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complex statistical concept
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Abstract

In this article, we begin to lay out a framework and approach for studying how students come to understand complex
concepts in rich domains. Grounded in theories of embodied cognition, we advance the view that understanding of
complex concepts requires students to practice, over time, the coordination of multiple concepts, and the connection
of this system of concepts to situations in the world. Specifically, we explore the role that a teacher’s gesture might
play in supporting students’ coordination of two concepts central to understanding in the domain of statistics: mean
and standard deviation. In Study 1 we show that university students who have just taken a statistics course nevertheless
have difficulty taking both mean and standard deviation into account when thinking about a statistical scenario. In Study
2 we show that presenting the same scenario with an accompanying gesture to represent variation significantly impacts
students’ interpretation of the scenario. Finally, in Study 3 we present evidence that instructional videos on the internet

education, Lecture video

fail to leverage gesture as a means of facilitating understanding of complex concepts. Taken together, these studies
illustrate an approach to translating current theories of cognition into principles that can guide instructional design.
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Significance

Cognitive research on understanding has been difficult
to translate into authentic learning. This may be due, in
part, to the fact that understanding is not typically accom-
plished in a single hour-long session, the length of many
psychology lab experiments. We explore three questions
in the domain of statistics learning: what is understanding,
how can it be assessed, and how can we design instruction
that will produce more understanding in our students?
We consider these three age-old questions in light of this
premise: what if concepts really are embodied? How
would that change assessment and teaching practices of
complex ideas taught in real classrooms?
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Background

Understanding is an important goal of education. It is
not enough just to learn the steps of a procedure, or be
able to recall a piece of factual information. We want
students to be able to think, to use knowledge they have
acquired in school in new situations, for solving novel
problems. The failure of our education system in achiev-
ing this goal is more and more evident, especially in the
domain of mathematics. Not only do students forget
much of what they learned about mathematics in K-12
education, but they show signs that the mathematics
they do remember is largely disconnected from fundamen-
tal conceptual understandings of quantity, operations, and
mathematical relationships. Community college students,
for example, when asked a non-standard question such as,
“Which is greater, a/5 or a/8 (assuming a is a positive
whole number),” are reduced to guessing (Stigler, Givvin,
& Thompson, 2010; Givvin, Stigler, & Thompson, 2011;
Geller, Son, & Stigler, 2017).
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Our recent work has focused on this problem of
understanding. In particular, we are asking: what is under-
standing, how can it be assessed, and how can we design
instruction that will produce more understanding in our
students? Although these questions are not new, they have
proved difficult to answer. Part of the problem may be the
broad range of concepts we expect students to understand.
Some concepts are simple, and are understood naturally
and without much effort on the part of the learner.
Vygotsky (1978) referred to these as “spontaneous con-
cepts”. Our interest has been more in the kinds of concepts
that Vygotsky called “scientific concepts”. These concepts
are things you mostly learn in school, and are embedded in
systems of knowledge that are handed down by culture.
They often are difficult to understand and therefore
require systematic instruction, as well as a great amount of
motivation and effort on the part of students over long
periods of time. Different processes may be involved in the
understanding of different kinds of scientific concepts.

One example of such complex systems of concepts is
what underlies the fields of statistics, research design,
and data analysis. Although we develop intuitions about
these domains through our everyday experiences (e.g.,
Xu & Garcia, 2008), our intuitions need to interact with
more formal modes of reasoning (e.g., Kahneman &
Frederick, 2002). Concepts such as variation, distribu-
tion, mean, model, sampling distribution, standard error,
probability, randomness, and so on are all part of the
interconnected web of concepts and procedures that
make up the domain of statistics. This web of concepts
does not typically arise naturally from one’s experience.
These are concepts that have developed over time and
are continually refined and cared for by a community of
experts in the field. Students learn about these concepts
in school. Through their application across a variety of
situations, these concepts could give students a new way
of looking at the world. Each of these separate concepts
is difficult to understand in its own right (Garfield &
Ahlgren, 1988; Garfield, 2003). Not only are these individ-
ual concepts abstract, but there are also many “intuitive”
forms of reasoning that contradict statistical thinking (e.g.,
Kahneman & Tversky 1982). But even more difficult is the
fact that these concepts must be understood in relation to
each other, and be coordinated, as they are applied to in-
terpret each new situation in the world.

For our purposes here, we define the process of under-
standing as the development of connections between a sys-
tem of concepts, on one hand, and situations in the world,
on the other. Hatano and Inagaki (1987) describe how un-
derstanding complex mathematical and scientific concepts
takes place over time, resulting in what they call “adaptive
expertise”. An adaptive expert, in their view, has developed
a flexible mental model in which there is an embedded
system of concepts that can be applied flexibly to both

Page 2 of 13

understanding and acting in novel situations. But according
to Hatano and Inagaki, understanding in this deep sense is
not automatic; “it requires much time and a considerable
measure of conscious effort” (Hatano & Inagaki, 1987,
p. 30). Most of us, in most domains, never get to that
level of understanding, not because we are not capable but
because we are not motivated to do so. These concepts are
also difficult to study in psychology because they are not
learned in a single experimental session. Statistics is a good
example of this: many of our students learn how to
conduct a ¢ test using computer software, but fail to under-
stand the connection of the procedure to core underlying
concepts such as sampling distribution and probability. As
a result, students often apply the test inappropriately, and
end up drawing erroneous conclusions from data.

Deep understanding and its consequence, adaptive
expertise, according to Hatano and Inagaki (1987), require
the learner to spend considerable time on “comprehension
activities,” which resemble in many respects what expertise
researchers refer to as “deliberate practice” (Ericsson,
Krampe, & Tesch-Romer, 1993). It is common to think
that practice is required for the development of skills.
But understanding, especially of complex scientific con-
cepts, also requires extensive practice.

This perspective is consistent with some modern
embodied theories of the human conceptual system.
For example, Barsalou (2012) and colleagues propose
that conceptual representations are both dynamic and
situated, arising from the learners’ interactions with the
world, interactions that are grounded in perception and ac-
tion. Barsalou (2012) writes: “A concept is a skill for con-
structing idiosyncratic representations tailored to the
current needs of situated action” (page 251). Embodied
cognition does not merely involve the body in the mo-
ment of thinking (e.g., through gestures or use of
spatial words) but posits more broadly that abstract
concepts are patterned after the structures of bodily ex-
perience and are grounded in the brain’s modality spe-
cific systems (e.g., Barsalou, 2005; Damasio, 1989;
Glenberg & Gallese, 2012).

In traditional cognitive theories, meaning and under-
standing were thought of as exclusively mental and
even symbolic (Fodor, 1976; Newell, 1980), transcend-
ing modality-specific systems. In contrast, embodied
cognition theories posit several ways in which concepts
(even abstract concepts) maintain connections to bodily
movements and interactions with the world. We will
focus on three particular ways here: (1) abstract concepts
are Ssituated, that is, linked to situations (Glenberg &
Kaschak, 2002); (2) abstract concepts are distributed in
that they can be represented in the body and environment
as a means of maintaining activation without overloading
mental resources (Clark, 1998); and (3) abstract concepts
are simulation-based in that concepts are dynamically
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constructed and adapted for the moment of use (Barsalou,
1999). Although this is not an exhaustive list of ways in
which concepts have been written about as embodied (see
Wilson, 2002), these three are relevant for our purposes.

Given that even difficult, abstract, complex concepts
might be embodied (situated, distributed, and simulation-
based), how would that change the way we define under-
standing of complex concepts in a classroom? And how
would that change the way we assess and teach towards
understanding of complex concepts? Under this embodied
view, to understand statistical concepts requires the learner
to practice the connections of the concepts to each other
and to situations in the world. This process, which we see
as a form of deliberate practice, involves dynamically
coordinating concepts on the fly to adapt to a diversity of
situations. Because of the resource-intensive nature of this
process, it is often supported by embodied actions, such
as gestures. We call this the “practicing-connections”
hypothesis.

Drawing on what we know about deliberate practice
(Ericsson et al., 1993), we would expect the practicing of
connections required for understanding of complex
concepts to extend over long periods of time—sometimes
weeks, months, or even years. Despite common beliefs,
even the most brilliant lecture about a concept such as
standard deviation and its relation to other concepts is
unlikely to result in flexible expertise. Under the practicing-
connections view, there is no substitute for repeated practice
applying the concept, and coordinating it with other con-
cepts, in multiple situations over time. One of our goals in
the work reported here was to begin exploratory research in
our development of this hypothesis.

We focus on a particular example from the domain of
statistics, the comparison of distributions of an outcome
measure across two independent groups. In order to
come to an understanding of these types of situations,
statistics students must practice coordinating concepts
such as the mean, standard deviation, and difference of
means repeatedly across a diverse set of situations over a
long period of time. These concepts are useful in a variety
of situations: to summarize distributions, to consider
probabilities of individual scores, to consider confidence
intervals of population parameters, to compute a ¢ test
when asked to assess the statistical significance of a mean
difference. But do students really understand what they
are doing, and why? If concepts are situated and
simulation-based, understanding should be measured
by examining students’ ability to dynamically coordinate the
concepts for the purpose at hand, which is the starting point
for the current article. In our first study, we present evidence
that students who have just successfully completed a
college-level course in inferential statistics nevertheless are
not able to coordinate fundamental statistical concepts when
asked a non-standard question. With this assessment in

Page 3 of 13

hand, we then explore whether gesture might be one
way of facilitating students’ ability to coordinate two
concepts (mean and standard deviation) that must be
considered simultaneously in evaluating a distribution.

Gesture has been shown in a range of studies to play a
key role in the construction of complex concepts. One
famous example is Piaget’s conservation of liquid quantity
task. Children younger than the age of 7 or so seem un-
able to simultaneously consider both the height and width
of a container when estimating the quantity of liquid in
the container. In the classic assessment, children are pre-
sented with two identical beakers of liquid that are filled
to the same level with water, and asked to confirm that
the quantity of water is equivalent across the two beakers.
Once agreement is secured, the experimenter pours the
water from one beaker into another beaker that is both
shorter and wider than the initial one, and the children
are asked if the two beakers with water—one of them now
tall and thin, the other short and wide—still have the same
amount of water. Young children say no, generally report-
ing that the tall beaker has more water.

In an astonishing piece of research, Church and Goldin-
Meadow (1986) found that children on the cusp of being
able to correctly answer this question can be identified by
their gestures when asked to explain their incorrect an-
swers. Children in a transitional state tend to display a
mismatch between their gesture and their speech during
an explanation. So, for example, they will say, “The tall
one has more because it's higher,” while at the same time
using gesture to represent the difference in width between
the two beakers. An embodied cognition interpretation
of this finding might emphasize that these children are
attempting to activate and dynamically coordinate their
concepts of height and width for this situation, using
gesture to offload some of this cognitive work. But did
the children actually have to produce the explanation
themselves? What if instead of generating the explanation,
children saw an experimenter present the same explan-
ation with mismatching gestures? Would this similarly
help them successfully coordinate height and width?

There is a lot of evidence that suggests that such teacher-
gestures can be effective (e.g., in statistics, Rueckert,
Church, Avila, & Trejo, 2017). Teacher gestures that con-
tain information that is non-redundant with that contained
in speech has been shown to benefit student learning
(Singer & Goldin-Meadow, 2005). The combination of
speech and deictic (or pointing) gesture is powerful
(Perry, Berch, & Singleton, 1995; Valenzeno, Alibali, &
Klatzky, 2003), presumably because gestures incorpor-
ate information that is perceptually present but not
explicitly mentioned (Alibali & Kita, 2010). But iconic
gestures that represent meaning in their form and do
not reference any nearby objects are also powerful
(Ping & Goldin-Meadow, 2008), perhaps because they
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reinforce and activate mental representations (Alibali,
Bassok, Solomon, Syc, & Goldin-Meadow, 1999). Gesture
and speech seem to have similar benefits in the context of
video lectures (Cook, Dufty, & Fenn, 2013). Thus, we
wondered if iconic gestures might be an important lever
for engaging students who are trying to understand statis-
tical concepts as presented in a brief video prompt.

In this paper, we examine whether gesture can be used
(and is being used) to help students with the difficult
task of coordinating statistical concepts. In the first study,
we gave students a survey of some basic statistics ques-
tions to get a sense of what misconceptions currently exist
among introductory statistics students in college. The
results of this survey revealed that college students have
fundamental misconceptions about how measures of vari-
ance within a distribution relate to the concept of statis-
tical significance. In Study 2, we tested whether explaining
a given scenario to students with gestures that highlight
variance helps to alleviate misconceptions. In Study 3, we
analyzed popular educational statistics videos on YouTube
to understand how often these types of gestures are
actually used in teaching scenarios.

Study 1: Assessing understanding of a
fundamental concept

Our goal in Study 1 was to assess what students under-
stand about statistics right when they are just completing
a college course in the subject. This study will serve as a
baseline for the following studies. Although we know that
most of these students can probably answer the standard
problems they will face on their final exam, we asked them
slightly different questions in order to assess their under-
standing. The assessment items we developed are part of
an ongoing effort to develop a set of questions that can
be used to assess whether the instructional methods
used in the teaching of statistics are achieving the goals
of understanding.

Methods

Participants

Sixty-two undergraduate psychology students (45 female,
two declined to state) at a large state university participated
in the study. Students were nearing completion of an intro-
ductory inferential statistics class taught in a psychology
department. Two class sections participated in this study,
each taught by a different instructor. They were asked by
their instructor to participate in the survey for extra credit.
Even though this was a voluntary assignment, all students
from one of the sections (25 of 25) and about 93% of the
other section (37 of 40) participated in this study.

Materials and procedure
Students completed the survey online. They were pre-
sented with a scenario that could be interpreted using
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basic statistical concepts, and then were asked a series of
questions based on the scenario. The survey took about
20 minutes to complete and included 15 multiple choice
questions. In the current article we present results for
the first three of these questions.

The survey started with the following scenario, titled,
The Chocolate Experiment:

40 students participated in an experiment to find out
if eating chocolate would improve test performance.
Half the students were randomly assigned to the
chocolate condition, in which they studied for the test
while eating chocolate. The other half studied for the
test without eating chocolate. As it turned out, the
group that studied with chocolate scored 12 points
higher than the group that had no chocolate.

After reading the scenario, students answered three
multiple choice questions. The first question asked them
to judge whether or not they thought there was an effect
of eating chocolate on test performance. The second
question asked them which pieces of additional informa-
tion, selected from a list of alternatives, would be useful
for determining if there was, in fact, an effect. The third
question presented the same list of additional pieces of
information, and asked the students to select the one
that would be most useful. Exact wording of questions
and response alternatives are presented in Table 1.

Results
Table 1 shows the distribution of responses for each of
the questions by answer choice. For the first question,
participants are split between being fairly certain there is
an effect (48%) and needing more information (50%). The
fact that nearly half of all students were “fairly certain” of
an effect is striking given that, based on the scenario, they
have not yet been given any information that would allow
them to make inferences about statistical effects.
Participants were next presented with a list of possible
pieces of additional information, and asked to select all
the ones they thought would be useful for determining
whether there was an effect. (Because they were free to
select more than one option for question 2, the percentages
reported in Table 1 do not add up to 100%.) Eighty-one
percent of the students thought that the group means
would be useful, and 74% thought the standard deviation
would be useful. The best answer would surely be standard
deviation, given that the scenario provided no information
regarding variation within groups. The group means, by
contrast, provide little information beyond what students
might infer from the difference in means reported in the
scenario. However, these two answer choices (group means
and standard deviation) were each selected significantly
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Table 1 Percentage of students selecting each answer choice for the three questions

Answer choice

Percentage of students

Question 1. Based on the description of the study, what would you conclude about the effect of eating chocolate on test performance?

A. I am fairly certain there is an effect
B. I'm not sure—I would need more information

C. I'm fairly certain there is not an effect

48
50
2

Question 2. Which of the following additional pieces of information would be useful for determining if chocolate had an effect on test performance?

(select all that apply.)
A. The mean test scores for each group
B. The standard deviation of test scores within each group
C. A rating of how much each participant likes chocolate
D. A list of the exact test items that were used

E. More information about what kind of chocolate was used

81
74
16
27
8

Question 3. If you could only choose one, which of the following additional pieces of information would be most useful for determining if chocolate

had an effect on test performance?
A. The mean test scores for each group
B. The standard deviation of test scores within each group
C. A rating of how much each participant likes chocolate
D. A list of the exact test items that were used

E. More information about what kind of chocolate was used

61
24
6.5
6.5
2

more often than expected by chance (expected propor-
tion = 0.5), ps <0.001. The other choices were selected
significantly less than would be expected by chance,
ps <0.001.

Finally, students were asked which piece of information
they would choose if they could only choose one. Here,
we see an astonishing result: nearly three times as many
students said they would choose the group means (61%)
compared with those who would choose the standard
deviation (24%). A binomial sign test on proportion of
correct responses (0.24) showed that this significantly
deviated from 0.50, p < 0.001.

Discussion

One of the most fundamental concepts in statistics is
that within-group variation must be taken into account
when judging whether there is a real difference between
the means of two groups. What looks like a modest
difference in means would be highly significant if the
variation within groups were small. But if such variation
were large, it would be less likely for the difference in
means to be a significant difference. Based on the
scenario we presented, it would not be possible to begin
such an analysis, even informally, without some sense of
what the within-group variation looks like. We would
hope that students who have nearly completed a course
in inferential statistics know this, and would seek out infor-
mation on variation, especially when it is their statistics
instructor who asked them to respond to the survey.

Although students do select standard deviation as a desir-
able piece of information when they are selecting multiple
pieces of information, when they are asked to pick one,
they focus on just knowing what the group means are.

Study 2: Using gesture to activate the concept of
variation

The students in Study 1 had nearly completed a college-
level course in statistics. Yet, they still did not think to
bring in the concept of within-group variation when
asked to evaluate a mean difference between two groups.
Just as young children get focused on the height of two
liquids and have difficulty taking width into account,
perhaps these college students similarly get stuck on the
group means as the main indicator of a group difference.
Can gestures cue students to activate and coordinate the
correct concepts for this situation? In Study 2, we inves-
tigated whether gesturing the concept of variation, while
at the same time verbally describing a difference in
means, might support students’ inclination to coordinate
both mean and variation in their thinking. We did not ask
participants to gesture, but instead assessed the effect of
an experimenter’s gesturing on their responses to our
questions.

Methods

Participants

A total of 100 students (53 female) from the same large
state university participated in the study. Like before, all
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were in the final week of a college-level statistics course;
none had participated in Study 1. Students were recruited
from four courses: (1) a psychology research methods
course (there was some review of statistics in this course
and two of the prerequisites were statistics courses); (2) a
biological modeling course (this was an upper division
advanced statistics course with a prerequisite statistics
course; (3) a biological statistics course (covered both
descriptive and inferential statistics); and (4) a statistics
course taught in the school of education that covered both
descriptive and inferential statistics. The survey software
(Qualtrics, 2017) randomly assigned students to one of
two gesture conditions: the Centrality condition (n=47)
or the Variability condition (n=53). No students who
started the study failed to complete it.

Materials and procedure
Students were emailed a link that took them to an
online survey. As in the first study, the survey started
with a presentation of the Chocolate Experiment.
However, this time the experiment and its results were
presented by an experimenter on video, not in writing.
We constructed two versions of the video (they can be
seen at http://tinyurl.com/variationgestureexperiment).
The spoken words were identical across the two videos,
but there was a small difference in the gestures accom-
panying the speech. The online survey software randomly
assigned each participant to see one of the two videos.

In both conditions (i.e., on both videos), the experi-
menter said:

Whenever people participate in a psychology
experiment, there is a distribution of scores. Some
people do well, some people don’t do well, and
everything in between. Forty students participated in
an experiment to find out if eating chocolate would
improve test performance. Half the students were
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randomly assigned to the chocolate condition, in
which they studied for the test while eating chocolate.
The other half studied for the test without eating
chocolate. As it turned out, the group that studied
with chocolate scored 12 points higher than the group
that had no chocolate.

The only difference between the two videos was in the
gestures that accompanied the last sentence, “As it
turned out, the group that studied with chocolate scored
12 points higher than the group that had no chocolate.”
In the Centrality condition, the gestures matched the
speech in that they represented the mean difference
between the groups that ate chocolate or not (Fig. 1).

In the Variability condition, the gestures added new
information to what was contained in speech, representing
not only the mean difference in test scores between the
two groups, but also the fact that there was variability
within each group (Fig. 2). The difference between the
two groups was only in these gestures, emphasizing
centrality and variability. There were no other gestures
depicted in the video. After students watched the video
they were asked to answer the same three questions
used in Study 1, above.

Results
The results are presented in Table 2, following the same
format used to report the results in Study 1.

On question 1, the responses of students in the Centrality
condition reflect a similar pattern of response as in Study
1, roughly split between being certain of an effect and
needing more information. In the Variability condition we
saw a different pattern, with twice as many students saying
they would need more information as saying they were
fairly certain of an effect. Defining “correct” as “need more
information”, students’ correct and incorrect responses
were subjected to chi-square test of homogeneity;

> ) 0:24/027

I«

Fig. 1 Gesture used in the centrality condition. The left hand was
used to show the mean of the group that studied with chocolate,
the right hand, without chocolate. Only one hand was raised at a
time. Gestures matched the words, representing the difference in
the two means

< p

> o) 024/027

Fig. 2 Gesture used in the variability condition. Both hands were
used to represent the mean and variability of each group. In this
picture the experimenter represents test performance of the group
that ate chocolate. She shifts both hands to the left to represent the
no chocolate group
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Table 2 Percentage of students selecting each answer choice for the three questions for Centrality vs. Variability gesture condition

Answer choice

Percentage students by condition

Centrality (n=47)

Variability (n=53)

Question 1. Based on the description of the study, what would you conclude about the effect of eating chocolate on test performance?

A. I am fairly certain there is an effect
B. I'm not sure—I would need more information

C. I'm fairly certain there is not an effect

49 30
47 60
4 1

Question 2. Which of the following additional pieces of information would be useful for determining if chocolate had an effect on test performance?

(select all that apply.)
A. The mean test scores for each group
B. The standard deviation of test scores within each group
C. A rating of how much each participant likes chocolate
D. A list of the exact test items that were used

E. More information about what kind of chocolate was used

74 70
66 62
40 23
21 36
15 19

Question 3. If you could only choose one, which of the following additional pieces of information would be most useful for determining if chocolate

had an effect on test performance?
A. The mean test scores for each group
B. The standard deviation of test scores within each group
C. A rating of how much each participant likes chocolate
D. A list of the exact test items that were used

E. More information about what kind of chocolate was used

60 36
21 40
1 13
2 6
6 4

this did not reveal a statistically significant difference
(X*(1, N =100) = 1.54, p = 0.21).

When asked in question 2 which additional pieces of
information would be helpful in determining if there
was an effect, students in the Centrality and Variability
conditions showed a similar pattern of responses. In
particular, the likelihood of selecting standard deviation
as useful did not differ across the two conditions (X*(1,
N =100) = 0.2, p =0.65). This result is difficult to inter-
pret because most students (63 out of 100) chose more
than one piece of additional information.

When asked more specifically in question 3 which
single piece of additional information they would
want to have if they could only have one, students in
the Variability condition were twice as likely as those
in the Centrality condition to choose standard devi-
ation. This difference between the Centrality and
Variability condition was statistically significant (X*(1,
N =100) = 4.59, p =0.032). The distribution of responses
in the Centrality and Variability conditions were not
significantly different from Study 1 (X*(1, N = 162) = 5.45,
p=0.07).

Discussion

Simultaneous consideration of both mean and standard
deviation is a critical component of statistical reasoning,
but is, apparently, a difficult thing to achieve. Yet, simply
exposing students to a gestural representation of variability
appears to have had an effect on their responses to our

questions. Why does gesture help? The particular iconic
gesture employed here illustrates the concept of distribu-
tion in an analog way. Such an analog representation may
be missing in students’ default interpretation of the word
“distribution” (see Singer, Radinsky, & Goldman 2008 for
another case of gesture illustrating words through im-
agery). A spatial representation of distribution represents
both the center and spread of the distribution simultan-
eously. Perhaps the gesture supported students’ thinking so
that they could consider both variation and center of the
distribution at the same time. Using gesture may have
helped students either remember, attentionally highlight, or
consider multiple aspects of distributions for the purpose
of considering this situation.

Study 3: The prevalence of gesture in

instructional video

In Study 2, even a very brief exposure to gestures on
video can shift students’ thinking. Given how fre-
quently students search YouTube for help understand-
ing mathematics and statistics, are the videos they
find likely to leverage gesture in their explanations?
Would the gestures found in these videos be iconic
gestures of the sort used in Study 2? Some of the
most well-known instructional videos, such as those
produced by Khan Academy, do not include gesture
or even hands at all. In Study 3, we examined more
broadly the frequency with which instructional videos
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on YouTube—videos commonly accessed by stu-
dents—contained gestures.

Methods

Sample of videos

We typed in “standard deviation” (with quotes) into
YouTube’s search field and selected for study the first
100 videos that came up in the search. The average view
count of the videos was 84,718 (SD = 151,757; min—max,
291-1,091,739).

Coding of videos

All videos were coded by a team of trained coders. Each
video was coded, first, to see if hands were visible, the
face was visible, or both were visible. Those videos in
which hands were visible were further coded as to how
the hands were used.

Use of hands was coded based on Goldin-Meadow and
Feldman’s (1975) guidelines for gesture identification.
According to these guidelines, gestures should, first, be
distinguished from actions. A gesture does not effect
change in the environment except through its communi-
cation of meaning, so that circling an important part of an
equation with a finger would be a gesture, but drawing a
circle around part of an equation with a marker would be
an action. However, circling part of an equation with a
capped marker would be considered a gesture, as it is not
effecting a change (there is no circle that remains in the
environment after the gesture).

We coded videos for the presence or absence of three
types of gestures: iconic gestures, the sort that were
employed in Study 2; and two types of non-iconic gestures
(deictic and other). Iconic gestures were defined as those
whose meaning is independent of the environment,
dependent only on the form of the gesture itself. Iconic
gestures included “tracing” out the shape of a probability
distribution with the hand, using two hands to indicate
the extent of variation on the x-axis, or reaching out and
grabbing an imaginary object to indicate sampling from a
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population (see Fig. 3 for an example). If you removed
these gestures from their context, some of the original
meaning would still be apparent.

Videos were also examined for the presence or absence
of non-iconic gestures such as deictic gestures. These are
gestures whose meaning is entirely dependent on the con-
text of the gesture, with no meaning carried by the form
of the gesture itself. A few examples of this type of gesture
include pointing to part of an equation, using a finger to
underline an important definition, and gesturing to a
written word with an open hand (see Fig. 4 for an
example). In each of these cases the meaning of the
gesture is entirely dependent on what is being gestured
to and how it relates to what is being said at the time.
In contrast to iconic gestures, if deictic gestures are
removed from their context, the original meaning is lost
completely. Although iconic gestures also can reference
space and other parts of the context (e.g., indicating a
curve present in an image by curving the hands), iconic
gestures are distinct in that their form conveys meaning
even without context. Deictic gestures do not convey any
meaning in their form alone.

The last type of non-iconic gesture we coded for was
a catch-all category called other. These included beat
gestures, which emphasize the cadence of spoken words,
and emblems, which are gestures whose meaning is cultur-
ally defined. Moving one’s hands in time with one’s speech
would be a beat gesture and giving a thumbs-up would be
an emblem. These types of gestures were coded as other
because they are unlikely to convey any information that
would assist students in understanding statistical concepts.

Each video (where hands could be seen) was coded for
the presence of iconic, deictic, and other gestures. Thus,
a video could include all three types of gesture or only a
subset of these gestures. A subset of videos was coded
by five independent coders. Coders agreed on 96% of
judgments. For the coding of most variables (e.g., face
visible, hands visible, action, gesture, deictic gesture, iconic
gesture), there was perfect agreement between five raters
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Fig. 3 Example of iconic gesture where speaker is indicating
dispersion by using the space between two hands
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Fig. 4 Example of deictic gesture where speaker is pointing to data
points with a finger
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on five videos. Only for the coding of other was there
some disagreement (x = 0.19, p = 0.19).

Results

The results of the coding are summarized in Fig. 5.
Hands were visible in 32% of the videos (i.e., in 32 of the
100 videos sampled). Both hands and faces were visible
in 11 of these videos, and only hands were visible in the
other 21. Thirty-one of the 32 videos with hands included
some gesture. So, instructors do gesture when talking
about standard deviation, and videos that capture their
hands also capture their gestures.

When gestures did appear, the most common ones by
far were non-iconic (a combination of deictic and other).
In the 21 videos in which only hands were visible, all of
the gestures were non-iconic. The framing of these vid-
eos were typically hands writing on a surface or using a
calculator. In 18 of the 21 videos with only hands, only
one hand did the gesturing. The other hand was
occupied (e.g., holding the paper down or grasping the
calculator). Only in videos where both hands and face
were visible (typically the frame included the upper body
of the instructor) did we observe any iconic gestures.
Eight of these 11 videos included iconic gestures, which
means that only eight out of our sample of 100 videos
included iconic gestures. Descriptions of the iconic ges-
tures observed in these videos are included in Appendix.

Discussion
Although there have been attempts in the research com-
munity to examine the effect of video-based instruction
with and without gesture (e.g., Koumoutsakis, et al., 2016;
Rueckert et al., 2017), most popularly accessed videos in
our sample do not show hands at all. Some of these video
explanations have been watched more times than a profes-
sor’s explanation would be seen face-to-face in a lifetime.
This study was limited to examining the presence of
gestures at all, ignoring important characteristics such as
the rate of gestures and the particular meanings of gestures
as they related to standard deviation. Our main results

80
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Fig. 5 Number of videos in which hands and faces were seen and
the different types of gestures that were used
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reveal that a sampling of easily accessible videos (as deter-
mined by the YouTube search algorithm) reveals few
videos with iconic gestures at all. Future studies might
examine only videos that contain hands to pursue import-
ant questions about the rate of gesture and the meaning
and effectiveness of particular gestures.

Discussion

When teaching complex concepts, such as those that
make up the field of statistics, we hope for students to
achieve some form of what Hatano and Inagaki describe
as adaptive expertise (1987). In these three studies, a
story emerges. There are problems with coordinating
multiple basic concepts even at the end of a college
statistics class (Study 1), but teachers’ iconic gesture can
help students coordinate concepts (Study 2). However,
in commonly accessible statistics teaching videos, we
rarely observe iconic gestures (Study 3). Each of these
results can lead to a separate line of research and we will
discuss the specific questions that arise. However, we
were compelled to put them into one series because a
broader theme of how we must integrate theories about
cognition in instruction emerges.

Why don’t students coordinate mean and standard
deviation?

The results of Study 1 raise an important issue: learning
about mean, standard deviation, histograms, and t-tests—all
concepts covered in the participating statistics courses—was
not sufficient to get students to simultaneously consider
both mean and standard deviation in evaluating the effect-
iveness of the chocolate intervention. Although it is pos-
sible that students who were motivated by extra credit
may also have been doing poorly in the class, even when
the whole class or almost the entire class participates
(Study 1), we observe this pattern. In Study 2, particu-
larly in the Centrality gesture condition, we found this
to be the case across a variety of undergraduate statistics
courses spanning three different departments (psychology,
biology, and education) and five different instructors, each
implementing their own approach to teaching. Based only
on our data, it is not possible to say why students did not
take standard deviation into account to the extent they
should. But we can propose several possibilities.

One possibility is that students were never required
during their formal course to relate the concepts of mean
and standard deviation to the procedure for conducting
an independent samples t-test. Most students do learn
how to calculate a t-statistic and a p value, and in what
situations these statistics can be applied. However, learn-
ing how to calculate or use a t-test does not necessarily
imply a deep understanding of how the test is related to
mean and standard deviation. We speculate that most
students would have been able to tell us that they needed
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the mean and standard deviation in order to calculate a
t-statistic. However, although the formula for the t-statistic
does represent mean and standard deviation in relation to
each other, understanding this relationship is not necessary
for performing the computation. It is possible that if we
want students to understand this relationship we would
need to focus on it directly.

Another possibility is that students have only a limited
sense of the purpose of the standard deviation. They
may have some understanding of the concept itself (e.g.,
its definition, its formula, how to interpret it) but have a
weak understanding, if any, of how standard deviation
fits within the domain of statistics. The role of standard
deviation (and standard error) in a t-test is to help us
see a difference in means in terms of variability. This ra-
tio of the size of a difference to the amount of variation
enables us to judge whether a difference is statistically
meaningful (i.e., significant). Could it be that students
never really appreciated the problem that was solved by
including a measure of spread in a t-test? Perhaps stu-
dents need experiences that would highlight the function
of something like standard deviation in the solution of
various problems. Such experiences might include con-
trasting cases (Kurtz, Miao, & Gentner, 2001), “inventing”
the solution (Schwartz, Chase, Oppezzo, & Chin, 2011;
Schwartz & Martin, 2004), or mental or perceptual simula-
tions (Goldstone, Landy, & Son, 2010; Wells & Gavanski,
1989). A functional (or causal) understanding may be a
prerequisite for more effective coordination of these
concepts in the context of examining a group difference.

Some instructors might be surprised that students are
not coordinating these concepts. In fact, some instruc-
tors find it curious that we are using mean and standard
deviation as a test case of complex understanding. These
concepts might seem relatively simple or basic especially
compared to the rest of the topics covered in an under-
graduate statistics course. However, these “basic” concepts
can take on different meanings as they are connected to
more and more topics in the curriculum such as sampling
distributions, correlation, regression, and ANOVA. The re-
lationship of mean and standard deviation in the context
of a t-test is not the same, for example, as in the context of
the Central Limit Theorem, where the mean and standard
deviation of populations have a predictable relationship to
the means and standard deviations of the sampling distri-
butions they can give rise to. Students might have a sense
that the concepts of mean and standard deviation are
fundamental because they come up repeatedly. But to
understand how they relate in specific contexts may
require some support, in our case, gesture.

Why does gesture seem to activate an initially inert concept?
Even though hints and support could have been provided
in any number of ways, there are several reasons why
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gesture might be particularly effective for students’ think-
ing about complex concepts. First, teachers and students
often use gesture naturally when talking about math and
science (e.g., Alibali & Nathan, 2012; Crowder & Newman,
1993) so it is quite possible that in face-to-face classrooms
teachers would naturally use similar gestures to talk about
the meaning of standard deviation (e.g., dispersion).
Perhaps these gestures are naturally occurring cues in
face-to-face instruction, making them effective reminders
in assessment contexts. This priming function of gesture,
especially when repeated over the course of a semester,
may play a role in developing more robust abstract con-
struals of concepts.

Second, if understanding of complex concepts requires
dynamically coordinating multiple concepts for each
new situation, it is a resource-intensive activity, cognitively
speaking, and thus subject to the limitations of working
memory. When students themselves gesture, this physical
offloading provides a readily available way to provide more
“space” to hold additional concepts as novices work out
how they are connected (Goldin-Meadow, Nusbaum,
Kelly, & Wagner, 2001). When instructors gesture, these
complementary sources of information may enrich
students’ interpretation of spoken words by engaging
different modality-specific mental resources (Baddeley,
2003). In this way, abstract concepts can be grounded
in more concrete terms. Also, quantitative relationships
are often taught, thought of, and spoken of in spatial
terms. A picture of a distribution (e.g., as histograms,
scatterplots) naturally depicts the center and spread
simultaneously. Perhaps gesture, and space more generally,
provides an analog system for representing and thinking
about such concepts simultaneously (Kita, Alibali, &
Chu, 2017).

This result adds to other research demonstrating the
effectiveness of gesture and embodiment in helping stu-
dents learn and work with complex academic concepts
(e.g., Atit, Shipley, & Tikoff, 2014; Atit, Gagnier, & Shipley,
2015; Rueckert et al, 2017). However, our focus on
gestures is not to say that other forms of non-gestural
support are not important.

Why don’t instructional videos in statistics use gestures?

One basic reason instructional videos don’t use gestures
is that most videos do not even include hands. Popular
screen capture software (such as Camtasia) has greatly
simplified the task of making lecture videos. And, popular
education websites such as Khan Academy have contrib-
uted to the proliferation of videos that include only audio
and screen capture. Although this software captures every-
thing on the screen, the speaker is typically not on the
screen, or if they are, they appear as a head in a small box
superimposed on a slide deck. Perhaps it is simply the
availability of this kind of software that has resulted in so
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much video without hands. A similar story might be told
about the 21 videos that included only hands. These videos
were similar to the screen capture videos, except instead of
capturing what was on a screen these videos showed close-
ups of hands writing on paper. Again, the availability of
inexpensive document cameras makes it easy to produce
such videos, and this may account for their popularity.

Another possibility, however, is simply a widespread
belief that gestures aren’t necessary or helpful for learning.
It’s not that hard, in this day and age, to video an instructor
standing at a whiteboard, teaching in much the same way
they would in front of a live classroom of students. Yet,
such videos accounted for only 11 of the 100 videos in our
YouTube study. When videos were shot this way, both
faces and hands were visible. And, as noted earlier, these
were the only videos in which representational gestures
appeared. If people believed gesture to be important they
would no doubt shoot more videos to include them.

Our hope is that research such as that reported here,
along with advances in technology, will result in an increase
in the number of instructional videos that include both
faces and hands. One such technology—the Learning Glass
(http://www.learning.glass/)—makes it possible to video
instructors as they teach behind a clear glass on which they
can write and project images. Videos shot in this way show
a clear picture of the instructor, his or her hands and face,
and interactions of the instructor with instructional mate-
rials both with actions (i.e., drawing) and gestures. If these
interactions are important supports for students’ learning,
instructors’ access to these new technologies might be
critical for creating effective videos.

Conclusion: Pursuing the practicing-connections
hypothesis

Beyond the modest results of three small studies, the
goal of this paper was to begin laying out a framework
and approach for studying how students come to under-
stand complex concepts such as those that characterize
rich domains of knowledge. Although we know a great
deal about what expert knowledge looks like across a
wide array of conceptually rich domains (for review see
Ericsson, Charness, Feltovich, & Hoffman, 2006), we do
not have a lot of experimental research on the processes
through which such expertise is developed.

One reason for this is that such research is hard to do
given that expertise in rich domains typically develops
over weeks and months, not minutes as are typically
available in psychology lab experiments. Online courses,
and instructional video in particular, provide a useful
tool for studying the learning of complex conceptual
domains such as statistics. Because instructional videos
are typically watched by individual students, it is possible
to conduct random-assignment experiments in the context
of ongoing authentic instruction by assigning students to
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watch different versions of the instruction (c.f, Stigler &
Givvin, 2017).

Our work thus far is guided by what we call the
practicing-connections hypothesis. Under this framework,
conceptual understanding, like skills, results from deliber-
ate practice situating, off-loading, and simulating concepts
over long periods of time. Barsalou (2012) has proposed a
theory of concept formation that is consistent with this
view. The practicing-connections hypothesis proposes that
learning results from repeated practicing of connections
among concepts, procedures, and situations. Understand-
ing will probably develop unevenly, over time, much the
way other skills do. Gesture, because it is already highly
prevalent in communicating about abstract concepts
(Hostetter & Alibali, 2008; McNeill, 2000) and may repre-
sent schematization of concepts (Kita et al.,, 2017), has a
key role to play in the practicing of such connections.

Pursuing this hypothesis will require a broadening of
research on conceptual change to include learning of
complex concepts over longer periods of time. Although
traditional cognitive psychology seeks to understand larger
units by analogy to shorter laboratory experiments, we are
trying to work in authentic contexts in which the complex-
ity is fully present from the beginning. Recent evidence in
STEM education has shown that course materials devel-
oped to include gesture and practicing visualization lead to
improvements in reasoning and learning (e.g., Atit, Shipley,
& Tikoff, 2014; Atit, Gagnier, & Shipley, 2015; Rueckert et
al,, 2017). For this reason, we are building an online statis-
tics course that we can use as a research site for exploring
the implications of the practicing-connections hypothesis.
By putting the course online, it gives us a way to experi-
mentally manipulate some aspects of the course and test
specific hypotheses related to instruction and learning. This
work is only beginning.

Appendix
Iconic gestures seen in these videos included:

e Jabbing to different parts of space to indicate how data

are dispersed (as if making points on a scatterplot)

e Bringing hands together to indicate clusters of data
° Closing fingers into a small tight circle to
indicate data being close together

e Spreading out two hands with space in between to

indicate dispersion (like in our videos from study 2)
° Indicating deviations between data and the mean
by using space between both hands
° Using one hand to be the mean and one hand to
represent the spread of the data below the mean
° Depicting dispersion dynamically by moving
hands far out from center

e Showing distance by indicating space between index

finger and thumb
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e Chopping with hand in middle of space to show
mean

e Showing “all your data” by encircling space in front
of body with both hands

e Using one hand to indicate each row of an
imaginary data sheet (pausing at each row)

e Closing the hand over an equation to indicate that,
after computing, we will be left with one value

e When mentioning symmetry, moving hand in a
vertical up and down axis to indicate vertical axis of
symmetry
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