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Redundant-target processing is robust
against changes to task load
Stephanie A. Morey1*, Nicole A. Thomas1,2 and Jason S. McCarley3

Abstract

Monitoring visual displays while performing other tasks is commonplace in many operational environments. Although
dividing attention between tasks can impair monitoring accuracy and response times, it is unclear whether it also reduces
processing efficiency for visual targets. Thus, the current three experiments examined the effects of dual-tasking on target
processing in the visual periphery. A total of 120 undergraduate students performed a redundant-target task either by
itself (Experiment 1a) or in conjunction with a manual tracking task (Experiments 1b–3). Target processing efficiency was
assessed using measures of workload resilience. Processing of redundant targets in Experiments 1–2 was less efficient
than predicted by a standard parallel race model, giving evidence for limited-capacity, parallel processing. However, when
stimulus characteristics forced participants to process targets in serial (Experiment 3), processing efficiency became
super-capacity. Across the three experiments, dual-tasking had no effect on target processing efficiency. Results suggest
that a central task slows target detection in the display periphery, but does not change the efficiency with which multiple
concurrent targets are processed.

Keywords: Capacity coefficient, Limited capacity, Multi-task, Redundancy gain, Redundant signals effect, Super-capacity,
Target detection, Workload capacity, Workload resilience

Significance statement
High-workload environments often mean dividing atten-
tion between multiple visual tasks or displays. The
current study examined aspects of visual display design
that might influence target detection in multi-task envi-
ronments. Using paired target discrimination/manual
tracking tasks, we investigated the effects of target re-
dundancy on participants’ ability to notice eccentric
visual signals while engaged in a central task. Our goal
was to assist display design by identifying factors that
help multi-tasking operators to notice visual alerts and
alarms in their peripheral vision.

Background
Operators in high-stress domains often need to divide
attention between the central and peripheral visual
fields. A pilot, for example, must also monitor for

cockpit alerts while maintaining awareness of an air-
craft’s position in space (Wickens, Sebok, McCormick,
& Walters, 2016), and operators in air traffic control
must remain responsive to critical alerts while man-
aging the flow of air traffic (Imbert et al., 2014). Simi-
larly, the increasing use of head-worn displays in
professional roles means that many operators are re-
quired to switch attention between tasks within their
central visual field and peripheral events projected
onto the headset (Pascale et al., 2015). Within each of
these domains, performing effectively means process-
ing information presented centrally, while also dis-
criminating between critical and non-critical “noise”
events in the visual periphery. For system designers,
this issue implies a need to understand the task and
display characteristics that maximize peripheral detec-
tion and discrimination under conditions of high cen-
tral load.
An obvious technique to improve target detection is to

increase target salience, the feature contrast between
the target and its surroundings (Itti & Koch, 2000;
Theeuwes, 2010). Unfortunately, visual heterogeneity
reduces feature contrast (Humphreys, Quinlan, & Riddoch,
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1989; Nothdurft, 1992), and in a cluttered, dynamic envir-
onment like the cockpit, even events designed to be highly
salient can go undetected (Nikolic, Orr, & Sarter, 2004;
Steelman, McCarley, & Wickens, 2013). Alternative strat-
egies for ensuring rapid target detection are, therefore, use-
ful. One converging strategy is to present targets
redundantly, that is, on multiple channels simultaneously.
Redundant presentation generally speeds target detection
(Miller, 1982; Todd, 1912), and is endorsed in human
factors engineering as a method of promoting information
security (Wickens & Hollands, 2000; Wickens, Prinet,
Hutchins, Sarter, & Sebok, 2011). For example, vehicle col-
lision warning systems often employ redundant visual or
auditory signals to alert a driver of a potential collision
(Ho, Reed, & Spence, 2007). Similarly, in aircraft settings,
pilots respond faster to missile approach warnings as the
number of informational channels delivering the warning
increases (Selcon, Taylor, & McKenna, 1995).
Like a manipulation of salience, however, redundant

information display is not guaranteed to aid perform-
ance. Constraints on processing resources can modulate
the efficiency with which concurrent events are proc-
essed (Townsend & Eidels, 2011), limiting the benefits
produced by a redundant target (e.g., Eidels, Townsend,
Hughes, & Perry, 2014; McCarley, Mounts, & Kramer,
2007; Townsend & Nozawa, 1995). Moreover, under
some conditions, the addition of the second target may
produce no redundancy gain at all (Grice, Canham, &
Gwynne, 1984). More surprisingly, within a multi-task
environment redundant signals may actually be disrup-
tive: Wickens and colleagues (Seagull, Wickens, & Loeb,
2001; Wickens & Gosney, 2003) have reported evidence
that redundant audio-visual target presentation in a
monitoring task can disrupt performance in an ongoing
tracking task. These results suggest that the demands of
encoding or recognizing redundant targets can divert
processing resources from a concurrent task, producing
interference. In the current experiments, we pursue this
effect by examining the converse possibility, that the de-
mands of a concurrent central task might limit the effi-
ciency of redundant signal processing.

Measuring the efficiency of redundant-target processing
In a standard redundant-target task, participants make a
speeded response to a target presented in either of two
channels (e.g., on a visual channel and an auditory chan-
nel). On single-target trials, a target appears in only one
channel (e.g., only the visual channel); on redundant-
target trials, the target is presented in both channels
(e.g., on both the visual and auditory channels). The ob-
server responds as soon as a target is detected in either
channel, a condition known as a first-terminating stop-
ping rule (Colonius & Vorberg, 1994). Under these con-
ditions, redundant signals generally produce faster

responses than single targets, a phenomenon known as a
redundant signals effect (RSE) or redundancy gain
(Miller, 1982). For example, for a driver approaching a
railway crossing, the presentation of both a red flashing
light and a loud bell is likely to allow faster detection,
and consequently a faster braking response, than either
warning presented alone.
The RSE, however, may differ in magnitude under dif-

ferent task constraints, and in some cases, may be en-
tirely absent. The size of the RSE reflects variations in a
cognitive system’s architecture and workload capacity
(Townsend & Eidels, 2011; Townsend & Nozawa, 1995),
where architecture refers to the arrangement of chan-
nels (e.g., serial or parallel), and workload capacity re-
fers to the efficiency with which the channels operate
concurrently. In addition, the RSE can also reflect
variations in inter-channel dependencies (Townsend &
Wenger, 2004). The simplest model of the RSE is the
unlimited-capacity, independent parallel (UCIP) model,
wherein multiple channels operate with stochastic inde-
pendence and each channel’s rate of processing remains
unchanged, regardless of the total number of channels
under operation (Townsend & Eidels, 2011). Under a
first-terminating stopping rule, the UCIP model produces
a redundancy gain simply because the processing time of
the system as a whole is based on the output of the fastest
channel on each trial. This mechanism is known as
statistical facilitation (Raab, 1962). Super-capacity occurs
when an increase in the number of operating channels
(i.e., workload) results in a corresponding increase in the
individual channels’ processing rates, producing a larger
RSE than predicted by the UCIP model. Conversely,
limited capacity exists when an increase in workload de-
creases the processing rates of the individual channels, pro-
ducing a smaller RSE than predicted by the UCIP model.
In situations where capacity is highly limited, the redun-
dancy gain may be no different to that of a serial model.
Importantly, unless capacity is extremely limited, mean

response times (RTs) alone cannot distinguish gradations
in parallel processing capacity within a redundant-target
task. To establish whether a system is limited, unlimited,
or super-capacity, we therefore need to analyze the data
at the level of the RT distributions. As a means of distin-
guishing between statistical facilitation in the UCIP
model and actual processing speed-ups with multiple
channels, Miller (1982) established an upper bound on
performance for the UCIP model, known as the race-
model inequality. The inequality holds that in the UCIP
model, the cumulative distribution function (CDF) of
the redundant-target trials cannot exceed the combined
CDFs for the two categories of single-target trials.
Evidence that the CDF for the redundant-target trials ex-
ceeds the summed CDFs for the single-target trials at
any time t thus disconfirms the UCIP model and
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implicates a super-capacity model instead. Analogously,
Grice et al. (1984) identified a lower bound on UCIP
performance, providing a test of extreme capacity limita-
tions. The Miller and Grice inequalities, however, are
both conservative tests that are insensitive to modest
variations in capacity. Townsend and Nozawa’s (1995)
workload capacity coefficient, C(t), provides a more
fine-grained measure of efficiency, sensitive to varia-
tions in between the Miller and Grice boundaries.
C(t) rests on the conceptualization of the hazard function

for speeded responses as a gauge of moment-to-moment
cognitive expenditure. In a speeded task, the hazard
function, h(t), indicates the instantaneous probability with
which a response will occur at time t, given that a response
has not yet occurred (Townsend & Ashby, 1983). The inte-
grated hazard function, H(t), is the integral of the hazard
function up to time t. Importantly, within the UCIP model,
the integrated hazard functions for multiple operating
channels are additive. In other words, if processing follows
the UCIP model, the value of the integrated hazard func-
tion in the redundant-target condition at time t is equal to
the sum of the values of the integrated hazard functions of
the two single-target conditions at time t. Taking advantage
of this constraint, Townsend and Nozawa (1995) define the
capacity coefficient, C(t) as,

CðtÞ ¼ HABðtÞ
HAðtÞ þ HBðtÞ ; t > 0; ð1Þ

where HAB(t) refers to the integrated hazard function
of the redundant-target condition, and where HA(t)
and HB(t) refer to the individual integrated hazard
functions for a target present only on channel A or
channel B, respectively. Under the UCIP model, in
which the integrated hazard functions for channels A
and B are additive, C(t) = 1.0. Values of C(t) greater
than 1.0 indicate that HAB(t) >HA(t) +HB(t), implying
super-capacity. Conversely, values less than 1.0 indi-
cate that HAB(t) <HA(t) +HB(t), implying limited capacity.
In extreme cases capacity may be fixed, C(t) = 0.5, imply-
ing a zero-sum tradeoff between channels and producing
performance akin to that predicted by a serial model.
A transformation of C(t) that can be used to compare

performance across experiments is the standardized cap-
acity score, Cz (Houpt & Townsend, 2012). Cz provides
a summary capacity measure collapsed over time and
suitable for comparison between experimental condi-
tions. Values follow a standard normal distribution, with
a score of 0 indicating UCIP-level processing, positive
scores indicating super-capacity, and negative scores in-
dicating limited capacity.
The capacity coefficient was developed for examining

judgments of displays wherein, on single-target trials, the
position of the potential second target is empty. Recent

developments have extended the approach to accommo-
date analysis of displays in which single-target conditions
include a distractor in place of the empty space (Little,
Eidels, Fific, & Wang, 2015). The measure of processing
efficiency in this case has been termed resilience, R(t)
(Little et al., 2015). R(t) is calculated with the formula used
to calculate C(t), except that the integrated hazard
functions in the denominator of the equation represent
single-target conditions on which a distractor is present,

RðtÞ ¼ HABðtÞ
HAXðtÞ þ HXBðtÞ ; t > 0; ð2Þ

where HAX(t) is the integrated hazard function for single
target A accompanied by a distractor, X, and HXB(t) is the
integrated hazard function for single target B accompan-
ied by the X. R(t) can, in turn, be converted to a measure
of normalized resilience (Houpt & Little, 2017), referred
to here as Rz, analogous to Cz. Resilience differs from cap-
acity because, when a distractor is present on single-target
trials, it can divert processing resources from the target,
slowing target detection (Allen, Madden, Groth, &
Crozier, 1992; Ben-David, Eidels, & Donkin, 2014). Resili-
ence, therefore, reflects both the changes in target pro-
cessing rate that occur as the number of targets increases,
and the potential release from interference that occurs
when a distractor is replaced by a target.
Interpretation of resilience scores is more involved than

interpretation of the workload capacity scores. By definition,
channels in the UCIP system operate at the same rate
regardless of processing load. Thus, the UCIP model
predicts a benchmark value of R(t) = 1 (Rz= 0), just as it
predicts a benchmark value of C(t) = 1 (Cz = 0). More
generally, a parallel self-terminating model predicts that
R(t) will not vary as a function of distractor discriminability,
and that redundant-target processing will be equally effi-
cient in the experimental designs with and without distrac-
tors, that is, C(t) and R(t) will be equal (Little et al., 2015).
In contrast, a serial self-terminating (SST) model pre-

dicts that R(t) will vary with the relative discriminability
of the target and distractor. For simplicity, assume a case
in which the integrated hazard functions for targets A
and B are identical, both with distractors (HAX(t) =
HXB(t)), and without (HA(t) =HB(t)). On redundant-tar-
get trials, the first item processed will always be a tar-
get. The integrated hazard function for redundant-
target trials will, therefore, equal the integrated hazard
function for single-target trials without distractors, i.e.,
HAB(t) =HA(t). This reduces Eq. 2 to,

RðtÞ ¼ HAðtÞ
2� HAXðtÞ ; t > 0: ð3Þ

On single-target trials, assuming the target position is
unpredictable, the number of items that are processed
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will vary randomly from trial to trial; on some trials only
the target will be processed, and on the remaining trials,
the distractor will be processed before the target. The
difference between HAX(t) and HA(t) will thus reflect the
time needed to process the distractor on those trials on
which the target is not processed first. When the time
needed to process the distractor is negligible relative to
the time needed to process the target, HAX(t) will equal
HA(t), and R(t) will be fixed. When the time needed to
process the distractor becomes more substantial, HAX(t)
decreases and R(t) becomes larger. In other words, the
SST model predicts that resilience will be limited when
distractor interference is negligible and will increase as
distractor interference becomes larger.
But regardless of the underlying architecture, values of

R(t) < 1 or Rz < 0 imply that redundant targets are proc-
essed slower than predicted by the UCIP model, and
values of R(t) > 1 or Rz > 0 imply that redundant targets
are processed faster than predicted by the UCIP model
(Houpt & Little, 2017). By analogy to the terminology
applied to workload capacity, we will describe these ef-
fects as limited capacity and super-capacity, respectively.
However, it is important to note that these labels de-
scribe performance of the multi-channel system as a
whole and do not necessarily connote changes in the
processing rates of the individual channels. As described
above, for example, changes in distractor discriminability
within an SST system may change R(t) from less than 1
to greater than 1, even if the target processing rate re-
mains constant.
Redundant presentation of peripheral signals will thus

aid detection only if the signals are processed with spare
capacity or resilience. Unfortunately, existing data do
not make it clear that this will be the case. Empirical
data suggest that attention is weighted toward the cen-
tral visual field (Carrasco, Evert, Chang, & Katz, 1995;
Carrasco & Yeshurun, 1998; Wolfe, 1998), and modeling
likewise suggests that elemental processing resources are
denser in the central retina than in the eccentricity
(Miller & Ulrich, 2003). A demanding task in the central
visual field might further shift attention away from the
retinal eccentricity (Leibowitz & Appelle, 1969; Reimer,
2010), engendering visual tunneling (Williams, 1985).
For example, observers have higher detection thresholds
for luminance probes in the visual periphery when
performing a concurrent central task, with more diffi-
cult central tasks producing larger threshold increases
(Leibowitz & Appelle, 1969). Similarly, accuracy on a
peripheral discrimination task is higher when a concur-
rent central task is low in perceptual load than when it
is high (Williams, 1985). Even task-irrelevant stimuli
presented at fixation can interfere with processing of
peripheral visual targets (Beck & Lavie, 2005; Schwartz
et al., 2005). Within a peripheral redundant-target

paradigm with a simultaneous central-load task, such
effects might limit processing resilience of peripheral
targets, reducing the magnitude of the RSE. In addition,
a prominent account of dual-task performance, mul-
tiple resource theory, argues that resource competition
between tasks drawing on similar processing resources
will decrease performance (Wickens, 1981, 2002).
According to this theory, within a dual tracking/target
detection paradigm, the central tracking task may con-
sume visual processing resources, limiting the atten-
tional resources necessary for processing peripheral
items. Based on such an effect, we would expect to see
poorer efficiency when the detection task is accompan-
ied by the central tracking task.
To test these possibilities, the current experiments

assessed human performance within a dual-task para-
digm pairing a central manual tracking task with a per-
ipheral redundant-target task. We examined whether the
detection of visual targets observed within a dual-task
paradigm produces a redundancy gain, and if so, just
how efficiently the processing compares to that of the
UCIP model. In Experiments 1 and 2, we used a target
detection task to assess processing resilience while per-
forming under both single- and dual-task load. Finally,
in Experiment 3, we designed stimuli to preclude paral-
lel target processing to examine resilience within a serial
model.

General method
Here, we describe methods of stimuli and procedure
common to all of the experiments that follow.

Apparatus and stimuli
Stimuli were presented on a 27 Samsung LED monitor,
with a resolution of 1920 × 1080 pixels (1 pixel was
equal to 0.33 mm) and a refresh rate of 100 Hz. Partici-
pants completed the experiment at a viewing distance
of approximately 600 mm, although viewing distance
was not fixed. The experimental program was created
using Presentation software Version 16.5 Build 09.17.13
(Neurobehavioral Systems, 2017). Tracking task per-
formance and responses to the concurrent target detec-
tion task were collected via a Logitech Attack 3
(Logitech, 2017) joystick.
Stimuli for the target detection task were black capital-

ized letters, with Ts as targets and Ls as distractors. Let-
ters appeared in the upper left (location A) and right
(location B) of the screen with polar coordinates θ = ±
51.15° from the vertical midline and r = 21.79° of visual
angle from the screen center point. The peripheral tar-
get/distractor stimuli were chosen randomly and with
equal probability from among four combinations: redun-
dant targets (TT), single target on left (TL), single target
on right (LT), and redundant distractors (LL).
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Peripheral stimuli appeared approximately 20 times
per 60-s trial, and remained visible each time until the
participant issued a joystick response or a timeout dur-
ation of 2000 ms was reached. To ensure that partici-
pants were unable to predict times at which a new target
or distractor might appear in the periphery, the inter-
stimulus interval between successive events in the per-
ipheral channels was drawn from a delayed exponential
distribution. The delayed exponential is the sum of a
fixed delay value with a random value drawn from an
exponential distribution. Here, the fixed delay was set to
1000 ms and the mean of the exponential component
was set to 2000 ms. Because the exponential component
of the distribution was memoryless, these parameters
ensured that the interval between successive stimuli was
at least 1000 ms, but was unpredictable beyond that.
Stimuli for the pursuit tracking task were a black

cursor “+” in size 10 Arial font (0.76° × 0.76° of visual
angle) and a red circular marker (subtending 0.95°). Both
the cursor and the marker moved along a semicircle, ex-
tending into the upper visual field, with a diameter of
19.85° centered along the horizontal midline of the dis-
play (see Fig. 2). The pattern of target motion was cre-
ated by summing sinusoids with frequencies of 0.07,
0.15, and 0.23 Hz (Strayer & Johnston, 2001). The center
point of the arc was 5.72° below the screen’s center
point. The component sinusoids were randomly phase-
shifted to produce a different pattern of motion on each
trial. The cursor moved along the same arc, at a maxi-
mum rate of 80° per second, but required manual con-
trol via the joystick to maneuver. To increase task
difficulty, at the start of each trial the red target ap-
peared at a randomly selected location along the semi-
circular path, whereas the cursor always began centered
along the path. Thus, only the red marker was visible to
participants. In all the experiments, the coordinates of

both stimuli were recorded every 100 ms (every three
frames) throughout each of the 20 tracking intervals.
Figure 1a presents a schematic stimulus representation
from a left single-target dual-task trial from Experiment
1b or Experiment 2.

Procedure
Participants completed the task in a well-lit room. At
the start of the session, participants were instructed to
hold the joystick with two hands, allowing both thumbs
to rest on the buttons on top of the joystick. To perform
the detection task, participants were instructed to re-
main aware of targets appearing in the upper regions of
the screen. Participants were required to respond as fast
as possible if a letter T appeared in either one or both
peripheral stimulus locations, but to refrain from
responding if both peripheral letters were Ls. Responses
were made by pressing the buttons on top of the joystick
with both thumbs. Bimanual joystick button responses
ensured that both hemispheres were activated during the
task. As our aim was to understand the attentional pro-
cesses involved in target detection, using bimanual re-
sponses reduced the likelihood of any stimulus-response
compatibility effects (e.g., congruency between targets
and response hand).
To enhance engagement, both tasks were framed

within a driving scenario in which participants were
asked to imagine they were driving a vehicle to the uni-
versity. For the tracking task, participants aligned the
cursor, representing their car, with the red marker, repre-
senting an in-vehicle navigation system. For the target-
detection task, participants were told to imagine that
they were responding to traffic signals, where Ts repre-
sented red lights and Ls represented green lights. Thus,
participants were required to brake by issuing a joystick
button press as fast as possible if they encountered a red

Fig. 1 a A single-target dual-task trial from either Experiment 1b or the dual-task condition of Experiment 2. b A single-target dual-task trial from
Experiment 3. The participant pressed a button when they detected the target (in the top left of these figures). The tracking task involved
manually maneuvering the black cursor (+) with the moving red circle. The black cursor and the red circle moved along an invisible arc
(presented here as a dashed line). Stimuli for the single- and dual-task experiments/conditions were similar, except the black cursor was not
visible in the single-task versions
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light (T), but to withhold responding if a pair of green
lights (LL) appeared. Participants were encouraged to re-
spond as fast as possible, while maintaining accuracy.
Each tracking interval lasted 60 s, after which partici-

pants were given the chance for a short break before
starting the next interval. To begin a new interval, par-
ticipants pulled the joystick trigger. Within each block,
participants completed a total of one 60-s practice inter-
val, followed by 20 experimental intervals (the number
of blocks varied between experiments).
After finishing the experiment, participants com-

pleted the FLANDERS questionnaire. Participants were
then asked if they held a current valid driver’s license,
and if so, approximately how many years of driving ex-
perience they had. Finally, participants were debriefed
and thanked for their time.

Experiment 1a
Experiment 1a provided a baseline estimate of resilience
for a parafoveal target detection task performed alone
(i.e., in a single-task condition).

Method
Participants
Twenty-five Flinders University undergraduate stu-
dents (21 female; MAge = 23.08 years, SD = 5.12, Range
= 18–40) were recruited as part of a course require-
ment. All participants had normal or corrected-to-
normal visual acuity and normal color vision, and
were fluent in English. Participants were screened for
right-hand dominance, with a minimum Flinders
Handedness Survey (FLANDERS; Nicholls, Thomas,
Loetscher, & Grimshaw, 2013) score of + 5 (M = + 9.76,
SD = 0.66). Twenty participants held a current valid
driver’s license, with between 0.5 and 15 years of driving
experience (M = 4.69, SD = 3.61).

Apparatus and stimuli
In Experiment 1a, stimuli for the target detection task
were a black capital T (target) and L (distractor) presented
in 16-point Arial font (1.58° × 1.14° of visual angle) on a
white background. Stimuli letters were randomly and in-
dependently rotated between 0° and 270°, in steps of 90°.
In addition, the black cursor was invisible to ensure that
participants did not attempt to perform the tracking task.

Procedure
In Experiment 1a, the participants’ only task was to
monitor and respond to peripheral targets. As such, par-
ticipants were instructed to ignore the movements of
the red target circle and were not instructed to perform
the tracking task. Participants completed one block of
20 60-s tracking intervals. The entire process took ap-
proximately 30 min.

Analysis
For statistical analysis, raw resilience scores, R(t), were
converted to standardized resilience scores, Rz,
(Houpt & Townsend, 2012) using the “sft” package
(Houpt, Blaha, McIntire, Havig, & Townsend, 2014)
for R (Core Team, 2016).
Analysis of RTs for correct responses, normalized re-

silience scores, and root mean squared error (RMSE) for
tracking performance was performed through Bayesian
parameter estimation using a Markov chain Monte Carlo
(MCMC) sampling procedure (Kruschke, 2013, 2015;
Lee & Wagenmakers, 2013). This approach begins by as-
suming a prior distribution on a parameter value of
interest, then updates the prior through probabilistic
sampling to approximate the posterior distribution on
parameter values based on the observed data (Kruschke,
2015). Analyses were conducted using sampling func-
tions from the JAGS package (Plummer, 2015) in R. RTs
were analyzed in a one-way, within-participant design,
with additive effects of condition (first single-target,
second single-target, redundant targets) and participant.
Effects were assumed to follow normal distributions with
vague priors on their means and standard deviations.
Following Kruschke (2015),

Y participant ; condition � Nða0þ aparticipant þ acondition; σy
2Þ

σy � UðSD=1000; SD � 1000Þ
a0 � NðM; ½100� SD�2Þ
aparticipant � Nð0; σparticipant

2Þ
acondition � Nð0; σcondition

2Þ
σparticipant; σcondition � Γðα; βÞ
α ¼ SD=2

β ¼ 2 � SD

where Yparticipant, condition is the RT for a given participant
in each condition, σy is the estimated standard deviation
of the normal distribution of RTs, a0 is the estimated
grand mean RT, aparticipant is the participant effect, acondi-
tion is the condition effect, M is the grand mean of the
observed RT scores, and SD is the standard deviation of
the observed RT scores. Deflections from the grand mean
representing effect of condition were constrained to sum
to zero across conditions. Using the data sample mean and
standard deviation to set parameters of the prior ensured
that the prior distribution was scaled appropriately to the
data (Kruschke, 2015). To test for the possibility of lateral
(left versus right) attentional bias, along with redundancy
gains, we estimated RTs in two different ways. In the first
case, to check for the possibility of lateral asymmetries in
performance, data were coded such that two single-target
conditions represented the left single-target and right
single-target trials. Thus, any difference in RTs in the first
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case would signal that participants had tended to respond
to targets in one location faster than the other. In the
second case, to provide a conservative estimate of the re-
dundancy gain, data were coded such that the two single-
target conditions represented the faster and slower mean
single-target condition for each participant. Redundancy
gain was defined as the difference between the shorter of
the two single-target RTs and the redundant-target RT.
This method of measuring redundancy gains provides
more conservative estimates than the alternative approach
of comparing redundant-target RT to the mean of the
single-target RTs (cf. Biederman & Checkosky, 1970).
Rz and RMSE scores were estimated in a one-sample

design (Kruschke, 2013),

Y participant � Nðu; σ2Þ
u � NðM; ½100� SD�2Þ
σ � UðSD=1000; SD � 1000Þ

where Yparticipant is the score for a given participant, u is
the estimated grand mean score, σ is the estimated
standard deviation of the normal distribution of scores,
M is the grand mean of the observed scores, and SD is
the standard deviation of the observed scores.
Each parameter estimate was based on four MCMC

chains, run for 1000 burn-in steps, followed by 250,000
steps each. Chains were thinned to every fifth step in to
reduce sample autocorrelation, leaving a total of 50,000
samples for analysis. All estimated parameters showed
Gelman-Rubin statistic values (Gelman & Rubin, 1992)
of 1.01 or less, indicating satisfactory convergence of the
MCMC chains (Kruschke, 2015).

Results
Error rates
Detection error rates were analyzed to ensure that par-
ticipants had correctly followed instructions. As a gen-
eral rule, the capacity coefficient is robust against error
rates of up to 0.30 (Townsend & Wenger, 2004). No par-
ticipants in Experiment 1a produced false alarm rates
that exceeded this value (M = 0.10, Range = 0.01–0.20).
Miss rates in all target conditions—single target on left
(M = 0.01, Range = 0.00–0.09), single target on right
(M = 0.01, Range = 0.00–0.07), and redundant targets
(M < 0.01, Range = 0.00–0.07)—were very low. On average,
participants correctly responded to approximately 72 trials
in each condition: M = 71.80 (Range = 67–75) for left-
targets, M = 71.68 (Range = 67–75) for right-targets, and
M = 71.56 (Range = 66–74) for redundant targets. Col-
lapsed across target-present and target-absent trials,
the mean accuracy rate was very high, M = 0.97
(Range = 0.93–greater than 0.99).

RTs
In all experiments, RTs were only analyzed for correct
target-present trials (i.e., excluding false-positive re-
sponses). Inspection of the data suggested that partici-
pants generally complied with the instructions to
respond to targets bimanually, making button presses
with both thumbs in quick succession. Analyses were
carried out using the RT for the faster of the two button
presses for each trial.
Data showed no credible difference in RTs between

single targets on the left (M = 577 ms, 95% Bayesian
Credible Interval (BCI) (Kruschke, 2015) = [536, 618])
and on the right (M = 568 ms, 95% BCI = [527, 610]),
(left-right difference: MDiff = 9 ms, 95% BCI = [−4, 22],
d = 0.24). The mean single-target RT provides a meas-
ure of baseline response speed independent of any re-
dundancy gain. Collapsed across the two single-target
conditions, the mean single-target RT was 573 ms, 95%
BCI = [532, 613]. Figure 2 shows the 95% BCIs for the
mean single-target RT, as well as corresponding task-
load differences, for Experiment 1a and the following
experiments. As noted above, redundancy gains were
calculated by subtracting RT for the redundant-target
condition from RT for the faster single-target condition
(left or right) for each participant. Even by this conser-
vative measure, data gave clear evidence of a redun-
dancy gain (redundant signals effect: MRSE = 37 ms,
95% BCI = [25, 48], d = 1.86), with the redundant-
target condition (M = 523 ms, 95% BCI = [482, 564])
producing shorter RTs than the faster single-target
condition (M = 560 ms, 95% BCI = [519, 601]). Figure 3
presents the redundancy gain and task-load differ-
ence for each experiment.

Resilience
As noted above, the standardized score Rz represents
the normalized mean of R(t) across values of t, weighted
inversely by the variability of R(t) at each time point
(Houpt & Townsend, 2012). Values equivalent to zero
represent UCIP processing, positive values indicate
super-capacity, and negative values represent limited
capacity. Mean Rz was credibly negative (MRz = − 1.77,
95% BCI = [−2.35, − 1.19]). Figure 4 compares resilience,
and task-load differences in resilience, by experiment.

Tracking performance
In Experiment 1a, the participant-controlled cursor was
invisible, and participants were told to ignore the
movements of the red dot of the tracking task. How-
ever, joystick movements were recorded. These data
provided an estimate of chance-level tracking accuracy,
suitable as a baseline against which to compare active
tracking performance in the subsequent dual-task ex-
periments. Performance was measured by calculating

Morey et al. Cognitive Research: Principles and Implications  (2018) 3:4 Page 7 of 17



the RMSE in angular distance of the cursor position
relative to the target position. Mean RMSE was 31.34°,
95% BCI = [26.01, 36.66]. If participants followed in-
structions to ignore the tracking task in Experiment 1a
and perform it in the subsequent dual-task experiments,
RMSE should be smaller in the later experiments.

Discussion
The goal of Experiment 1a was to provide a baseline
measure of processing efficiency before any secondary task
load was added. Resilience for redundant-target processing
was highly limited, despite attention being wholly focused
on the target detection task. Thus, within a standard
distractor-present redundant-target task, the RT gains pro-
duced by redundant target presentation were smaller than
predicted by statistical facilitation in a UCIP model.

Experiment 1b
Experiment 1b replicated the procedure of Experiment
1a but with the addition of a central manual tracking
task, to test whether concurrent task load reduced pro-
cessing resilience.

Method
Participants
As we aimed to match sample size from Experiment 1a,
we ran participants until we had data for 25 participants
who met the inclusion criteria for detection error rates.
We achieved this goal after running 29 participants (see
“Error rates” section below for details on reasons for ex-
clusions). All participants were undergraduate students
(18 female, MAge = 23.00 years, SD = 8.86, Range = 18–55),
who received either AU$10 or course credit for their par-
ticipation. None had participated in the previous experi-
ment. All were right-hand dominant (MFLANDERS = 9.24,
SD = 1.43), fluent in English, and had normal color vi-
sion and normal or corrected-to-normal visual acuity.
Twenty-three participants held current valid driver’s
licenses, with driving experience ranging from 2 to
38 years (M = 6.19, SD = 8.68).

Apparatus and stimuli
The apparatus and stimuli were identical to those used
in Experiment 1a, except that the cursor in the pursuit
tracking task was made visible.

Fig. 2 a Means and 95% BCIs for single-target RTs (ms) in each experiment. b Means and 95% BCIs on the task-load difference scores for single-
target RTs in each experiment (single-task RT minus dual-task RT)
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Procedure
In Experiment 1b, participants performed the peripheral
target detection and manual tracking tasks concurrently.
Participants were encouraged to maintain accuracy on
both tasks, while also aiming to minimize RTs on the de-
tection task. As in Experiment 1a, the task involved one
block of tracking intervals, comprising one 60-s prac-
tice interval followed by 20 60-s experimental intervals.
Lastly, participants completed the FLANDERS ques-
tionnaire, recorded their driving experience, and were
debriefed.

Analysis
Analysis was identical to that of Experiment 1a.

Results
Error rates
As with Experiment 1a, participants with false alarm or
miss rates greater than 0.30 in any of the three target
conditions were excluded from analysis. Data for three
participants with excessive false alarm rates (ranging
0.30–0.67) and for one participant with excessive miss

rates (as high as 0.79 in the right-single target condi-
tion) were excluded. Mean false alarm rates for the
remaining 25 participants were much lower (M = 0.09,
Range = 0.01–0.22). Miss rates for the remaining partic-
ipants were also very low (left single targets: M = 0.01,
Range = 0.00–0.07; right single targets: M = 0.01,
Range = 0.00–0.08; and redundant targets: M = 0.01,
Range = 0.00–0.06). On average, participants correctly
responded to approximately the same number of left-
target trials (M = 70.88, Range = 65–74), right-target
trials (M = 70.84, Range = 65–74), and redundant trials
(M = 71.56, Range = 68–74) throughout the testing session.
Collapsed across all trials, mean accuracy was very high
(M = 0.97, Range = 0.93–greater than 0.99).

RTs
Unlike Experiment 1a, RTs to left-targets (M = 618 ms,
95% BCI = [583, 654]) were credibly shorter than those
to right-targets (M = 638 ms, 95% BCI = [602, 673]),
(left-right difference: MDiff = − 19 ms, 95% BCI = [−36, − 3],
d = 0.42). The addition of the manual tracking task in
Experiment 1b produced a mean single-target RT

Fig. 3 a Means and 95% BCIs for redundancy gains (ms) by experiment. b Means and 95% BCIs for task-load differences in redundancy gains (single-
task RT minus dual-task RT) by experiment
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(M = 628 ms, 95% BCI = [593, 663]) marginally lon-
ger than that of Experiment 1a, with the BCI on the
difference between experiments just excluding 0,
(single- minus dual-task difference: MDiff = − 55 ms,
95% BCI = [−108, − 2], d = 0.57). Analysis confirmed
that responses in the redundant-target condition (M
= 574 ms, 95% BCI = [538, 610]) were faster than in
the fastest single-target condition (M = 610 ms, 95%
BCI = [575, 646]), (MRSE = 36 ms, 95% BCI = [23, 50],
d = 0.78). However, there was no credible difference
between the size of the redundancy gain in Experi-
ment 1b and that in Experiment 1a, (single- minus
dual-task difference: MDiff = 0 ms, 95% BCI = [−17, 18],
d = 0.04).

Resilience scores
Resilience was again limited (MRz = − 2.35, 95% BCI
= [−2.89, − 1.80]), indicating that redundancy gains were
smaller than predicted by a UCIP model. A comparison
between Rz scores in Experiments 1a and 1b found no
credible difference, (single- minus dual-task difference:
MDiff = 0.58, 95% BCI = [−0.21, 1.37], d = 0.43).

Tracking performance
Mean RMSE was 15.16° (95% BCI = [13.04, 17.25]),
credibly lower than in Experiment 1a, (single- minus
dual-task difference: MDiff = 16.18, 95% BCI = [10.47,
21.87], d = 1.79). Thus, data suggest that participants in
Experiment 1b engaged in the tracking task as instructed.
To test the possibility of a tradeoff in performance

between the target detection and tracking tasks, bivari-
ate correlations were calculated between Rz scores and
RMSE. The credible interval on the correlation in-
cluded a value of 0.0 but was wide, r(23) = − .14, 95%
BCI = [− .58, .30], indicating that the data lacked reso-
lution to strongly support or discredit the possibility of
tradeoffs between the two tasks.

Discussion
Experiments 1a and 1b tested whether a manual tracking
task impairs processing efficiency for redundant visual
targets. Consistent with previous findings (Eidels et al.,
2014; Townsend & Nozawa, 1995), resilience was limited
capacity. More surprisingly, resilience did not appear
to suffer with the addition of a concurrent, central
tracking task.

Fig. 4 a Means and 95% BCIs for standardized resilience scores in Experiments 1 to 3. b Means and 95% BCIs for task-load differences in Rz (sin-
gle-task minus dual-task) across experiments
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Experiment 2
Experiments 1a and 1b failed to find a clear differ-
ence in processing efficiency for redundant visual tar-
gets between single- and dual-task conditions.
However, it is possible that the between-participants
design of Experiment 1 simply was not sensitive
enough to detect differences between the single- and
dual-task conditions. To address this issue, Experi-
ment 2 used a within-participants design to replicate
Experiments 1a and 1b, providing a second test of
the relationship between task load and target process-
ing efficiency.

Method
Participants
Thirty-two Flinders University students (MAge = 23.56 years,
SD = 5.96, Range = 18–39) participated for AU$10. No par-
ticipants had performed any of the previous experiments.
Participants were all fluent in English, with normal
color vision, and normal or corrected-to-normal visual
acuity. In addition, all participants were right-hand
dominant (MFLANDERS = 9.56, SD = 0.23), and 28 had
current valid driver’s licenses, with experience ranging
from 1 to 20 years (M = 5.24, SD = 5.00).

Apparatus and stimuli
Apparatus and stimuli were the same as in Experiment 1.

Procedure
The tracking and discrimination tasks were performed
in the same way as in Experiment 1. However, each par-
ticipant completed two blocks of trials. In one block, the
participant performed the target-detection task alone,
following the same procedure as Experiment 1a (single-
task condition). In the other block, the participant per-
formed both tasks simultaneously, as in Experiment 1b
(dual-task condition). Block order was counterbalanced
across participants. At the beginning of each block, par-
ticipants were given a 60-s practice session, before com-
pleting 20 60-s intervals. Participants were given a short
break between blocks. As in the previous experiments,
participants finished the testing session by completing
the FLANDERS questionnaire and recording their driv-
ing experience. The entire session took approximately
50 min.

Analysis
Analysis was as in Experiment 1, but was adapted to ac-
count for the within-participant manipulation of task
load. Analysis of RTs now included additive effects of
task load and the interaction of target condition by load
(Kruschke, 2015),

Y participant; task load; condition �
Nða0 þ aparticipant þ atask load

þacondition þ atask load

� condition; σy2Þ
aparticipant � N 0; σparticipant2

� �

atask load � N 0; σ task load
2ð Þ

acondition � N 0; σcondition2ð Þ
atask load � condition � N 0; σ task load � condition

2ð Þ
σparticipant; σ task load; σcondition; σ task load � condition � Γ α; βð Þ
α ¼ SD=2

β ¼ 2 � SD;
where deflections from the grand mean representing the ef-
fects of task load, condition, and their interaction were con-
strained to sum to zero across cells of the design. Likewise,
analysis of Rz and RMSE included task load as an effect,

Y participant ; task load � Nða0þ aparticipant þ atask load; σy
2Þ

σy � UðSD=1000; SD�1000Þ
a0 � NðM; ½100 � SD�2Þ
aparticipant � Nð0; σparticipant

2Þ
atask load � Nð0; σ task load

2Þ
σparticipant; σ task load � Γ ðα; βÞ
α ¼ SD=2

β ¼ 2�SD;

where deflections from the grand mean reflecting the ef-
fects of task load were constrained to sum to zero across
conditions.

Results
Preliminary inspection found no effect of block order on
any of the measures. As such, all analyses were carried
out collapsed across block order. Analyses excluded data
from three participants with excessive error rates (ran-
ging from 0.44 to 0.89 in any of the target conditions),
one participant who appeared not to perform the track-
ing task in the dual-task condition (32.05° vs. 48.55°
RMSE for the single- and dual-task, respectively), and
one participant who failed to make enough button-press
responses to be analyzed. These exclusions left data from
27 participants for analysis.

Error rates
False alarm rates were reasonable in both the single- (M
= 0.08, Range = 0.01–0.23) and the dual-task conditions
(M = 0.08, Range = 0.01–0.21). Miss rates were low for
each trial type in the single-task condition (left single:
M < 0.01, Range = 0.00–0.06; right single: M < 0.01,
Range = 0.00–0.03; redundant: M < 0.01, Range = 0.00–0.03)
and in the dual-task condition (left single: M = 0.02,
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Range = 0.00–0.17; right single: M = 0.01, Range =
0.00–0.07; redundant: M = 0.01, Range = 0.00–0.08).
The number of targets correctly detected in each of the
three trial conditions was consistent across both the sin-
gle- (left-targets: M = 71.41, Range = 67–75; right-targets:
M = 71.62, Range = 69–75; redundant targets: M = 71.48,
Range = 68–75) and dual-task conditions (left-targets:
M = 70.25, Range = 59–74; right-targets: M = 71.33,
Range = 66–75; redundant targets: M = 70.71, Range =
67–74). Collapsed across target-present and -absent tri-
als, mean accuracy rate was extremely high within both
the single- (M = 0.98, Range = 0.94–1.00) and dual-task
conditions (M = 0.97, Range = 0.89–0.99).

RTs
Consistent with Experiment 1a, data showed no differ-
ence in mean RT for single targets presented on the left
compared with single targets on the right for the single-
task block (left: M = 601 ms, 95% BCI = [564, 639]; right:
M = 601 ms, 95% BCI = [563, 637]; MDiff = 0.79 ms, 95%
BCI = [– 22, 25], d = 0.08), and in contrast with the re-
sults of Experiment 1b, showed no difference in RTs for
left vs. right single targets in the dual-task block (left:
M = 628 ms, 95% BCI = [591, 665]; right: M = 633 ms,
95% BCI = [596, 670]; MDiff = – 5 ms, 95% BCI = [– 29,
18], d = 0.14). Mean single-target RT was credibly longer
when the tracking task was performed concurrently (M =
630 ms, 95% BCI = [595, 665]) than when only the target-
detection task was performed (M = 601 ms, 95% BCI
= [566, 636]), (MDiff = – 29 ms, 95% BCI = [– 47, – 12],
d = 0.42). Comparing the fastest single-target RTs
(single-task: M = 587 ms, 95% BCI = [550, 624]; dual-
task: M = 612 ms, 95% BCI = [575, 649]) with the redun-
dant RTs (single-task: M = 550 ms, 95% BCI = [513, 587];
dual-task: M = 581 ms, 95% BCI = [544, 618]) revealed clear
redundancy gains of roughly the same size in both the sin-
gle- (MRSE = 37 ms, 95% BCI = [15, 61], d = 1.47) and dual-
task (MRSE = 31 ms, 95% BCI = [7, 53], d = 0.90) conditions,
(MDiff = 7 ms, 95% BCI = [– 21, 38], d = 0.26).

Resilience
As in the previous experiments, normalized resili-
ence scores for both the single- (MRz = – 2.17, 95%
BCI [– 2.64, – 1.70]) and dual-task (MRz = – 2.33,
95% BCI [– 2.81, – 1.87]) conditions were limited,
well below the predictions of the UCIP model (see
Fig. 4). Furthermore, comparisons of resilience be-
tween the dual- and single-task conditions again
failed to find evidence of a difference (MDiff = 0.16,
95% BCI = [– 0.39, 0.76], d = 0.13). These results replicate
the findings of Experiment 1, showing no credible effect
of task load on dual-channel processing efficiency.

Tracking performance
RMSE was substantially smaller in the dual-task block
(M = 16.87°, 95% BCI = [12.94, 20.78]) than in the
single-task block (M = 32.97°, 95% BCI = [29.04, 36.86])
(MDiff = 16.11, 95% BCI = [10.68, 21.46], d = 1.07), indi-
cating that participants followed instructions to perform
both tasks simultaneously during the dual-task block. Data
from the dual-task condition found no evidence of a trade-
off between RMSE and Rz, with higher Rz scores predicting
smaller tracking error, r(25) =– .36, 95% BCI = [– .75, .04],
although the BCI on this effect included 0.

Discussion
As in Experiments 1a and b, resilience was highly limi-
ted, but was not credibly smaller when participants per-
formed a concurrent manual tracking task. Thus, the
tracking and detection tasks did not appear to compete
for processing resources (Wickens, 1981, 2002), produ-
cing no performance tradeoff between the tasks.

Experiment 3
The previous experiments found that processing efficiency
for redundant visual targets, as measured by resilience,
was similar across single- and dual-task conditions. In
both cases, resilience was limited, producing mean Rz
scores decisively below 0. Experiment 3 sought to
generalize the results of Experiments 1 and 2 by testing
the effects of dual-task load on Rz under conditions in
which the baseline, single-task resilience scores were not
highly limited.
Although neither of the first two experiments included

a manipulation to diagnose system architecture, the ob-
served resilience scores suggest that the left and right
channels in the target detection task were processed in
parallel. As noted above, a serial processing architecture
can produce limited-resilience processing. This type of
processing only occurs when the time needed to
process a distractor is significantly lower than the time
needed to process a target (Little et al., 2015). There is
little reason to expect that this would have been the
case in Experiments 1 and 2. Moreover, past work has
shown that TL stimuli can be processed in parallel
(Sung, 2008; Yamani, McCarley, Mounts, & Kramer,
2013), at least under conditions in which they are above
the limits of sensory resolution and are not subject to
visual crowding (Bouma, 1970) or attentional suppres-
sion (Yamani et al., 2013).
Experiment 3 measured resilience under single- and

dual-task conditions using target and distractor stimuli
designed to force serial processing and push resilience
above the levels observed in the first two experiments.
Targets and distractors were presented in a 4-point
font, and embedded in flanking characters intended to
produce visual crowding (Bouma, 1970; Whitney &
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Levi, 2012) in the extrafoveal retina. This design meant
that stimulus onsets could still be detected in the retinal
periphery. However, to identify targets and distractors,
participants had to foveate the stimuli, with little per-
ipheral information to guide participants preferentially
toward the target on single-target trials. Assuming
that target and distractors required roughly the same
amount of time to process, resilience should have
reached super-capacity levels (Little et al., 2015),
allowing us to test the generality of our findings from
the first two experiments.

Method
Participants
We planned for a sample size of 30 participants who
met the performance criteria for both the target detec-
tion and tracking tasks. To achieve this sample size, 34
undergraduate students from Flinders University (25
female; MAge = 21.32, SD = 3.88, Range = 17–35) partici-
pated in the experiment either for course credit or for
AU$10. No participants had participated in any of the
previous experiments. Participants all exhibited normal
or corrected-to-normal visual acuity, normal color vi-
sion, and English fluency. Participants were required to
be right-hand dominant (MFLANDERS = 9.48, SD = 1.93);
one participant who failed this requirement was immedi-
ately excluded from the study prior to further analysis.
Thirty-one participants reported holding a current valid
driver’s license, and the mean years driving experience
was 3.83 years (SD = 3.19; Range = 1–15).

Apparatus and stimuli
The apparatus was the same as above. Stimuli were simi-
lar except for the following changes. First, stimuli for the
target detection task were reduced to 4-point font, with
each letter subtending approximately 0.44° × 0.35° of
visual angle. Second, targets and distractors were em-
bedded within five-item letter arrays. Target letters ap-
peared in the same upper left and upper right locations
as in Experiments 1–2, but were flanked on both sides
by two letters randomly and independently selected from
the set F, H, K, M, N, V, W, X, and Z. To avoid overlap
between letters, target and distractor orientations were
fixed at 0°. For an illustration of a dual-task single-target
trial from Experiment 3, please return to Fig. 1b.

Procedure and analysis
Procedure and data analysis were identical to Experiment 2.

Results
Data from one participant were removed from ana-
lysis for high false alarm rates in both the single-
(0.53) and dual-task (0.61) conditions. Furthermore,
data from two participants who produced roughly

equal tracking error in both the single- and dual-task
conditions (e.g., 27.58° vs. 29.64°, respectively) were
also excluded.

Error rates
False alarm rates for the remaining 30 participants were
acceptable within both the single- (M = 0.07, Range =
0.00–0.19) and dual-task (M = 0.08, Range = 0.00–0.26)
conditions. Similarly, target miss rates were low in all
trial types for both the single-task condition (left sin-
gle: M = 0.01, Range = 0.00–0.16; right single: M = 0.02,
Range = 0.00–0.20; redundant target: M = 0.01, Range
= 0.00–0.18) and the dual-task condition (left single:
M = 0.03, Range = 0.00–0.15; right single: M = 0.03,
Range = 0.00–0.14; redundant target: M = 0.02, Range
= 0.00–0.14). Collapsed across target-present and
target-absent trials, mean accuracy rate was high and
approximately equal in both the single (M = 0.97,
Range = 0.84–greater than 0.99) and dual-task (M = 0.96,
Range = 0.87–greater than 0.99) conditions. A similar
number of targets were detected within each of the three
trial types for both the single- (left single: M = 70.60,
Range = 61–74; right single: M = 70.33, Range = 59–74; re-
dundant target: M = 70.90, Range = 59–74) and dual-task
conditions (left single: M = 69.77, Range = 58–74; right
single: M = 69.70, Range = 60–73; redundant target:
M = 70.13, Range = 62–73).

RTs
Comparisons of RTs for left and right single targets re-
vealed faster responses for targets on the left than those
on the right for both the single- (left: M = 794 ms, 95%
BCI = [749, 838]; right: M = 976 ms, 95% BCI = [932,
1019]; MDiff = − 182 ms, 95% BCI = [−227, − 139], d =
1.11) and dual-task conditions (left: M = 880 ms, 95%
BCI = [836, 924]; right: M = 1031 ms, 95% BCI = [987,
1074]; MDiff = − 151 ms, 95% BCI = [−194, − 105], d =
1.43), indicating that participants adopted a left-to-right
scanning strategy under serial processing conditions.
Mean single-target RT was credibly faster in the single-task
condition (M = 885 ms, 95% BCI = [847, 923]) than the
dual-task condition (M = 955 ms, 95% BCI = [917, 994]),
(MDiff= − 70 ms, 95% BCI = [−101, − 40], d = 0.50). We
found clear evidence for redundancy gains when compar-
ing the fastest single-target RTs (single-task: M = 776 ms,
95% BCI = [733, 818]; dual-task: M = 877 ms, 95%
BCI = [835, 920]) with redundant-target RTs (single-task:
M = 688 ms, 95% BCI = [646, 730]; dual-task: M = 756 ms,
95% BCI = [714, 798]) for both levels of task load (single-
task: MRSE = 87 ms, 95% BCI = [47, 127], d = 1.41; dual-task:
MRSE= 121 ms, 95% BCI = [82, 161], d = 2.21). Although
there was a trend for larger redundancy gains in the dual-
task condition, the BCI on the difference score contained 0
(MDiff =− 34, 95% BCI = [−91, 18], d = 0.50).
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Resilience
As expected, and in contrast to the results of the first
three experiments, normalized resilience scores for both
the single- (MRz = 0.78, 95% BCI = [0.20, 1.38]) and dual-
task conditions (MRz = 0.69, 95% BCI = [0.09, 1.28]) were
credibly super-capacity. However, consistent with the
previous experiments, task load did not influence pro-
cessing resilience (single- minus dual-task difference:
MDiff = 0.10, 95% BCI = [−0.57, 0.81], d = 0.06).

Tracking performance
RMSE was decisively smaller in the dual-task condition
(M = 15.69°, 95% BCI = [11.91, 19.49]) than the single-
task condition (M = 33.11°, 95% BCI = [29.29, 36.87]),
(MDiff = 17.41, 95% BCI = [12.47, 22.28], d = 1.39). As in
Experiment 2, data trended in the opposite direction to
a tradeoff between RMSE and Rz scores, r(28) = − .35,
95% BCI = [− .72, .02], with the credible interval just
overlapping 0.

Discussion
Experiment 3 assessed target processing efficiency within
a forced serial process paradigm. As expected, serial
scanning produced super-capacity processing of redun-
dant targets (Little et al., 2015). Notably, the large dif-
ference in resilience scores found in the current
experiment versus those in the earlier experiments sup-
ports the idea that, when stimuli were above sensory
thresholds and not compromised by crowding, target
processing was in parallel and with limited-capacity.
But, despite the difference in processing architecture
between experiments, none of the experiments found
an effect of task load on processing efficiency. Resili-
ence remained largely unaffected by variations in task
load, despite large variations in baseline resilience
values and changes to processing architecture.

General discussion
The current studies examined redundant-target process-
ing within a dual-task paradigm. As expected, a concur-
rent manual tracking task increased RTs for target
detection in the periphery. But, despite this difference in
baseline target detection times, the efficiency with which
redundant targets were processed was invariant with
task load. In other words, a central task slowed re-
sponses to peripheral targets, but did not change the
rate at which multiple targets were processed relative to
single targets. This effect was true regardless of whether
targets were processed in parallel with limited resilience
(Experiments 1–2), or in serial with super-capacity resili-
ence (Experiment 3).
One interpretation is that the central manual tracking

task and the peripheral target detection task tapped into
partially independent pools of information-processing

resources (Wickens, 2002). Although multiple resource
theory includes visual attention as one form of processing
resource, it posits separate pools of processing resources
for both focal and ambient vision, linking focal processing
to the central visual field and ambient to the peripheral
visual field. The theory thus allows that the task-load ma-
nipulation might not have affected processing efficiency
because the tracking task engaged central resources and
the target detection task engaged ambient resources. Con-
trary to this hypothesis, though, mean single-target RTs
for dual-task conditions were credibly longer than those
for single-task conditions in across all experiments. These
results suggest the central tracking and peripheral detec-
tion tasks likely tapped common processing resources,
presumably at the stages that Wickens (2002) labels per-
ception or cognition; the target and distractor stimuli of
Experiment 3 were in fact designed to be indiscriminable
in ambient vision, ensuring competition for focal attention
between the central and peripheral tasks. Moreover, the
Wickens (2002) model proposes that focal processes are
specialized for detailed object perception and recognition,
whereas ambient processes are specialized for spatial pro-
cessing. Assuming that participants fixated near the dis-
play center to perform the tracking task, the central and
peripheral processing demands in the current experi-
ments, therefore, would not have aligned well with the at-
tentional pools hypothesized by multiple resource theory.
To optimize the distribution of resources under the
model, participants would have had to fixate near the
boundary of the display while tracking the moving target
with peripheral vision. Eye movement data might test
whether any participants adopted such a strategy, or to es-
timate more generally how often eye movements occurred
between the central and peripheral tasks. At best, though,
the data indicate that distributing task load over different
resource pools would have attenuated dual-tasks costs,
not eliminated them.
An alternative explanation for the present results

could be that even when redundant peripheral targets
were themselves processed in parallel, attention shifted
between the central and peripheral tasks in serial
(Wickens & Gopher, 1977). By this account, partici-
pants would have performed the central tracking task
while using a diffuse attentional window to monitor the
display periphery for targets and distractors (Steelman
et al., 2013; Van der Stigchel et al., 2009). The visual
transients produced by peripheral stimulus onsets
would have interrupted the central tracking task (Yantis
& Jonides, 1990), drawing attention towards the target
and distractor stimuli for identification. In Experiments
1–2, attention in this interval would have been spread
broadly over the left and right stimuli, processing them
in parallel. By contrast, the design of the stimuli in Ex-
periment 3 would have demanded that attention focus
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on the stimuli in serial, through a series of saccadic eye
movements. In both cases, after detecting a target or
confirming that both peripheral items were distractors,
attention would have returned to the tracking task. Re-
silience would have been similar across the single- and
dual-task blocks, because, in both cases, attention
would have been disengaged from the central task while
peripheral items were being processed.
One caveat of this attention-switching account is that

such a theory predicts a positive association between
tracking error and resilience for the redundant targets,
whereas our data trended in the opposite direction. The
tendency toward better tracking among participants with
higher resilience hints at individual differences in effort
or ability, differences that might have masked any trade-
offs between tracking and resilience. To better under-
stand how attention is divided between the two tasks,
future experiments might employ eye-tracking to iden-
tify participants’ attentional strategies, and to test for
evidence of discrete attention shifts between the center
and periphery.
In application, our results indicate that redundant

visual signals are likely to be as effective at aiding visual
detection under multi-task conditions as under single-
task conditions. This means both that redundant coding
will be useful within multi-task workspaces, and that the
results of single-task pilot testing can be used to predict
the magnitude of RT gain that redundant signals will
purchase in a multi-task environment. Thus, design
guidelines for complex visual workspaces, such as pilot
cockpits or vehicle dashboards, should encourage the
use of redundant coding of visual alerts for enhancing
detection.
The data also imply a tradeoff between redundancy

gains and display complexity. We find that redundant
visual targets in peripheral visual displays are of greatest
value for low-salience stimuli, those that demand fo-
cused attention for detection or recognition, such as
when monitoring a large set of gauges or meters. Stimuli
of higher salience, discriminable enough to be processed
in parallel, are more likely to be processed with limited
resilience and with far more modest redundancy gains.
This pattern suggests that as a general guideline, display
designers might trade redundant target presentation
against target salience, reserving highly salient display
modes for the most critical signals and presenting infor-
mation that is less urgent but still time-sensitive in lower
salience, redundant signals. By using redundant presen-
tation as a substitute for high conspicuity, this strategy
would reduce the risk of a salience-saturated environ-
ment in which high-contrast signals compete for atten-
tion or overwhelm the operator.
Notably, our findings only consider identical redundant

visual signals. Thus, additional work will be necessary to

generalize the results to environments in which redundant
signals are non-identical (Ben-David & Algom, 2009) or to
environments involving auditory or multimodal stimuli
(Diederich & Colonius, 2004; Fox, Glavan, & Houpt,
2014). As many warning technologies and displays employ
multimodal signals (Rowe & Halpin, 2013; Selcon et al.,
1995), further research should examine whether redun-
dant non-identical or multimodal signals also produce
equally efficient processing benefits within single- and
multi-task environments.

Conclusions
Within a peripheral redundant-target paradigm, data
give no evidence for poorer target processing efficiency
while under the load of a secondary tracking task. As
expected (Little et al., 2015), however, data do show vari-
ations in processing efficiency as a function of display
characteristics. Findings suggest there is a modest bene-
fit to employing redundant targets in peripheral visual
displays (e.g., on a vehicle dashboard) for situations in
which targets are processed in parallel. However, we find
that redundant displays have more substantial benefits
for target items that demand serial processing.
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