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Simple eye-movement feedback during
visual search is not helpful
Trafton Drew* and Lauren H. Williams

Abstract

Searching for targets in the visual world, or visual search, is something we all do every day. We frequently make
‘false-negative’ errors, wherein we erroneously conclude a target was absent when one was, in fact, present. These
sorts of errors can have tremendous costs, as when signs of cancers are missed in diagnostic radiology. Prior research
has characterized the cause of many of these errors as being due to failure to completely search the area
where targets may be present; indeed, roughly one-third of chest nodules missed in lung cancer screening
are never fixated (Drew, Võ, Olwal, Jacobson, Seltzer and Wolfe, Journal of Vision 13:3, 2013). This suggests
that observers do not have a good representation of what areas have and have not been searched prior to
declaring an area target free. Therefore, in six experiments, we sought to examine the utility of reducing the
uncertainty with respect to what areas had been examined via online eye-tracking feedback. We hypothesized
that providing information about what areas had or had not been examined would lead to lower rates of
false negatives or more efficient search, namely faster response times with no cost on target detection accuracy.
Neither of these predictions held true. Over six experiments, online eye-tracking feedback did not yield any reliable
performance benefits.
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Significance
Modern eye-trackers are capable of precisely quantifying
where and for how long an observer has looked in a
scene. Based on many years of research examining the
causes of errors during real-world visual search tasks like
diagnostic radiology and baggage screening, there are
reasons to believe this information could be very
valuable to the searcher. If this promise is met, online
eye-tracking feedback could lead to markedly improved
visual search performance. This would be of great use in
a number of applied venues such as diagnostic radiology
and threat detection during military surveillance.
However, over six experiments using a variety of differ-
ent methods of conveying eye-movement information,
target prevalence and type of search scene, we obtained
no reliable evidence that simple eye-tracking feedback
led to any reliable behavioral benefits. In sum, while the-
ory suggested that eye-tracking information could be of
use to an observer in a visual search task, we found that

simple methods of conveying this information led to no
benefit for the observer.

Background
Visual search is a task that occurs in situations ranging
from the mundane (‘search for the pen on your desk’) to
the profound (‘search for the sniper’). Costly false negative
errors (‘no sniper: we are safe’) occur frequently across dif-
ferent domains. For example, false negatives are a serious
problem in screening radiology tasks, where rates of retro-
spectively visible false negative errors reach 30% in some
subspecialties (Wallis, Walsh, & Lee, 1991). What is the
cause of these errors? A wealth of visual search research
suggests that memory for what areas have and have not
been searched is poor. For example, observers often fixate
the same items repeatedly before finding a simple target
(Gilchrist & Harvey, 2000). In fact, some argue that there
is effectively no memory for which items have been
rejected as targets during a visual search task (Horowitz &
Wolfe, 1998). Although the claim that “visual search has
no memory” is certainly too strong (Kristjansson, 2000;
Peterson, Kramer, Wang, Irwin, & McCarley, 2001; Shore
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& Klein, 2000), and some argue that the task employed by
Horowitz and Wolfe (1998) is flawed (Klein & Dukewich,
2006), it is clear that memory for which areas have been
searched is much worse that one might imagine or hope.
In fact, when observers were asked to report the locations
of their fixations after a 3-second examination of a scene,
they were no better at marking the locations of their fixa-
tions than they were in guessing the locations of another
observer’s fixations (Võ, Aizenman, & Wolfe, 2016).
Given that humans seem to have a poor memory for

where they have looked during difficult detection tasks, it
seems clear, in principle, that technology could improve per-
formance. Eye-tracking and automated object-detection
algorithms are progressing to the point that professional
searchers of the future may be wearing glasses that can tell
them how recently – if ever – they have examined specific
parts of a scene. This possibility leads to two important
questions, namely, is this information useful to the searcher?
If it is useful, what is the most effective way to convey this
information to the searcher?
More information is not always better. At present, it is

not clear how to most effectively convey prior search his-
tory information to the searcher. Designers of computer-
aided detection (CAD) in radiology face an analogous
problem. Based on image statistics, each location in a
medical image can be assigned a probability of containing
an abnormality such as a malignant tumor. At present,
CAD systems typically mark areas that exceed a threshold
with an arrow or a circle marking the suspicious area
(Doi, 2007). Although the CAD systems are good at de-
tecting cancer (almost as good as radiologists), there is a
great deal of controversy over whether the use of CAD in
clinical settings reliably improves performance (e.g., Cole
et al., 2014; Philpotts, 2009). We believe that part of the
disappointing performance of the CAD-radiologist system
is due to how the information is conveyed to radiologists.
Eye-tracking data from our laboratory suggests that the
CAD marks attract attention away from areas that were
not marked (Drew, Cunningham, & Wolfe, 2012). As a re-
sult, performance for targets that occur outside the areas
marked by CAD is quite poor; an example of what is
called ‘automation bias’ in the human factors literature
(Parasuraman & Manzey, 2010).
The current study examined a variety of different

methods of conveying eye-movement information back
to the user in an effort to improve performance.
Although it is certainly not an exhaustive list of all pos-
sible methods of conveying this information to the user,
this series of studies represents an important first step in
determining whether providing this information is use-
ful. Over the course of six experiments, our data surpris-
ingly suggest that simple online feedback during visual
search is not helpful. We hope that the demonstration of
this lack of a benefit will inspire future researchers to

consider alternative methods of conveying information
to the user.

Methods
Each experiment followed a similar design, wherein
observers (n = 109 in total) were asked to detect a faint
target that was embedded in a search display as quickly
and accurately as possible. Observers initiated each trial
with a button press. After a short random interval (250–
500 ms), the search array was displayed and remained
on the screen until the observer either clicked on a loca-
tion in the search display or a ‘no-target’ rectangle to the
left of the search display. Unless otherwise noted, a sin-
gle target appeared on 25% of trials. Target location was
randomized within a 6 by 4 grid (250 × 250 pixel cells)
with 50 pixels of random jitter to avoid any sort of
predictability for target locations.
Experiments were programmed in MATLAB (version

8.6) Psychtoolbox (version 3.0.12; Kleiner, Brainard, Pelli,
& Ingling, 2007). Eye-tracking was performed using an
Eyelink 1000 plus recording at 1000 Hz temporal
resolution. Raw eye-tracking data was categorized into fix-
ations and saccades using DataViewer Software. Stimuli
were presented on a 20’ ASUS flat-screen monitor. Ob-
servers carried out the experiment while stabilized by a
chin rest 66 cm from the screen. Nine-point calibrations
were carried out at the beginning of each block of the ex-
periment and any time the experimenter detected that
calibration accuracy was decreasing. Observers who were
unable to calibrate to within 0.5 DVA were not allowed to
proceed into experimental trials. Those observers that did
not complete each block of the experiment were excluded
from subsequent analyses. This led to a rejection of a total
of 8 out of 117 (6.8%) observers.
In all experiments, the target was a small oval or rect-

angle (1.25 × 0.66 DVA) that was placed behind a
1500 × 1000 pixel image with 87.5% opacity centered in
the screen. The target randomly varied between red or
blue, oval or rectangle, and vertical or horizontal orien-
tation. In Experiments 1 and 3–6, images were outdoor
scenes. We selected dense outdoor images with few
areas of low variability (such as blue skies or calm lakes)
because the target was simple to detect in these sorts of
areas. Images in Experiment 2 were ‘Clumpy Lumpy
Background’ synthetic textures that were designed to
emulate real mammogram textures (Castella, Kinkel,
Descombes, & Eckstein, 2008). Feedback condition
varied across blocks, but within observers in all experi-
ments. Block order was randomized across observers.
In Experiments 1–3, we examined two types of feed-

back – ‘Unfixated’ and ‘Visited’. Feedback condition
varied across blocks, the order of which was randomized
across observers. In Experiments 1–3, feedback could be
toggled ‘on’ by holding the tab button down. Otherwise,
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the feedback was not visible. Thus, feedback on each
trial began ‘off ’ until the observer chose to turn the feed-
back ‘on’ by holding the tab button down. In both
conditions, observers were instructed that errors in these
tasks are often the result of a target that was never fix-
ated, and that these feedback systems were designed to
help decrease these sorts of errors. By manipulating the
opacity of a 6 by 4 grid overlaid on the search array,
Unfixated feedback indicated to the observer which
areas of the screen had not been fixated. Thus, the opa-
city of the red feedback mask for an area that had been
fixated for 0 ms was 39%. As result, the screen would be
a uniform translucent red if the feedback was deployed
at the beginning of the trial. Opacity of the feedback
mask then decreased as the cumulative dwell time in
that region increased until it reached 0%. The Visited
feedback block followed the same scheme in reverse,
wherein regions that were not visited had a feedback
mask opacity of 0%. This number then increased to a
maximum of 39% as dwell time in this region increased.
Therefore, in Fig. 1, the visited feedback indicates to the
user that the area where the target is located has not
been fixated.
Whereas online feedback was only provided when the

observer pressed the ‘tab’ button in Experiments 1–3, in
Experiments 4–6 the feedback was automatically pro-
vided to the user in one of two manners. In Experiment
4, the entire search array was initially masked by semi-
opaque grey rectangles. As the observer gazed in these
regions, the opacity in each area decreased from 84% to

0%. In Experiments 5 and 6, once the observer had
recorded a response for a trial, they were shown an
additional screen highlighting the 10 grid regions that
they had visited for the least amount of time. All other
areas were rendered invisible in order to encourage the
observer to evaluate the areas that had previously been
evaluated for the least amount of time. They were then
allowed to amend their initial response.
The progression from Experiment 1–6 is outlined

in Table 1. Over the course of these experiments,
we varied target prevalence, image type, and method
by which feedback was conveyed to the observer.
We will return to the differences across experiments
in the Discussion section.

Results
The primary results are highlighted in Table 2. In order
to assess whether eye-tracking feedback led to a reliable
benefit in finding targets, we computed a composite
measure of corrected accuracy by subtracting False
Alarm Rate from Hit Rate. The pattern of results is iden-
tical using d-prime as the primary outcome measure.
Eye-tracking feedback was associated with a reliable
benefit in only one of the six experiments. The feedback
system in Experiments 5 and 6 was designed to highlight
areas that were not examined prior to making a decision
so that the Observer could amend their response after
receiving an additional opportunity to review these re-
gions. We were therefore surprised to find that Hit Rate
on target-present trials for which the target region was

Fig. 1 Schematic representation of feedback systems employed in Experiments 1–3. The red target has been made larger and easier to detect for
display purposes
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highlighted was worse (46%) than when no feedback was
given (71%, t(22) = 1.62, P = 0.11).
As a result of this unexpected finding and the

difference between the results from Experiment 5
and the prior experiments, we attempted to repli-
cate and extend this finding at higher target preva-
lence (increasing from 25% to 50%). As in four of
the previous five examinations of this effect, Experi-
ment 6 yielded no apparent benefit of eye-tracking
feedback. We will return to the interpretation of Ex-
periment 5 in the Discussion section below.
It is difficult to interpret null-results using traditional

null-hypothesis testing approaches (Wagenmakers, 2007).
In order to provide more information with respect to
whether our hypothesis that feedback would lead to im-
proved performance compared to the No Feedback condi-
tion, we computed Bayes Factors (BF) using the Jeffery–
Zellner–Siow prior to evaluate whether the evidence
favored the null hypothesis (feedback type makes no dif-
ference to performance) or the ‘full’ model (Rouder,
Morey, & Speckman, 2012). BF for experiments 1–3 and 6
ranged from 4.62 to 6.12, providing substantial evidence
against the ‘full’ model. Experiment 5 was associated with
a BF of 0.011 (alternatively a BF of 9.35 in favor of our H1,
where feedback reliably alters performance). This is typic-
ally categorized as ‘moderate evidence’ in favor of the ‘full’
model (Wetzels & Wagenmakers, 2012).
In order to assess whether the eye-tracking feedback

was utilized, we analyzed Response Time (RT) on cor-
rect trials in Experiments 1–3 in a series of 3 (Feedback
Type) × 2 (Target Number) repeated measure ANOVAs.
Prior to analyzing this data, we filtered out RTs that

were < 200 ms and > 60 s. Given the positive skew of RT
distributions, we did not exclude RTs based on standard
deviations of the RT distribution (Palmer, Horowitz,
Torralba, & Wolfe, 2011). The goal of our filtering was
to remove aberrant trials where the observer either inad-
vertently responded too quickly, or became distracted
during the trial (Wolfe, Boettcher, Josephs, Cunningham,
& Drew, 2015). These results are summarized in Table 3.
Overall, while target-absent trials were reliably longer
than present trials (all F > 35, all P < 0.001), there was no
effect of Feedback Type (all F < 2.4, all P > 0.11). Ideally,
eye-tracking feedback would increase accuracy while not
increasing RT. In the absence of a reliable accuracy
benefit, the lack of an RT effect is more difficult to inter-
pret. One concern may be that there was no increase in
RT because the observers were not using the feedback.
Although there was substantial variability in terms of
how often and for how long the feedback was turned
‘on’ via the ‘tab’ button, our results are qualitatively
identical (no benefit of feedback) if we focus on those
observers who used the feedback frequently.
Experiment 4 was conducted to address the concern

that not all observers were using the feedback as
intended. In this experiment, feedback was compulsory
– the Unfixated feedback system from Experiments 1–3
was always engaged such that observers had to fixate on
an area in order to reduce the opacity of what was
effectively a translucent mask in front of the search
stimulus. As expected, this version of feedback led to a
large increase in RT (F(1,15) = 54.95, P < 0.001) but, as
previously outlined, no benefit on accuracy (F(1,15) =
0.15, P = 0.7). In sum, over the course of Experiments

Table 1 Experiment overview

Experiment Number of observers Target prevalence Images used Feedback type Trials per block

1 15 25% Real scenes Unfixated, visited 48

2 14 25% 1/f noise Unfixated, visited 48

3 19 50% Real scenes Unfixated, visited 48

4 16 25% Real scenes Fade 48

5 23 25% Real scenes Visited reminder 60

6 22 50% Real scenes Visited reminder 60

Table 2 Behavioral performance and associated statistics
Experiment Hit rate (HR) False Alarm (FA) rate Accuracy (HR-FA) F value P value Bayes factor

evidence for H0Unfixated
feedback

No
feedback

Visited
feedback

Unfixated
feedback

No
feedback

Visited
feedback

Unfixated
feedback

No
feedback

Visited
feedback

1 0.53 0.55 0.49 0.08 0.09 0.08 0.45 0.46 0.42 0.39 0.68 5.38

2 0.91 0.90 0.90 0.90 0.10 0.10 0.90 0.88 0.88 0.37 0.70 4.62

3 0.78 0.77 0.76 0.03 0.04 0.03 0.76 0.73 0.73 0.42 0.66 5.38

4 n/a 0.58 0.56 n/a 0.05 0.05 n/a 0.51 0.52 0.15 0.70 5.07

5 0.71 0.80 n/a 0.05 0.02 n/a 0.79 0.66 n/a 10.21 0.004* 0.11

6 0.87 0.86 n/a 0.03 0.02 n/a 0.84 0.85 n/a 0.04 0.84 6.12

*s indicate statisitcally signficant p-values
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1–4, we did not observe any evidence that online
feedback led to more efficient search by reducing the
amount of time wasted evaluating previously evalu-
ated regions (Fig. 2). This is consistent with previous
work by Dickinson & Zelinsky (2005), who mostly fo-
cused on distractor refixations to reach essentially the
same conclusion. We did not analyze RT in Experi-
ments 5 and 6 because the feedback system in both
experiments naturally led to a second viewing epoch,
thereby rendering comparisons of overall time spent
less interesting (Fig. 3).

Discussion
There is a significant societal cost associated with missed
targets in fields as varied as radiology (Berlin, 1996), baggage
screening (Wolfe, Brunelli, Rubinstein, & Horowitz, 2013),
and military surveillance (Shanker & Richtel, 2011). Given
the increasing popularity and decreasing costs of eye-
tracking technology (Duchowski, 2017), there is great
potential for this relatively simple technology to help reduce
the rate of miss errors. Moreover, there is converging evi-
dence from the cognitive psychology literature that
observers have poor memory for where they have searched
(Horowitz & Wolfe, 1998; Võ et al., 2016), and many errors
are caused by simply never looking at the target (Kundel,
Nodine, & Carmody, 1978; Rich et al., 2008). It therefore
stands to reason that providing detailed information with re-
spect to where an observer has looked would lead to sub-
stantial benefits in terms of decreased miss rates, or
decreased time spent examining images thanks to limiting

the number of repeated fixations on areas that have already
been examined. Across six experiments, we found essentially
no evidence for either of these predictions.
The lone exception was Experiment 5, where feed-

back about what areas of the image had not been
searched was provided to the observer after they
had made an initial response. Although there was a
significant benefit in this experiment, there was no
hint of a benefit in Experiment 6, which was an
exact replication except that the target prevalence
was increased from 25% (Experiment 5) to 50%
(Experiment 6). It is notable that Peltier and Becker
(in press) found no benefit in three of the four
studies where they also examined the utility of eye-
movement feedback during low prevalence visual
search. Along similar lines, Experiments 1, 3, and 4 were
also conducted at 25% prevalence and there was no bene-
fit of feedback in any of those experiments. Finally, if the
feedback provided in Experiment 5 was helpful, we ex-
pected the benefit to be due to the feedback alerting the
observer they had not fixated on the area that contained
the target. Our data indicate that this was not the case on
most trials. In fact, the target location was highlighted by
our feedback system on only approximately 8% of all
target-present trials. Performance on those few trials
where the target position was highlighted as having not
been properly evaluated was no better than on trials where
the target was not highlighted. We therefore conclude that
the most likely interpretation of this experiment is that it
is a false positive.

Fig. 2 Results for Experiments 1–4. Error bars represent standard error of the mean. Note the varying scales on the response time graphs

Table 3 Response time statistics

Experiment Target presence Feedback type Interaction

1 F(1,14) = 35.7, P < 0.001 F(2,28) = 1.54, P = 0.23 F(2,28) = 0.69, P = 0.51

2 F(1,18) = 79.7, P < 0.001 F(2,36) = 0.7, P = 0.499 F(1,15) = 55.0, P < 0.001

3 F(1,12) = 45.2, P < 0.001 F(2,24) = 2.39, P = 0.11 F(2,24) = 3.43, P = 0.05

4 F(1,15) = 214.4, P < 0.001 F(1,15) = 55.0, P < 0.001 n/a
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Our data suggest that, across a variety of simple
manipulations, eye-tracking feedback does not appear to
be useful during a difficult target detection task. There
are a number of reasons why our attempts to provide
evidence that eye-tracking feedback is useful were not
successful. Many of these potential reasons are due to
design decisions we made in an attempt to demonstrate
the utility of this approach on a paradigm that could
reasonably be expected to scale up to more realistic sce-
narios, such as searching a chest radiograph for signs of
cancer, or surveying a pathway in search of evidence of
improvised explosive devices.
Five of the six experiments were conducted with real-

world outdoor scenes. This naturally meant that some
areas were more salient than others, and targets were
easier to detect in some regions than others. Thus, the
feedback we provided had to compete with the natural
inclination to search certain regions based on salience
and other considerations. Experiment 2 was aimed at
addressing this concern by employing a variant of 1/f
noise with none of the additional information that
accompanies real world scenes, i.e. scene structure. The
results of Experiment 2 show that, even when the search
array was simple 1/f noise with no semantic information,
our feedback scheme was not effective.
Search slope, or efficiency, is a common method to

evaluate visual search performance. Search efficiency is
typically defined as the slope between the number of dis-
tractors in an array and RT. In the current work, we
were not able to evaluate this metric because we used
real scenes and 1/f noise scenes that did not contain a
discrete number of distractors (though, of course, real
scenes contain a great deal of less clearly defined distrac-
tors (Russell, Torralba, Murphy, & Freeman, 2008)). We
were not interested in the efficiency of search but the
overall accuracy and speed with which the search was
conducted. Memory of which distractors have already
been examined could provide an avenue for eye-tracking
feedback to accelerate search performance. Previous work
tested this idea in a series of experiments where fixated

distractors were deleted from the scene (Dickinson &
Zelinsky, 2005). The authors reasoned that, if search is
memoryless, then eliminating fixated distractors should
reduce unnecessary re-fixations and improve search
efficiency. However, similar to the current study, they
found that their intervention yielded no benefit relative to
control conditions with no eye-tracking feedback.

Future directions
When targets were present in the current work, the
location was random within the scene and feedback was
blind to the location of the target. One would certainly
expect that, if the feedback system was aware of the tar-
get location and provided feedback with respect to
whether or not that area had been fixated, it would lead
to better outcomes. However, there does not appear to
be any simple way to scale such a system up to a real
world situation where target locations are unknown.
Recent advances in computer vision algorithms present
one potential pathway for providing observers with
‘smart’ feedback that parses scenes into discrete areas
and modifies feedback relative to the likelihood that a
specific threat may occur in that area. For instance, an
improvised explosive device is unlikely to be placed in a
pond. Perhaps a system that combined well-researched
priors about likely target locations with ongoing eye-
movements would yield a system that improved overall
search efficiency.
A limitation of the current approach is that it assumes

that, if an observer examines a target, they will detect it.
Clearly, this is not always the case. Observers often fix-
ate on the unexpected stimulus, which is missed in the
inattentional blindness literature (e.g. Drew et al., 2013).
Fixated targets are often not detected during low preva-
lence visual search tasks (Hout, Walenchok, Goldinger,
& Wolfe, 2015). Foundational work in the medical image
perception literature by Kundel et al. (1978) categorized
target miss errors as caused by “search, recognition or
decision” errors. The current approach was designed to
reduce ‘search’ errors, which occur when the observer

Fig. 3 Results for Experiments 5 and 6. Error bars represent standard error of the mean
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never fixates the target. However, this approach would
not be helpful for recognition or decision errors, where
the target is fixated but not identified. The ratio of
search errors to recognition and decision errors varies
across search task. In the current work, we adopted a
search task with complex, real-world stimuli and simple
targets that did not vary much across trials. It is possible
that our eye-movement feedback protocols would have
been more useful in a search task specifically chosen to
elicit a high proportion of ‘search’ errors.
Although eye-movement feedback does not appear

capable of improving search in the current task through
highlighting what areas have or have not been searched,
it may hold promise in other implementations. For
instance, one of the most reliable factors to differentiate
good airport baggage screeners from poor ones is RT
variability (Biggs, Cain, Clark, Darling, & Mitroff, 2013).
This may be why systematic search is generally less vul-
nerable to miss errors (Mitroff, Biggs, & Cain, 2015).
Eye-movement feedback could be relatively simply
adapted to provide information about the systematicity
of search. Along similar lines, recent work has suggested
that using eye-movement data to inform the searcher
when to quit may lead to improvements in search effi-
ciency (e.g., Deza, Peters, Taylor, Surana, & Eckstein,
2017). Future research will be necessary to determine if
either of these approaches leads to a reliable and
generalizable benefit to search performance.

Conclusion
While our data convincingly demonstrate that simple
eye-movement feedback was not helpful in aiding the
detection of targets in a difficult visual search task, it
would be premature to conclude that eye-tracking offers
no promise for improving performance in these sorts of
tasks. A wealth of prior evidence from the visual search
literature suggests that information about where one has
looked should be valuable to the observer. The central
challenge of this problem may lie in uncovering the opti-
mal methods for conveying this information to the user.
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