both categories tend to exhibit visual features
that are common to both categories.
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Fig. 2 An inferred two-dimensional embedding for 237 skin lesion images. Each dot represents a unique image where the color of the dot
indicates the image category (reddish: benign, bluish: malignant). The brightness of the color indicates the Ease value of the exemplar. The
brighter colors (vellow and cyan) indicate exemplars that are relatively easy. The darker colors indicate exemplars that are relatively difficult

Experiment 2: Comparing easy-to-hard and hard-
to-easy training schedules

Visual learning is a critical skill in medical diagnosis educa-
tion. For example, neurologists make diagnostic decisions
by viewing magnetic resonance scans, radiologists analyze
mammograms for evidence of cancer and dermatologists
inspect skin lesions for melanoma. Anecdotally, medical ed-
ucators often introduce more typical cases first—those that
have the classic representation of the symptom—before
introducing more atypical cases. This implies that an
easy-to-hard schedule might already be in use by medical
educators. One medical training study in cytopathology
(Evered et al, 2014), manipulated the difficulty of the
training items and suggested that training should avoid
images along category boundaries. However, it was unclear
whether the easy-to-hard schedule was superior to the
hard-to-easy schedule.

The purpose of the present training task was to teach
trainees to make correct diagnosis of whether a pigmented
lesion is melanoma or benign. Previously Xu, Rourke,
Robinson, and Tanaka (2016) have shown that trainees can
improve significantly in melanoma diagnosis after receiving
perceptual training with the exposure to multiple exemplars
of pigmented skin lesion images, with immediate feedback
of the correctness of the diagnosis, and with the require-
ment to reach the accuracy criterion of 90% with all the
training images. In this study, instead of scheduling training
items randomly, training items are introduced following
either the easy-to-hard or the hard-to-easy schedule.

Experiment 2 directly compares the performance and
knowledge retention of groups trained using an
easy-to-hard training schedule and a hard-to-easy training
schedule. Categorizing lesions is a good test of the
predictions of two types of scheduling procedures because
it requires integration of information across multiple
dimension (e.g. size, coloration, symmetry, and contour)

(Ashby & Spiering, 2004; Spiering & Ashby, 2008). When
categorization requires perceptual integration, some
studies found a learning advantage for the easy-to-hard
approach (Church et al., 2013; Liu et al., 2008; McLaren &
Suret, 2000), while others report a learning advantage for
the hard-to-easy approach (Spiering & Ashby, 2008). In
the current experiment, all participants received the same
number of easy, medium, and difficult training trials.
Participants in the easy-to-hard group were trained with
the easy items first, followed by the medium items and
hard items. Participants in the hard-to-easy group learned
items in the reverse order. Item difficulty was determined
using the Ease values of the skin lesion images obtained in
Experiment 1. Pre-training and post-training performance
for the two schedules was tested immediately after training
and two weeks later. The pre-training and post-training
performance was correlated with the Ease value of
individual test items. The two training conditions were
compared by examining overall performance, as well as
difficulty-specific performance, in the immediate and
two-week post-test.

Method

Participants

Based on an a priori power analysis using the criteria of
Cohen’s d=0.8 (large effect size, Cohen, 1988), alpha =
0.05, power = 0.8, and an attrition rate of 20%, we planned
to test 31 participants in each of the training conditions.
Sixty-two undergraduate students from the University of
Victoria participated in the study. All of the participants
had normal or corrected-to-normal vision and none of
them have received formal medical training. Thirty-one
participants (seven men) were randomly selected to
participate in the easy-to-hard condition and another 31
participants (10 men) participated in the hard-to-easy
condition. The average age of the easy-to-hard (M =22.7,
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Fig. 3 A set of images demonstrating the spectrum of difficulty for the two classes of skin lesions. The first and second row show malignant and
benign skin lesions, respectively. Within each row, the items on the left are predicted to be the easiest while the items on the right are predicted
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SD=54) and hard-to-easy (M =218, SD=4.4) was not
significantly different (¢50 = 0.72, p = 0.47, Cohen’s d = 0.18),
nor were the gender ratios significantly different (y* = 0.73,
p=0.40).

Melanoma diagnosis test (MDT)

The MDT is a measure of the ability to discriminate
between melanoma and benign pigmented skin lesion
images. In the MDT, six images of each of the four types
of melanoma and benign lesions were selected (48 images
in total) from the image pool. A mixture of easy, medium,
and hard items was selected for melanoma and benign
lesions. The melanoma and benign lesions had an average
Ease value of 0.60 (SD=0.10) and 0.57 (SD=0.12),
respectively. In each trial, participants saw one skin lesion
image and were asked to judge whether the lesion was
“Benign” or “Melanoma” by clicking the buttons presented
under the image. The MDT served as the pretest (before
training), immediate post-test (immediately after training),
and delayed post-test (two weeks after training). The
images were identical in all three tests, with the exception
that images were rotated 90° clockwise for the immediate
post-test and 180° clockwise for the two-week post-test.
Images used in the MDT were never used in the training.

Training

Twelve images of each of the four types of melanoma and
benign skin lesions were used for training (96 in total).
Images used during training were never used in the MDT.
All the benign and melanoma lesion images were first
sorted by their Ease values. Sixteen of the melanoma
images (regardless of their sub-types) with the highest
Ease value were labeled as easy items, 16 of the melanoma
images with the lowest Ease value were labeled as hard
items, and the remaining 16 melanoma images were
labeled as medium items. The same method was used to
group the benign lesions. As a result, for melanoma
lesions, the easy, medium, and hard items had Ease values
of 0.72 (SD =0.06), 0.59 (SD =0.03), and 0.49 (SD = 0.05),

respectively. For benign lesions, the easy, medium, and
hard items had Ease values of 0.72 (SD = 0.08), 0.56 (SD =
0.03), and 0.43 (SD = 0.07), respectively. Each of the easy,
medium, and hard training blocks contains 16 melanoma
and 16 benign lesion images. In the training, participants
in the easy-to-hard (hard-to-easy) condition received four
iterations of the easy (hard) training block, followed by
four iterations of the medium training block, and, finally,
four iterations of the hard (easy) training blocks. When a
training block was repeated, the same images were used as
in the previous block, but appeared randomly in one of
the four orientations (i.e. upright, inverted, rotated 90°
clockwise, and rotated 90° counterclockwise). As a result,
all participants had 384 trials during training. In each trial,
participants were required to decide whether the lesion
image presented on the screen was melanoma or benign
by clicking on the “Melanoma” or “Benign” buttons
presented underneath the image. Feedback about the
accuracy of the diagnosis was provided immediately after
participants responded.

Procedure

The detailed training and pre/post-test arrangements were
illustrated in Fig. 4. All 62 participants visited the lab on
day 1. They first took the MDT as the pretest. Then, they
were randomly assigned into the easy-to-hard and
hard-to-easy conditions for the training. After they com-
pleted the training, they were given the MDT as the imme-
diate post-test. All participants were invited to complete
the second post-test 14 days after the first post-test
remotely using their own computers. Both the MDT and
the training were programmed using the JsPsyche library
(de Leeuw, 2015) using JavaScript and deployed using an
online data collection platform developed by the lab led by
the senior author of this study. Skin lesion images were 300
x 300 pixels in size. On day 1, the pretest, training, and
immediate post-test were conducted in the lab. Participants
viewed the images on a 22-inch monitor with a resolution
of 1680 x 1050 pixels at a viewing distance of approximately
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Fig. 4 An illustration of the training and testing schedule used in Experiment 2. Blue boxes represent the MDT. Gray boxes represent the block of
training items used in each training session. The lighter the color, the easier the items

70 cm, resulting in a visual angle of 6.9° x 7.0°. However, no
specific instruction was given to require the participants to
remain at this viewing distance during the experiment. The
two-week post-test was done remotely so the size of display
and viewing distance were unknown.

Results and discussion

Improvement across training sessions

Using correct detection of melanoma as a hit (H) and cat-
egorizing benign lesion as melanoma as false alarm (FA),
sensitivity (d”) could be calculated for each individual as
the difference between the Z transforms of the H rate and
the Z transforms of the FA rate (ie. d' = Zy — Zga). The
measure of d’ was calculated for each training block across
all three training sessions (Fig. 5). Visual inspection
suggested that in each session, training performance im-
proved continuously in both groups. Moreover, in Session
1 where the easy-to-hard (hard-to-easy) group repeated
four blocks of training with easy (hard) items, training
performance was better in the easy-to-hard than the
hard-to-easy group. This pattern was mirrored in Session
3 where the easy-to-hard (hard-to-easy) group repeated
four blocks of training with hard (easy) items and training
performance was better in the hard-to-easy than the
easy-to-hard group. Interestingly, in Session 2 where both
groups of participants repeated four blocks of items of
medium level difficulty, the easy-to-hard group performed
better than the hard-to-easy group. This observation was
further investigated by a 3 x 2 ANOVA and examining the
two-way interactions between the within-subject variable
of Sessions (Session 1-3) and the between-subject variable
of Training Policy (easy-to-hard versus hard-to-easy). This
interaction was significant (F120) = 854.51, p < 0.001, 0=
0.85). Multiple Bonferroni corrected comparisons were
conducted between the two groups for each session. There
were significant group differences in all sessions: Session 1
(ts0=23.93, p<0.001, Cohen’s d =6.07); Session 2 (tg=

4.51, p<0.001, Cohen’s d=1.15); and Session 3 ({5 = —
26.35, p < 0.001, Cohen’s d = 6.69).

The most important finding from the training data
was from the between-group comparison in Session 2,
which provides evidence regarding the advantages of the
easy-to-hard policy. Unlike Session 1 or Session 3, both
groups were trained using the exact same items in
Session 2. Before Session 2, the two groups of partici-
pants had different training experience. In Session 1, the
easy-to-hard group was trained with the easy items
whereas the hard-to-easy group was trained using the
hard items. Therefore, any differences emerging from
the between-group comparison can only be attributed to
the different training history for the two groups. These
results suggest that learning the easy items first estab-
lished a better foundation for the trainees to learn the
medium difficulty items in the subsequent session.

Post-training gain

The sensitivity (d) measure was used to compare the
performance in MDTs administered before and immedi-
ately after the training. A 2 x 2 ANOVA was conducted,
with Test (pre versus post) as within-subject variable
and Training Policy (easy-to-hard versus hard-to-easy)
as between-subject variable (Fig. 6). The main effect of
Test (F(1,60) = 145.32, p < 0.001, ;72: 0.49) was significant,
indicating both groups improved after the training.
However, neither the main effect of Training Policy nor
the interaction between Test and Training Policy were
significant (all Fs < 2.1, all ps > 0.15). Similar results were
found when H and FA rates were analyzed separately,
with only the main effect of Test being significant. The
results from the direct comparison between the per-
formance in the pretest and post-test show that both the
easy-to-hard and hard-to-easy training policy were able
to improve overall melanoma diagnosis performance to
the same degree.
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Fig. 5 The performance (as measured by d') throughout the training for the easy-to-hard and hard-to-easy training group. Error bars denote 95%

Session 3

— Easy to Hard
— Hard to Easy

Ease value predictions

Another important question is whether the Ease values
can accurately predict diagnosis performance of the lesion
images. If the Ease values are a good predictor of the
diagnosis difficulty of the lesion images, participant per-
formance should correlate with the predictions. It was also
hypothesized that the MDT items’ accuracy should not
correlate significantly with the Ease value in the pretest
MDT, but the correlation should be significantly larger
with same items in the post MDTs. The Ease algorithm
effectively constitutes a simple model of an expert. Before

training, participant performance should correlate poorly
with the predictions of an expert model. In contrast, trained
participant performance should correlate highly with the
predictions of an expert model.

The Ease values of each of the 48 items in the MDT were
used to correlate with the actual performance on those
items in the pretest, immediate post-test, and two-week
post-test. All 62 participants’ data were used to compare
the correlations between the Ease values and performance
in the pretest and Ease values and performance in the
immediate post-test (Fig. 7). The results showed that the

16.

0.8.

Sensitivity (d)

04.

Pretest
Tests

Fig. 6 The sensitivity (d') in the pretest and post-test of MDT for participants receiving the easy-to-hard and hard-to-easy training. Error bars stand

for 95% confidence intervals

— Easy to Hard
= Hard to Easy

Immediate Posttest
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Fig. 7 The scatter plots depicting the correlation between the £ase value and the actual performance in pretest and immediate post-test of each

Immediate Posttest

Ease value did not significantly correlate between the
accuracy of the items in pretest MDT (r=0.15, p =0.32),
but correlated significantly with accuracy of the items in
immediate post-test (r=0.66, p<0.001). The difference
between these two correlation coefficients was significant
(p <0.005), indicating that the improved correlation is due
to training.

The significant correlation between Ease and perform-
ance in immediate post-test was further investigated be-
tween the easy-to-hard and hard-to-easy conditions. The
results showed that this correlation was significant in both
the easy-to-hard (r=0.60, p<0.001) and hard-to-easy
conditions (r=0.68, p <0.001), but the correlation coeffi-
cients of the two groups were not significantly different (p
=0.52). For both training policies, equivalent and signifi-
cant correlations were found between the Ease values and
actual performance in the post-test MDT, but not in the
pretest MDT. This suggests that a participant’s internal
representation of the category structure became more
expert-like, as measured by the predictions of the Ease
algorithm.

Retention

Retention was measured using data from the first
post-test (immediately after training) and the second
post-test (14 days after the pretest). Fifty-two (25 in
easy-to-hard condition) out of 62 participants completed
the two-week post-test, resulting in an attrition rate of
16%. In order to investigate the performance change be-
tween the immediate post-test and the two-week post-test
in easy, medium, and hard items in the MDT separately,
items in the MDT were binned into easy (16 items),
medium (16 items), and hard (16 items) sets based on
their Ease values. A 3 x 2 x 2 ANOVA was conducted with
Difficulty (easy, medium, and hard) and Test (immediate
post-test versus two-week post-test) as within-subject vari-
ables and Training Policy (easy-to-hard and hard-to-easy)
as the between-subject variable (Fig. 8). A main effect was

found for Test (F 50) =20.34, p <0.001, 172: 0.05). How-
ever, the main effect of Training Policy and the two-way
interactions involving Training Policy were not significant
(all Fs< 3.3, all ps>0.07, all < 0.008), indicating that the
performance for both groups dropped between the first to
second post-test. Importantly, the three-way interaction
between Training Policy, Test, and Difficulty was signifi-
cant (F(2,100) = 5.96, p < 0.01, 112:0.02). In order to further
investigate this three-way interaction, retention scores
were calculated as the difference between the performance
at immediate post-test and two-week post-test. Multiple
Bonferroni corrected t-tests on the degree of decay be-
tween the two groups showed that the easy-to-hard group
had less decay in both the easy (ty = 2.21, p<0.05,
Cohen’s d = 0.62) and medium items (f49 = 2.75, p <0.01,
Cohen’s d=0.77) but had equivalent decay in the hard
items (£49 = — 1.65, p = 0.11, Cohen’s d = 0.46).

In summary, both groups show equivalent overall per-
formance drops at the two-week post-test. These results
indicate that visual categorization knowledge deteriorated
for participants in both groups. However, between-group
differences were found when the performance decay was
examined at the level of item difficulty. The easy-to-hard
condition resulted in a larger amount of retained perform-
ance in easy and medium items.

General discussion

In this study, an innovative algorithm was used to estimate
the diagnostic difficulty or Ease value of skin lesion images.
Using the Ease values, easy, medium, and hard items were
identified and two training schedules were implemented to
train the correct diagnosis of melanoma and benign skin
lesions (i.e. easy-to-hard and hard-to-easy). As assessed by
performance on the MDT, both training schedules were
effective in reliably improving melanoma diagnosis of the
trainees. Moreover, training sensitized participants to the
underlying category structure differentiating melanoma and
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participants receiving the easy-to-hard and hard-to-easy training. Error bars stand for 95% confidence intervals
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benign pigmented images and the types of lesions that are
easy and difficult to classify.

For assessing item categorization difficulty, the Ease
method has several advantages over previous norming and
expertise approaches. First, whereas the source of category
decisions posited by novices and difficulty ratings made by
experts is uncertain, Ease values are explicitly derived from
a representation of perceptual similarity. Item difficulty is
determined relative to how perceptually similar an item is
to other items belonging to the same melanoma (or benign)
category and how perceptually dissimilar an item is to
other items belonging to the contrasting benign (or melan-
oma) category. Second, whereas norming and expertise
methods are relatively costly in terms of time and money,
Ease values can be recalculated quickly allowing for new
items to be readily incorporated into the dataset.

Using a sample domain of skin lesion images, it has
been shown that the computed Ease values are predictive
of the difficulty of the items both during the training and
at post-test. The first source of evidence comes from the
fact that participants performed significantly better with
easier items during training. This result indicates that the
items predicted to be difficult were actually harder to
learn. The second source of evidence comes from the
post-test results. After training, the specific item’s Ease
value is predictive of its averaged accuracy across all par-
ticipants, regardless of schedule condition. This suggests
that the Ease values are capturing an aspect of difficulty
that is invariant to the training schedule.

Although there were no overall post-test differences
between participants in the easy-to-hard and hard-to-easy
conditions, there were some intriguing differences re-
vealed by additional analyses. First, the easy-to-hard group
performed better than the hard-to-easy group in the sec-
ond session of the training where the same medium items
were used. One possible explanation for this difference
could be that participants in the hard-to-easy group were

less motivated to learn since the first training session was
so difficult. Studies using the errorless learning approach
suggest that the initial stage of the training should be easy
in order to boost the learners’ confidence (e.g. Ahissar &
Hochstein, 1997; Baddeley, 1992; Terrace, 1964). Although
motivation was not directly measured in this study, the
results show that participants in the hard-to-easy group
had a steady growth in performance across the four hard
blocks of training in the first training session. A steady
growth in performance suggests that participants were not
becoming discouraged. Moreover, participants were re-
peatedly informed of their progress at the end of each
training block. This kind of feedback probably provides
participants a better sense of their own gains, even when
making many errors.

Alternatively, the difference in Session 2 training per-
formance could be attributed to sequence-sensitive
learning mechanisms. In such a scenario, the order in
which items are experienced influences the structure of
the current knowledge representation (e.g. Love et al,
2004). Other empirical work strongly suggests that
sequence-sensitive learning mechanisms exist (e.g. Car-
valho & Goldstone, 2014; Carvalho & Goldstone, 2015).
Given the existence of sequence-sensitive learning
mechanisms, it is still unclear how best to exploit them
to promote more efficient learning. The Session 2 per-
formance difference provides modest evidence that ex-
perience with easy items provides better scaffolding for
the learning of new items.

Consistent with this interpretation, Hornsby and Love
(2014) found that participants who were trained with
only prototypical (i.e. easy) mammograms showed better
transfer to novel easy and medium mammograms than
participants who were trained with randomly presented
easy, medium, and hard mammograms. Similar to our
results, they found that neither prototype training nor
random training transferred to the categorization of
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hard items (Hornsby & Love, 2014), presumably because
hard items constitute exceptional cases that are percep-
tually dissimilar to the category prototype.

Another intriguing difference is that participants in the
easy-to-hard condition appeared to retain more knowledge
of easy and medium difficulty items at the second post-test.
One possible interpretation of these results is that partici-
pants trained with the easy-to-hard condition preserve the
prototypical category structure of their mental representa-
tions better than participants in the hard-to-easy condition.
However, the current study does not provide enough
evidence to resolve this conjecture. Future work is neces-
sary to conclusively determine which scheduling policy is
best for training pigmented melanoma diagnosis.

Conclusions

By using a novel and cost-effective method to compute
item difficulty, it was possible to compare an easy-to-hard
and hard-to-easy training schedule with real-world images.
The results showed that both training schedules were
equally effective at improving the trainee’s performance in
melanoma diagnosis. By using novel items during the
post-tests, the results indicate that the participants acquired
generalizable knowledge.

The current study makes two domain-general contribu-
tions. First, this work introduced a cost-effective proced-
ure for predicting the difficulty associated with learning
real-world medical images. Second, the current study pro-
vided an example of how difficulty predictions can be used
to systematically sequence trials and potentially improve
the efficiency of visual category training. Although melan-
oma diagnosis was used as an example case, the methods
presented in this work generalize to other medical do-
mains, such as radiology, retinopathy, electrocardiogram,
and cytology. Like melanoma diagnosis, other medical do-
mains exhibit categories that have fuzzy category boundar-
ies. The results of the current study demonstrate that it is
still possible to predict and more efficiently train domains
that exhibit highly overlapping categories. The Ease algo-
rithm combined with the difficulty-based schedule has the
potential to reduce the costs of training personnel to make
medically relevant visual categorizations.
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