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Can people identify original and
manipulated photos of real-world scenes?
Sophie J. Nightingale*, Kimberley A. Wade and Derrick G. Watson

Abstract

Advances in digital technology mean that the creation of visually compelling photographic fakes is growing at an
incredible speed. The prevalence of manipulated photos in our everyday lives invites an important, yet largely
unanswered, question: Can people detect photo forgeries? Previous research using simple computer-generated
stimuli suggests people are poor at detecting geometrical inconsistencies within a scene. We do not know, however,
whether such limitations also apply to real-world scenes that contain common properties that the human visual system
is attuned to processing. In two experiments we asked people to detect and locate manipulations within images
of real-world scenes. Subjects demonstrated a limited ability to detect original and manipulated images. Furthermore,
across both experiments, even when subjects correctly detected manipulated images, they were often unable to locate
the manipulation. People’s ability to detect manipulated images was positively correlated with the extent of disruption
to the underlying structure of the pixels in the photo. We also explored whether manipulation type and individual
differences were associated with people’s ability to identify manipulations. Taken together, our findings show, for the
first time, that people have poor ability to identify whether a real-world image is original or has been manipulated. The
results have implications for professionals working with digital images in legal, media, and other domains.
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Significance
In the digital age, the availability of powerful, low-cost
editing software means that the creation of visually com-
pelling photographic fakes is growing at an incredible
speed—we live in a world where nearly anyone can cre-
ate and share a fake image. The rise of photo manipula-
tion has consequences across almost all domains, from
law enforcement and national security through to scien-
tific publishing, politics, media, and advertising. Cur-
rently, however, scientists know very little about people’s
ability to distinguish between original and fake ima-
ges—the question of whether people can identify when
images have been manipulated and what has been ma-
nipulated in the images of real-world scenes remains un-
answered. The importance of this question becomes
evident when considering that, more often than not, in
today’s society we still rely on people to make judgments
about image authenticity. This reliance applies to almost
all digital images, from those that are used as evidence
in the courtroom to those that we see every day in

newspapers and magazines. Therefore, it is critical to
better understand people’s ability to accurately identify
fake from original images. This understanding will help
to inform the development of effective guidelines and
practices to address two key issues: how to better protect
people from being fooled by fake images, and how to re-
store faith in original images.

Background
In 2015, one of the world’s most prestigious photojournal-
ism events—The World Press Photo Contest—was
shrouded in controversy following the disqualification of 22
entrants, including an overall prize winner, for manipulating
their photo entries. News of the disqualifications led to a
heated public debate about the role of photo manipulation
in photojournalism. World Press Photo responded by issu-
ing a new code of ethics for the forthcoming contest that
stipulated entrants “must ensure their pictures provide an
accurate and fair representation of the scene they witnessed
so the audience is not misled” (World Press Photo). They
also introduced new safeguards for detecting manipulated
images, including a computerized photo-verification test for
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entries reaching the penultimate round of the competition.
The need for such a verification process highlights the diffi-
culties competition organizers face in trying to authenticate
images. If photography experts can’t spot manipulated im-
ages, what hope is there for amateur photographers or
other consumers of photographic images? This is the ques-
tion we aimed to answer. That is, to what extent can lay
people distinguish authentic photos from fakes?
Digital image and manipulation technology has surged

in the previous decades. People are taking more photos
than ever before. Estimates suggested that one trillion
photos would be taken in 2015 alone (Worthington,
2014), and that, on average, more than 350 million pho-
tos per day are uploaded to Facebook—that is over 14
million photos per hour or 4000 photos per second
(Smith, 2013). Coinciding with this increased popularity
of photos is the increasing frequency with which they
are being manipulated. Although it is difficult to estimate
the prevalence of photo manipulation, a recent global sur-
vey of photojournalists found that 76% regard photo ma-
nipulation as a serious problem, 51% claim to always or
often enhance in-camera or RAW (i.e., unprocessed) files,
and 25% admit that they, at least sometimes, alter the con-
tent of photos (Hadland, Campbell, & Lambert, 2015). To-
gether these findings suggest that we are regularly
exposed to a mix of real and fake images.
The prevalence and popularity of manipulated images

raises two important questions. First, to what extent do
manipulated images alter our thinking about the past? We
know that images can have a powerful influence on our
memories, beliefs, and behavior (e.g., Newman, Garry,
Bernstein, Kantner, & Lindsay, 2012; Wade, Garry, Read,
& Lindsay, 2002; Wade, Green, & Nash, 2010). Merely
viewing a doctored photo and attempting to recall the
event it depicts can lead people to remember wholly false
experiences, such as taking a childhood hot-air balloon
ride or meeting the Warner Brothers character Bugs
Bunny at Disneyland (Braun, Ellis, & Loftus, 2002; Sacchi,
Agnoli, & Loftus, 2007; Strange, Sutherland, & Garry,
2006). Thus, if people cannot differentiate between real
and fake details in photos, manipulations could frequently
alter what we believe and remember.
Second, to what extent should photos be admissible as

evidence in court? Laws governing the use of photo-
graphic evidence in legal cases, such as the Federal Rules
of Evidence (1975), have not kept up with digital change
(Parry, 2009). Photos were once difficult to manipulate;
the process was complex, laborious, and required expert-
ise. Yet in the digital age, even amateurs can use sophisti-
cated image-editing software to create detailed and
compelling fake images. The Federal Rules of Evidence
state that the content of a photo can be proven if a witness
confirms it is fair and accurate. Put another way, the per-
son who took the photo, any person who subsequently

handles it, or any person present when the photo was
taken, is not required to testify about the authenticity of
the photo. If people cannot distinguish between original
and fake photos, then litigants might use manipulated im-
ages to intentionally deceive the court, or even testify
about images, unaware they have been changed.
Unfortunately, there is no simple solution to prevent

people from being fooled by manipulated photos in
everyday life or in the criminal arena (Parry, 2009). But
the newly emerging field of image forensics is making it
possible to better protect against photo fraud (e.g., Farid,
2006). Image forensics uses digital technology to deter-
mine image authenticity, and is based on the premise
that digital manipulation alters the values of the pixels
that make up an image. Put simply, the act of manipulat-
ing a photo leaves behind a trace, even if only subtle and
not visible to the naked eye (Farid, 2009). Given that dif-
ferent types of manipulations—for instance, cloning,
retouching, splicing—affect the underlying pixels in
unique and systematic ways, image forensic experts can
develop computer methods to reveal image forgeries.
Such technological developments are being implemented
in several domains, including law, photojournalism, and
scientific publishing (Oosterhoff, 2015). The vast major-
ity of image authenticity judgments, however, are still
made by eye, and to our knowledge only one published
study has explored the extent to which people can detect
inconsistencies in images.
Farid and Bravo (2010) investigated how well people

can make use of three cues— shadows, reflections, and
perspective distortion—that are often indicative of photo
tampering. The researchers created a series of
computer-generated scenes consisting of basic geomet-
rical shapes. Some scenes, for instance, were consistent
with a single light source whereas others were inconsist-
ent with a single light source. When the inconsistencies
were obvious, that is, when shadows ran in opposite di-
rections, observers were able to identify tampering with
nearly 100% accuracy. Yet when the inconsistencies were
subtle, for instance, where the shadows were a combin-
ation of results from two different light positions on the
same side of the room, observers performed only slightly
better than chance. These preliminary findings, based on
computer-generated scenes of geometric objects, suggest
that the human visual system is poor at identifying in-
consistencies in such images.
In the current study we examined whether people are

similarly poor at detecting inconsistencies within images
of real-world scenes. On the one hand, we might expect
people to perform even worse if trying to detect manipu-
lations in real-world photos. Research shows that real-
world photos typically contain many multi-element ob-
jects that can obscure distortions (Bex, 2010; Hulleman
& Olivers, 2015). For example, people with the visual
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impairment metamorphopsia often do not notice any
problems with their vision in their everyday experiences,
yet the impairment is quite apparent when they view
simple stimuli, such as a grid of evenly spaced horizontal
and vertical lines (Amsler, 1953; Bouwens & Meurs,
2003). We also know that people find it more difficult to
detect certain types of distortions, such as changes to
image contrast, in complex real-world scenes than in
more simplistic stimuli (Bex, 2010; Bex, Solomon, &
Dakin, 2009). In sum, if people find it particularly diffi-
cult to detect manipulations in complex real-world
scenes, then we might expect our subjects to perform
worse than Farid and Bravo’s (2010) subjects.
On the other hand, there is good reason to predict

that people might do well at detecting manipulations in
real-world scenes. Visual cognition research suggests
that people might detect image manipulations using
their knowledge of the typical appearance of real-world
scenes. Real-world scenes share common properties,
such as the way the luminance values of the pixels are
organized and structured (Barlow, 1961; Gardner-
Medwin & Barlow, 2001; Olshausen & Field, 2000). Over
time, the human visual system has become attuned to
such statistical regularities and has expectations about
how scenes should look. When an image is manipulated,
the structure of the image properties change, which can
create a mismatch between what people see and what
they expect to see (Craik, 1943; Friston, 2005; Rao &
Ballard, 1999; Tolman, 1948). Thus, based on this real-
world scene statistics account, we might predict that
people should be able to use this “mismatch” as a cue to
detecting a manipulation. If so, our subjects should per-
form better than chance at detecting manipulations in
real-world scenes.
Although there is a lack of research directly investigat-

ing the applied question of people’s ability to detect
photo forgeries, people’s ability to detect change in a
scene is well-studied in visual cognition. Notably, change
blindness is the striking finding that, in some situations,
people are surprisingly slow, or entirely unable, to detect
changes made to, or find differences between, two scenes
(e.g., Pashler, 1988; Simons, 1996; Simons & Levin,
1997). In some of the early studies, researchers demon-
strated observers’ inability to detect changes made to a
scene during an eye movement (saccade) using very sim-
ple stimuli (e.g., Wallach & Lewis, 1966), and later, in
complex real-world scenes (e.g., Grimes, 1996). Re-
searchers have also shown that change blindness occurs
even when the eyes are fixated on the scene: The flicker
paradigm, for instance, simulates the effects of a saccade or
eye blink by inserting a blank screen between the continu-
ous and sequential presentation of an original and changed
image (Rensink, O’Regan, & Clark, 1997). It often requires
a large number of alternations between the two images

before the change can be identified. Furthermore, change
blindness persists when the original and changed images
are shown side by side (Scott-Brown, Baker, & Orbach,
2000), when change is masked by a camera cut in motion
pictures (Levin & Simons, 1997), and even when change
occurs in real-world situations (Simons & Levin, 1998).
Such striking failures of perception suggest that people

do not automatically form a complete and detailed visual
representation of a scene in memory. Therefore, to de-
tect change, it might be necessary to draw effortful, fo-
cused attention to the changed aspect (Simons & Levin,
1998). So which aspects of a scene are most likely to
gain focused attention? One suggestion is that attention
is guided by salience; the more salient aspects of a scene
attract attention and are represented more precisely than
less salient aspects. In support of this idea, research has
shown that changes to more important objects are more
readily detected than changes made to less important
objects (Rensink et al., 1997). Other findings, however,
indicate that observers sometimes miss even large
changes to central aspects of a scene (Simons & Levin,
1998). Therefore, the question of what determines scene
saliency continues to be explored. Specifically, researchers
disagree about whether the low-level visual salience of ob-
jects in a scene, such as brightness (e.g., Lansdale, Under-
wood, & Davies, 2010; Pringle, Irwin, Kramer, & Atchley,
2001; Spotorno & Faure, 2011) or the high-level semantic
meaning of the scene (Stirk & Underwood, 2007) has the
most influence on attentional allocation.
What other factors affect people’s susceptibility to

change blindness? One robust finding in the signal de-
tection literature is that the ability to make accurate per-
ceptual decisions is related to the strength of the signal
and the amount of noise (Green & Swets, 1966). Signal
detection theory has been applied to change detection.
In one study, observers judged whether two sequentially
presented arrays of colored dots remained identical or if
there was a change (Wilken & Ma, 2004). Crucially, the
researchers manipulated the strength of the signal in the
change trials by varying the number of colored dots in
the display that changed, while noise (total set size)
remained constant. Performance improved as a function
of the number of dots in the display that changed col-
or—put simply, greater signal resulted in greater change
detection.
Given the lack of research investigating people’s ability

to detect photo forgeries, change blindness offers a
highly relevant area of research. A key difference be-
tween the change blindness research and our current ex-
periments, however, is that our change detection task
does not involve a comparison of two images; therefore,
representing the scene in memory is not a factor in our
research. That is, subjects do not compare the original
and manipulated versions of an image. Instead, they
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make their judgment based on viewing only a single
image. This image is either the original, unaltered image
or an image that has been manipulated in some way.
In the current study, we explored people’s ability to

identify common types of image manipulations that are
frequently applied to real-world photos. We distin-
guished between physically implausible versus plausible
manipulations. For example, a physically implausible
image might depict an outdoor scene lit only by the sun
with a person’s shadow running one way and a car’s
shadow running the other way. Such shadows imply the
impossible: two suns. Alternatively, when an unfamiliar
face is retouched in an image it is quite plausible; eliminat-
ing spots and wrinkles or whitening teeth do not contra-
dict physical constraints in the world that govern how
faces ought to look. In our study, geometrical and shadow
manipulations made up our implausible manipulation cat-
egory, while airbrushing and addition or subtraction ma-
nipulations made up our plausible manipulation category.
Our fifth manipulation type, super-additive, presented all
four manipulation types in a single image and thus in-
cluded both categories of manipulation.
We had a number of predictions about people’s ability

to detect and locate manipulations in real-world photos.
We expected the type of manipulation—implausible ver-
sus plausible—to affect people’s ability to detect and locate
manipulations. In particular, people should correctly iden-
tify more of the physically implausible manipulations than
the physically plausible manipulations given the availabil-
ity of evidence within the photo. We also expected people
to be better at correctly detecting and locating manipula-
tions that caused more change to the pixels in the photo
than manipulations that caused less change.

Experiment 1
Methods
Subjects and design
A total of 707 (M = 25.8 years, SD = 8.8, range = 14–82;
460 male, 226 female, 21 declined to respond) subjects
completed the task online. A further 17 subjects were
excluded from the analyses because they had missing re-
sponse time data for at least one response on the detec-
tion or location task. There were no geographical
restrictions and subjects did not receive payment for
taking part, but they did receive feedback on their per-
formance at the end of the task. Subject recruitment
stopped when we reached at least 100 responses per
photo. We used a within-subjects design in which each
person viewed a series of ten photos, half of which had
one of five manipulation types applied, and half of which
were original, non-manipulated photos. We measured
people’s accuracy in determining whether a photo had
been manipulated or not and their ability to locate
manipulations.

Stimuli
We obtained ten colored images (JPEG format), 1600 ×
1200 pixels, that depicted people in real-world scenes
from Google Image search (permitted for non-commercial
re-use with modification). The first author (SN) used
GNU Image Manipulation Program (GIMP) to apply five
different, commonly used manipulation techniques: (a)
airbrushing, (b) addition or subtraction, (c) geometrical in-
consistency, (d) shadow inconsistency, and (e) super-
additive (manipulations a to d included within a single
image). For the airbrushing technique, we changed the
person’s appearance by whitening their teeth, removing
spots, wrinkles, or sweat, or brightening their eye color.
For the addition or subtraction technique, we added or re-
moved objects, or parts of objects. For example, we re-
moved links between tower columns on a suspension
bridge and inserted a boat into a river scene. For geomet-
rical inconsistencies, we created physically implausible
changes, such as distorting angles of buildings or sheer-
ing trees in different directions to others to indicate in-
consistent wind direction. For shadow inconsistencies,
we removed or changed the direction of a shadow to
make it incompatible with the remaining shadows in
the scene. For instance, flipping a person’s face around
the vertical axis causes the shadow to appear on the
wrong side compared with the rest of the body and
scene. In the super-additive technique we presented all
four previously described manipulation types in one
photo. Figure 1 shows examples of the five manipula-
tion types, and higher resolution versions of these im-
ages, as well as other stimuli examples, appear in
Additional file 1.
In total, we had ten photos of different real-world

scenes. The non-manipulated version of each of these
ten photos was used to create our original photo set.
To generate the manipulated photos, we applied each
of the five manipulation types to six of the ten photos,
creating six versions of each manipulation for a total of
30 manipulated photos. This gave us an overall set of
40 photos. Subjects saw each of the five manipulation
types and five original images but always on a different
photo.
Image-based saliency cues can determine where sub-

jects direct their attention; thus, we checked whether
our manipulations had changed the salience of the ma-
nipulated area within the image. To examine this, we
ran the images through two independent saliency
models: the classic Itti-Koch model (Itti & Koch, 2000;
Itti, Koch, & Niebur, 1998) and the Graph-Based Visual
Saliency (GBVS) model (Harel, Koch, & Perona, 2006).
To summarize, we found that our manipulations did
not inadvertently change the salience of the manipu-
lated regions. See Additional file 2 for details of these
analyses.
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Procedure
Subjects answered questions about their demographics,
attitudes towards image manipulation, and experiences
of taking and manipulating photos. Subjects were then
shown a practice photo and instructed to adjust their
browser zoom level so that the full image was visible.
Next, subjects were presented with ten photos in a ran-
dom order and they had an unlimited amount of time to
view and respond to each photo. We first measured sub-
jects’ ability to detect whether each photo had been ma-
nipulated by asking “Do you think this photograph has
been digitally altered?” Subjects were given three re-
sponse options: (a) “Yes, and I can see exactly where the
digital alteration has been made”; (b) “Yes, but I cannot
see specifically what has been digitally altered”; or (c)
“No.” For the manipulated photos, we considered either
of the “yes” responses as correct; for original photos we
considered “no” as correct. Following a “yes” response,
we immediately measured subjects’ ability to locate the
manipulation by presenting the same photo again with a

3 × 3 grid overlaid1 (see Fig. 2 for an example). Subjects
were asked to: “Please select the box that you believe
contains the digitally altered area of the photograph
(if you believe that more than one region contains
digital alteration, please select the one you feel con-
tains the majority of the change).” On average, ma-
nipulations spanned two regions in the grid. For the
analyses we considered a response to be correct if the
subject clicked on a region that contained any of the
manipulated area or a nearby area that could be used
as evidence that a manipulation had taken place—a
relatively liberal criterion. Subjects received feedback
on their performance at the end of the study.

Results and discussion
An analysis of the response time data suggested that
subjects were engaged with the task and spent a reason-
able amount of time determining which photos were au-
thentic. In the detection task, the mean response time
per photo was 43.8 s (SD = 73.3 s) and the median

Fig. 1 Samples of manipulated photos. a Original photo; b airbrushing—removal of sweat on the nose, cheeks, and chin, and removal of wrinkles around
the eyes; c addition or subtraction—two links between the columns of the tower of the suspension bridge removed; d geometrical inconsistency—top of
the bridge is sheered at an angle inconsistent with the rest of the bridge; e shadow inconsistency—face is flipped around the vertical axis so that the light
is on the wrong side of the face compared with lighting in the rest of the scene; f super-additive—combination of all previously described manipulations.
Original photo credit: Vin Cox, CC BY-SA 3.0 license. Photos b–f are derivatives of the original and licensed under CC BY-SA 4.0
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response time 30.4 s (interquartile range 21.4, 47.7 s). In
the location task, the mean response time was 10.5 s
(SD = 5.7 s) and the median response time 9.1 s (inter-
quartile range 6.5, 13.1 s). Following Cumming’s (2012)
recommendations, we present our findings in line with
the estimation approach by calculating a precise estimate
of the actual size of the effects.

Overall accuracy on the detection task and the location task
We now turn to our primary research question: To what
extent can people detect and locate manipulations of
real-world photos? For the detection task, we collapsed
across the two “yes” response options such that if sub-
jects responded either “Yes, and I can see exactly where
the digital alteration has been made” or “Yes, but I can-
not see specifically what has been digitally altered”, then
we considered this to be a “yes” response. Thus, chance
performance was 50%. Overall performance on the de-
tection task was better than chance; a mean 66% of the
photos were correctly classified as original or manipu-
lated, 95% confidence interval (CI)2 [65%, 67%]. Subjects’
ability to distinguish between original (72% correct) and
manipulated (60% correct) photos of real-world scenes
was reliably greater than zero, discrimination (d') = 0.80,
95% CI [0.74, 0.85]. Moreover, subjects showed a bias to-
wards saying that photos were real; response bias (c) =
0.16, 95% CI [0.12, 0.19]. Although subjects’ ability to
detect manipulated images was above chance, it was still
far from perfect. Furthermore, even when subjects cor-
rectly indicated that a photo had been manipulated, they
could not necessarily locate the manipulation. Collapsing
over all manipulation types, a mean 45% of the manipu-
lations were accurately located, 95% CI [43%, 46%]. To
determine chance performance in the location task, we
need to take into account that subjects were asked to se-
lect one of nine regions of the image. Therefore, subjects

had less chance of being correct by guessing in the loca-
tion task than the detection task. On average, the manip-
ulations were contained within two of the nine regions.
But because the chance of being correct by guessing var-
ied for each image and each manipulation type, we ran a
Monte Carlo simulation to determine the chance rate of
selecting the correct region. Table 1 shows the results
from one million simulated responses. Overall, chance
performance was 24%; therefore, collectively, subjects
performed better than chance on the location task.
Overall, the results show that people have some (above
chance) ability to detect and locate manipulations, al-
though performance is far from perfect.

Ability to detect and locate by manipulation type
We predicted that people’s ability to detect and locate
manipulations might vary according to the manipulation
type. Figure 3 shows subjects’ accuracy on both the de-
tection and the location task by manipulation type. In
line with our prediction, subjects were better at detect-
ing manipulations that included physically implausible
changes (geometrical inconsistencies, shadow inconsist-
encies, and super-additive manipulations) than images
that included physically plausible changes (airbrushing
alterations and addition or subtraction of objects).
It was not the case, however, that subjects were neces-

sarily better at locating the manipulation within the
photo when the change was physically implausible. Fig-
ure 4 shows the proportion of manipulated photo trials
in which subjects correctly detected a manipulation and
also went on to correctly locate that manipulation, by
manipulation type. Across both physically implausible
and physically plausible manipulation types, subjects
often correctly indicated that photos were manipulated
but failed to then accurately locate the manipulation.

Fig. 2 Example of a photo with the location grid overlaid. Photo
credit: Vin Cox, CC BY-SA 3.0 license

Table 1 Mean number of regions (out of a possible nine)
containing manipulation and results of Monte Carlo simulation
to determine chance performance in location task by manipulation
type and overall

Manipulation
type

Number of regions Percentage correct by chance

M M 95% CI

Airbrushing 1.83 20 [20, 21]

Add/sub 1.33 17 [17, 17]

Geometry 1.5 19 [18, 19]

Shadow 1.67 15 [15, 15]

Super-additive 4.33 48 [48, 48]

Overall 2.13 24 [24, 24]

CI confidence interval. For each manipulation type, we show the mean number of
regions that contained the manipulation across all six images. The manipulation
type “Overall” is the mean number of manipulated regions across all six images
and all five manipulation types. To determine chance performance in the location
task, we ran a Monte Carlo simulation of one million responses based on the
number of regions manipulated for each image and manipulation type
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Furthermore, although the physically implausible geo-
metrical inconsistencies were more often correctly lo-
cated, the shadow inconsistencies were only located
equally as often as the physically plausible manipulation
types—airbrushing and addition or subtraction. These
findings suggest that people may find it easier to detect
physically implausible, rather than plausible, manipula-
tions, but this is not the case when it comes to locating
the manipulation.

Image metrics and accuracy
To understand more about people’s ability to identify
image manipulations, we examined how the amount of
change in a photo affects people’s accuracy in the detec-
tion and location tasks. When an image is digitally

altered, the structure of the underlying elements—the
pixels—are changed. This change can be quantified in
numerous ways but we chose to use Delta-E76 be-
cause it is a measure based on both color and lumi-
nance (Robertson, 1977). To calculate Delta-E, we
first converted the images in Matlab® to L*a*b* color
space because it has a dimension for lightness as well
as color. Next we calculated the difference between
corresponding pixels in the original and manipulated
versions of each photo. Finally, these differences were
averaged to give a single Delta-E score for each ma-
nipulated photo. A higher Delta-E value indicates a
greater amount of difference between the original and
the manipulated photo.3 We calculated Delta-E for
each of the 30 manipulated photos.

Fig. 3 Mean proportion of correct “detect” and “locate” decisions by type of photo manipulation. The dotted line represents chance performance for
detection. The grey dotted lines on the locate bars represent chance performance by manipulation type in the location task. Error bars represent 95% CIs

Fig. 4 Mean proportion of correct “locate” decisions when subjects correctly detected that the photo was manipulated (i.e., correctly said “Yes”
on the detection task). The grey dotted lines on the bars represent chance performance for each manipulation type. Error bars represent 95% CIs

Nightingale et al. Cognitive Research: Principles and Implications  (2017) 2:30 Page 7 of 21



Figure 5 shows the log Delta-E values on the x-axis,
where larger values indicate more change in the color
and luminance values of pixels in the manipulated pho-
tos compared with their original counterpart. The pro-
portions of correct detection (Fig. 5a) and location
(Fig. 5b) responses for each of the manipulated photos
are presented on the y-axis. We found a positive rela-
tionship between the Delta-E measure and the propor-
tion of photos that subjects correctly detected as
manipulated, albeit not reaching significance: r(28) =
0.34, p = 0.07.4 Furthermore, the Delta-E measure was
positively correlated with the proportion of manipula-
tions that were correctly located, r(28) = 0.41, p = 0.03.
As predicted, these data suggest that people might be

sensitive to the low level properties of real-world scenes
when making judgments about the authenticity of pho-
tos. This finding is especially remarkable given that our
subjects never saw the same scene more than once and
so never saw the original version of a manipulated
image. This finding fits with the proposition that dis-
rupting the underlying pixel structure might exacerbate
the difference between the manipulated photos and peo-
ple’s expectations of how a scene should look. Presum-
ably, these disruptions make it easier for people to
accurately classify manipulated photos as being manipu-
lated. We can also interpret these findings based on a
signal detection account—adding greater signal (in our
experiment, more change to an image, as measured by

Fig. 5 Mean proportion of correctly detected (a) and located (b) image manipulations by extent of pixel distortion as measured by Delta-E. The
graphs show individual data points for each of the 30 manipulated images

Nightingale et al. Cognitive Research: Principles and Implications  (2017) 2:30 Page 8 of 21



Delta-E) results in greater detection of that signal (Green
& Swets, 1966; Wilken & Ma, 2004).
Next, we tested whether there was a relationship be-

tween the mean amount of change and the mean pro-
portion of correct detection (Fig. 6a) and location
(Fig. 6b) responses by the category of manipulation type.
As Fig. 6 shows, there was a numerical, but non-
significant, trend for a positive relationship between
amount of change and the proportion of photos that
subjects correctly detected as manipulated: r(3) = 0.68, p
= 0.21. There was also a numerical trend for a positive
relationship between amount of change and the propor-
tion of manipulations that were correctly located: r(3) =
0.69, p = 0.19.

Individual factors in detecting and locating manipulations
To determine whether individual factors play a role in
detecting and locating manipulations, we gathered sub-
jects’ demographic data, attitudes towards image ma-
nipulation, and experiences of taking and manipulating

photos. We also recorded subjects’ response times on
the detection and location tasks.
To determine how each factor influenced subjects’

performance on the manipulated image trials, we con-
ducted two generalized estimating equation (GEE) analy-
ses—one for accuracy on the detection task and one for
accuracy on the location task. Specifically, we conducted
a repeated measures logistic regression with GEE be-
cause our dependent variables were binary with both
random and fixed effects (Liang & Zeger, 1986). For the
detection task, we ran two additional repeated mea-
sures linear regression GEE models to explore the effect
of the predictor variables on signal detection estimates
d' and c. The results of the GEE analyses are shown in
Table 2. In the detection task, faster responses were
more likely to be associated with accurate responses
than slower responses. There was also a small effect of
people’s general belief about the prevalence of manipu-
lated photos in their everyday lives on accuracy in the
detection task. Those who believe a greater percentage

Fig. 6 Mean proportion of correctly detected (a) and located (b) image manipulations by extent of pixel distortion as measured by Delta-E. The
graphs show the mean values for each of the five categories of manipulation type
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of photos are digitally manipulated were more likely to
correctly identify manipulated photos than those who
believe a lower percentage of photos are digitally ma-
nipulated. Further, the results of the signal detection
analysis suggest that this results from a difference in
ability to discriminate between original and manipu-
lated photos, rather than a shift in response bias—those
who believe a greater percentage of photos are digitally
manipulated accurately identified more of the manipu-
lated photos without an increased false alarm rate. Gen-
eral beliefs about the prevalence of photo manipulation
did not have an effect on people’s ability to locate the
manipulation. This pattern of results is somewhat sur-
prising. It seems intuitive to think that a general belief
that manipulated photos are prevalent simply makes
people more likely to report that a photo is manipulated
because they are generally skeptical about the veracity of
photos rather than because they are better at spotting
fakes. Although interesting, the small effect size and

counterintuitive nature of the finding indicate that it is im-
portant to replicate the result prior to drawing any strong
conclusions. The only variable that had an effect on accur-
acy in the location task was gender; males were slightly
more likely than females to correctly locate the manipula-
tion within the photo.
Together these findings show that individual factors

have relatively little impact on the ability to detect and lo-
cate manipulations. Although shorter response times were
associated with more correct detections of manipulated
photos, we did not manipulate response time so we can-
not know whether response time affects people’s ability to
discriminate between original and manipulated photos. In
fact, our response time findings might be explained by a
number of perceptual decision making models, for ex-
ample, the drift diffusion model (Ratcliff, 1978). However,
determining the precise mechanism that accounts for the
association between shorter response times and greater
accuracy is beyond the scope of the current paper.

Table 2 Results of the GEE binary logistic and linear regression models to determine variables that predict accuracy on the detect
and locate tasks

Predictor Detect Locate

B OR 95% CI p B OR 95% CI p

Response time

Accuracy 0.11 1.11 [1.08, 1.15] <0.001 - - -

d' −0.01 0.99 [0.98, 1.01] 0.31 - - -

c 0.01 1.01 [1.00, 1.02] 0.10 - - -

General beliefs about percentage of images manipulated = High (71–100%)

Accuracy 0.20 1.22 [1.06, 1.41] 0.01 0.11 1.11 [0.98, 1.26] 0.10

d' 0.16 1.17 [1.05, 1.30] 0.01 - - -

c −0.05 0.96 [0.90, 1.02] 0.16 - - -

Gender = Female

Accuracy 0.05 1.05 [0.90, 1.23] 0.50 −0.16 0.86 [0.75, 0.98] 0.03

d' −0.06 0.95 [0.84, 1.06] 0.35 - - -

c −0.05 0.95 [0.89, 1.02] 0.15 - - -

Interest in photography = Interested

Accuracy 0.06 1.07 [0.92, 1.24] 0.41 0.04 1.05 [0.92, 1.19] 0.51

d' −0.02 0.98 [0.88, 1.10] 0.73 - - -

c −0.05 0.96 [0.89, 1.03] 0.20 - - -

Frequency of taking photos = Daily/weekly

Accuracy −0.15 0.86 [0.73, 1.01] 0.07 −0.07 0.94 [0.81, 1.08] 0.35

d' −0.08 0.92 [0.81, 1.04] 0.18 - - -

c 0.01 1.01 [0.94, 1.09] 0.71 - - -

B and odds ratios (OR) estimate the degree of change in (a) accuracy on the task (based on the manipulated image trials), (b) d', or (c) c associated with one unit
change in the independent variable. An odds ratio of 1 indicates no effect of the independent variable on accuracy; values of 1.5, 2.5, and 4.0 are generally
considered to reflect small, medium, and large effect sizes, respectively (Rosenthal, 1996). The category order for factors was set to descending to make the
reference level 0. The reference groups are: General beliefs about percentage of images manipulated = Low (0–70%), Gender = Male, Interest in photography = Not
Interested, Frequency of taking photos = Monthly/yearly/never. For response time (RT) we divided the data into eight equal groups (level 1 represents the slowest
RTs (≥43.4 s) and level 8 the fastest RTs (≤8.4 s)). The 21 subjects who chose not to disclose their gender were excluded from these analyses leaving a total
sample of n = 686. Given that subjects only responded on the location task if they said “yes”, the photo had been manipulated, we did not have location response
time data for all of the trials and therefore were unable to consider response time on the location task. Because we did not have a fixed number of choices per
condition in the location task, we were unable to calculate the degree of change in d' or c associated with the predictor variables
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Experiment 1 indicates that people have some ability to
distinguish between original and manipulated real-world
photos. People’s ability to correctly identify manipulated
photos was better than chance, although not by much.
Our data also suggest that locating photo manipulations is
a difficult task, even when people correctly indicate that a
photo is manipulated. We should note, however, that our
study could have underestimated people’s ability to locate
manipulations in real-world photos. Recall that subjects
were only asked to locate manipulations on photos that
they thought were manipulated. It remains possible people
might be able to locate manipulations even if they do not
initially think that a photo has been manipulated. We
were unable to check this possibility in Experiment 1, so
we addressed this issue in Experiment 2 by asking subjects
to complete the location task for all photos, regardless of
their initial response in the detection task. If subjects did
not think that the photo had been manipulated, we asked
them to make a guess about which area of the image
might have been changed.
We also created a new set of photographic stimuli for

Experiment 2. Rather than sourcing photos online, the
first author captured a unique set of photos on a Nikon
D40 camera in RAW format, and prior to any digital
editing, converted the files to PNGs. There are two cru-
cial benefits to using original photos rather than down-
loading photos from the web. First, by using original
photos we could be certain that our images had not been
previously manipulated in any way. Second, when digital
images are saved, the data are compressed to reduce the
file size. JPEG compression is lossy in that some infor-
mation is discarded to reduce file size. This information
is not generally noticeable to the human eye (except at
very high compression rates when compression artifacts
can occur); however, the process of converting RAW
files to PNGs (a lossless format) prevented any loss of
data in either the original or manipulated images and,
again, ensured that our photos were not manipulated in
any way before we intentionally manipulated them.

Experiment 2
Methods
Subjects and design
A total of 659 (M = 25.5 years, SD = 8.2, range = 13–70;
362 male, 283 female, 14 declined to respond) subjects
completed the study online. A further 32 subjects were ex-
cluded from the analyses because they had missing re-
sponse time data for at least one response on the
detection or location task. As in Experiment 1, subjects
did not receive payment for taking part but were given
feedback on their performance at the end of the study.
We stopped collecting data once we reached 100
responses per photo. The design was similar to that of Ex-
periment 1.

Stimuli
We took our own photos in RAW format at a resolution
of 3008 × 2000 pixels and converted them to PNGs with
a resolution of 1600 × 1064 pixels prior to any digital
editing. We checked the photos to ensure there were no
spatial distortions caused by the lens, such as barrel or
pincushion distortion. The photo manipulation process
was the same as in Experiment 1. We applied the five
manipulation techniques to six different photos to create
a total of 30 manipulated photos. We used the non-
manipulated version of these six photos and another
four non-manipulated photos to give a total of ten ori-
ginal photos. Thus, the total number of photos was 40.
As in Experiment 1, we ran two independent saliency
models to check whether our manipulations had influ-
enced the salience of the region where the manipulation
had been made. See Additional file 2 for details of the
saliency analyses. Similar to Experiment 1, our manipu-
lations made little difference to the salience of the re-
gions of the image.

Procedure
The procedure was similar to that used in Experiment 1,
except for the following two changes. First, subjects were
asked to locate the manipulation regardless of their re-
sponse in the detection task. Second, subjects were
asked to click on one of 12, rather than nine, regions on
the photo to locate the manipulation. We increased the
number of regions on the grid to ensure that the manip-
ulations in the photos spanned two regions, on average,
as per Experiment 1.

Results and discussion
As in Experiment 1, subjects spent a reasonable amount
of time examining the photos. In the detection task, the
mean response time per photo was 57.8 s (SD = 271.5 s)
and the median 24.3 s (interquartile range = 17.3 to 37.4
s). In the location task, the mean response time was 10.9
s (SD = 27.0 s) and the median 8.2 s (interquartile range
= 6.1 to 11.2 s).

Overall accuracy on the detection task and the location task
Overall accuracy in the detection task was slightly lower
than that observed in Experiment 1, but still above
chance: Subjects correctly classified 62% of the photos as
being original or manipulated (cf. 66% in Experiment 1),
95% CI [60%, 63%]. Subjects had some ability to discrim-
inate between original (58% correct) and manipulated
(65% correct) photos, d' = 0.56, 95% CI [0.50, 0.62], repli-
cating the results from Experiment 1. Again, this provides
some support for the prediction that the match or mis-
match between the information in the photo and people’s
expectation of what real-world scenes look like might help
people to identify original and manipulated real-world
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photos. In contrast to Experiment 1, however, subjects did
not show a bias towards saying that photos were authen-
tic: c = −0.07, 95% CI [−0.10, −0.04]. It is possible that
asking all subjects to search for evidence of a manipula-
tion—the location task—regardless of their answer in the
detection task, prompted a more careful consideration of
the scene. In line with this account, subjects in Experi-
ment 2 spent a mean of 14 s longer per photo on the de-
tection task than those in Experiment 1.
Recall that the results from Experiment 1 suggested

that subjects found the location task difficult, even when
they correctly detected the photo as manipulated. Yet,
we were unable to conclusively say that location was
more difficult than detection because we did not have
location data for the manipulated photo trials that sub-
jects failed to detect. In Experiment 2 we gathered those
data, but before we could directly compare subjects’ abil-
ity to detect manipulated photos with their ability to lo-
cate the manipulations within, we had to correct for
guessing. For the detection task, chance performance
was the same as Experiment 1, 50%. For the location
task, however, there were two differences to Experiment
1. First, subjects were asked to select one of 12, rather
than one of nine, image regions. Second, we used a new
image set; thus, the number of regions manipulated for
each image and manipulation type changed. Accordingly,
we ran a separate Monte Carlo simulation to determine
the chance rate of selecting the correct region. Table 3
shows that overall chance performance in the location
task was 17%.
Subjects performed better than chance on the location

task: a mean 56% of the manipulations were accurately
located, 95% CI [55%, 58%]. Given that a mean 62% of
the manipulated images were accurately detected and a
mean 56% of the manipulations located, it seems that

performance was very roughly similar on the two tasks.
But this interpretation doesn’t take into account how
subjects would perform by chance alone. A fairer ap-
proach is to compare subjects’ performance on the de-
tection and location tasks with chance performance on
those two tasks. For the detection task, subjects detected
a mean 12% more manipulated images than would be
expected by chance alone, 95% CI [10%, 13%]. Yet,
somewhat surprisingly, subjects located a mean 39%
more of the manipulations than would be expected by
chance alone, 95% CI [38%, 41%]. This finding suggests
that people are better at the more direct task of locating
manipulations than the more generic one of detecting if
a photo has been manipulated or not. Although this po-
tential distinction between people’s ability to detect and
locate manipulations is an interesting finding, the reason
for it is not immediately apparent. One possibility is that
our assumption that each of the 12 image regions has an
equal chance of being picked is too simplistic—perhaps
certain image regions never get picked (e.g., a relatively
featureless area of the sky). If so, including these never
picked regions in our chance calculation might make
subjects’ performance on the location task seem artifi-
cially high. To check this possibility, we ran a second
chance performance calculation.
In Experiment 2, even when subjects did not think

that the image had been manipulated, they still
attempted to guess the region that had been changed.
Therefore, we can use these localization decisions in the
original (non-manipulated) versions of the six critical
photos to determine chance performance in the task.
This analysis allows us to calculate chance based on the
regions (of non-manipulated images) that people actually
selected when guessing rather than assuming each of the
12 regions has an equal chance of being picked. Using
this approach, Table 4 shows that overall chance per-
formance in the location task was 23%. Therefore, even
based on this chance localization level, subjects still lo-
cated a mean 33% more of the locations than would be
expected by chance alone, 95% CI [32%, 35%]. This find-
ing supports the idea that subjects are better at the more
direct task of locating manipulations than detecting
whether a photo has been manipulated or not.

Ability to detect and locate manipulations
On the manipulated photo trials, asking subjects to lo-
cate the manipulation regardless of whether they cor-
rectly detected it allowed us to segment accuracy in the
following ways: (i) accurately detected and accurately lo-
cated (hereafter, DL), (ii) accurately detected but not ac-
curately located (DnL), (iii) inaccurately detected but
accurately located (nDL), or (iv) inaccurately detected
and inaccurately located (nDnL). Intuitively, it seems
most practical to consider the more conservative

Table 3 Mean number of regions (out of a possible 12) containing
manipulation and results of Monte Carlo simulation to determine
chance performance in location task by manipulation type
and overall

Manipulation
type

Number of regions Percentage correct by chance

M M 95% CI

Airbrushing 1.50 12 [12, 13]

Add/sub 1.33 11 [11, 11]

Geometry 1.33 11 [11, 11]

Shadow 1.33 11 [11, 11]

Super-additive 4.67 39 [39, 39]

Overall 2.03 17 [17, 17]

CI confidence interval. For each manipulation type, we show the mean number of
regions that contained the manipulation across all six images. The manipulation
type “Overall” is the mean number of manipulated regions across all six images
and all five manipulation types. To determine chance performance in the location
task, we ran a Monte Carlo simulation of one million responses based on the
number of regions manipulated for each image and manipulation type
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accuracy—DL—as correct, especially in certain contexts,
such as the legal domain, where it is crucial to know not
only that an image has been manipulated, but precisely
what about it is fake. That said, it might be possible to
learn from the DnL and nDL cases to try to better
understand how people process manipulated images.
Figure 7 shows the proportion of DL, DnL, nDL, and

nDnL responses for each of the manipulation types. The
most common outcomes were for subjects to both accur-
ately detect and accurately locate manipulations, or both
inaccurately detect and inaccurately locate manipulations.

It is interesting, however, that on almost a fifth (18%) of
the manipulated photo trials, subjects accurately detected
the photo as manipulated yet failed to locate the alter-
ation. For 10% of the manipulated trials, subjects failed to
detect but went on to successfully locate the manipulation.
Subjects infrequently managed to detect and locate air-
brushing manipulations; in fact it was more likely that
subjects made DnL or nDL responses. Although this fits
with our prediction that plausible manipulations would be
more difficult to identify than implausible ones, the pat-
tern of results for geometrical inconsistency, shadow in-
consistency, and addition or subtraction do not support
our prediction. Subjects made more DL responses on the
plausible addition or subtraction manipulation photos
than on either of the implausible types, geometrical ma-
nipulations and shadow manipulations. Why, then, are
subjects performing better than expected by either of the
chance measures on the addition or subtraction manipula-
tions and worse than expected on the airbrushing ones?
One possibility is that people’s ability to detect image ma-
nipulations is less to do with the plausibility of the change
and more to do with the amount of physical change
caused by the manipulation. We now look at this hypoth-
esis in more detail by exploring the relationship between
the image metrics and people’s ability to identify manipu-
lated photos.

Image metrics and accuracy
Recall that the results from Experiment 1 suggested a re-
lationship between the correct detection and location of

Fig. 7 Mean proportion of manipulated photos accurately detected and accurately located (DL), accurately detected, inaccurately located (DnL),
inaccurately detected, accurately located (nDL), and inaccurately detected, inaccurately located (nDnL) by manipulation type. The dotted
horizontal lines on the bars represent chance performance for each manipulation type from the results of the Monte Carlo simulation. The full
horizontal lines on the bars represent chance performance for each manipulation type based on subjects’ responses on the original image trials.
Error bars represent 95% CIs

Table 4 Chance performance in location task by manipulation
type and overall based on mean number of subjects choosing
the manipulated region in the original version of the image

Manipulation
type

Percentage correct by chance

Image

A B C D E F Overall

Airbrushing 19 31 28 28 23 20 25

Add/sub 24 5 15 3 3 1 9

Geometry 11 12 17 2 26 12 13

Shadow 20 16 28 39 4 5 19

Super-additive 74 63 44 72 33 26 53

Overall image 30 25 27 29 18 13 23

For each of the six critical images and each of the five manipulation types, we
show the probability that the manipulated region of the image was selected
by chance in the original version of the image. The “Overall” column denotes the
mean probability of selecting the manipulated regions for that manipulation type
across all 6 images A-F. The “Overall image” is the mean probability of selecting
the manipulated regions for that image across all manipulation types. Each image
had a minimum of 101 responses
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image manipulations and the amount of disruption the
manipulations had caused to the underlying structure of
the pixels. Yet, the JPEG format of the images used in
Experiment 1 created some (re-compression) noise in
the Delta-E measurements between different images;
thus, we wanted to test whether the same finding held
with the lossless image format used in Experiment 2. As
shown in Fig. 8, we found that the Delta-E measure was
positively correlated with the proportion of photos that
subjects correctly detected as manipulated (r(28) = 0.80,
p < 0.001) and the proportion of manipulations that were
correctly located (r(28) = 0.73, p < 0.001). These Pearson
correlation coefficients are larger than those in Experi-
ment 1 (cf. detect r = 0.34 and locate r = 0.41 in Experi-
ment 1). It is possible that the re-compression noise in

the JPEG images in Experiment 1 obscured the relation-
ship between Delta-E and detection and localization per-
formance. To check whether there was a stronger
relationship between Delta-E and people’s ability to de-
tect and locate image manipulations in Experiment 2
than Experiment 1, we converted the correlation coeffi-
cients to z values using Fisher’s transformation. There
was a significantly stronger correlation between the
Delta-E and detection in Experiment 2 than in Experi-
ment 1: z = −2.74, p = 0.01. Yet because we had good
reason to predict a stronger relationship in Experiment
2 than Experiment 1 (based on the JPEG re-compression
noise), it might be fairer to consider the p value associ-
ated with a one-tailed test, p = 0.003. The correlation
between Delta-E and accurate localization was not

Fig. 8 Mean proportion of correctly detected (a) and located (b) image manipulations by extent of pixel distortion as measured by Delta-E. The
graphs show individual data points for each of the 30 manipulated images
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significantly stronger in Experiment 2 than in Experi-
ment 1 based on a two-tailed test (z = −1.81, p = 0.07),
but was based on a one-tailed test (p = 0.04). Therefore,
it is possible that the global (re-compression) noise in
the Delta-E values in Experiment 1 weakened the associ-
ation between the amount of change and people’s ability
to identify manipulations. This finding suggests that
Delta-E is a more useful measure for local, discrete
changes to an image than it is for global image changes,
such as applying a filter.
Of course, the whole point of manipulating images is

to fool observers, to make them believe that something
fake is in fact true. Therefore, it might not be particu-
larly surprising to learn that people find it difficult to
spot high quality image manipulations. Yet it is surpris-
ing to learn that, even though our subjects never saw
the same image more than once, this ability might be
dependent on the amount of disruption between the ori-
ginal and manipulated image. The positive relationship
between the accurate detection and location of manipu-
lations and Delta-E suggests that it might be possible to
develop a metric that allows for a graded prediction
about people’s ability to detect and locate image manipu-
lations. The possibility that a metric could be used to
predict people’s ability to identify image manipulations is
an exciting prospect; however, further research is needed
to check that this finding generalizes across a wider var-
iety of images and manipulation types. Our findings sug-
gest that manipulation type and the technique used to
create the manipulation, for instance, cloning or scaling,
might be less important than the extent to which the
change affects the underlying pixel structure of the
image. To test this possibility, we next consider the rela-
tionship between the Delta-E values and the proportion
of (a) correct detection and (b) location responses by the
category of manipulation type.
Our findings in Experiments 1 and 2 show that sub-

jects’ ability to detect and locate image manipulations
varied by manipulation type, yet, in Experiment 2 the
differences were not adequately explained by the plausi-
bility of the manipulation. That is, subjects accurately
detected and located more of the addition or subtraction
manipulations than the geometry, shadow, or airbrush-
ing manipulations. One possibility is that the five cat-
egories of manipulation type introduced different
amounts of change between the original and manipu-
lated versions of the images. If so, we might expect these
differences in amount of change to help explain the dif-
ferences in subjects’ detection and localization rates
across these categories.
To check this, we calculated the mean proportion of

correct detections, localizations, and Delta-E values for
each of the five categories of manipulation type. As Fig. 9
shows, there was a positive correlation between the

amount of change and the proportion of correct detec-
tions (r(3) = 0.92, p = 0.03) and the proportion of correct
localizations (r(3) = 0.95, p = 0.01). These results suggest
that the differences in detection and localization rates
across the five manipulation types are better accounted
for by the extent of the physical change to the image
caused by the manipulation, rather than the plausibility
of that manipulation. Yet, given that subjects did not
have the opportunity to compare the manipulated and
original version of the scene, it is not entirely obvious
why amount of change predicts accuracy.
Our results suggest that the amount of change be-

tween the original and manipulated versions of an image
is an important factor in explaining the detectability and
localization of manipulations. Next we considered
whether any individual factors are associated with im-
proved ability to detect or locate manipulations.

Factors that mediate the ability to detect and locate
manipulations
Using GEE analyses, we again explored various factors
that might affect people’s ability to detect and locate ma-
nipulations. As discussed, we were able to use liberal or
stringent criteria for our classification of detection and
location accuracy on the manipulated image trials. Ac-
cordingly, we ran three models: the first two used the
liberal classification for accuracy (and replicated the
models we ran in Experiment 1), and the other exam-
ined the more stringent classification, DL. As in Experi-
ment 1, for the detection task, we also ran two repeated
measures linear regression GEE models to explore the
effect of the predictor variables on signal-detection esti-
mates d' and c. We included the same factors used in
the GEE models in Experiment 1. The results of the
GEE analyses are shown in Table 5.
Using the more liberal accuracy classification, that is,

both DL and DnL responses for detection, we found that
three factors had an effect on likelihood to respond cor-
rectly: response time, general beliefs about the preva-
lence of photo manipulation, and interest in
photography. As in Experiment 1, faster responses were
more likely to be correct than slower responses. Also
replicating the finding in Experiment 1, those who be-
lieve a greater percentage of photos are digitally manipu-
lated were slightly more likely to correctly identify
manipulated photos than those who believe a lower per-
centage of photos are digitally manipulated. Additionally,
in Experiment 2, those interested in photography were
slightly more likely to identify image manipulations cor-
rectly than those who are not interested in photography.
For the location task, using the more liberal accuracy
classification, that is, both DL and nDL responses, we
found that two factors had an effect on likelihood to re-
spond correctly. Again there was an effect of response

Nightingale et al. Cognitive Research: Principles and Implications  (2017) 2:30 Page 15 of 21



time: In the location task, faster responses were more
likely to be correct than slower responses. Also those
with an interest in photography were slightly more likely
to correctly locate the manipulation within the photo
than those without an interest. Next we considered
whether any factors affected our more stringent accuracy
classification, that is, being correct on both the detection
and location tasks (DL). The results revealed an effect
for two factors on likelihood to respond correctly. Spe-
cifically, there was an effect of response time with
shorter response times being associated with greater ac-
curacy. There was also an effect of interest in photog-
raphy, with those interested more likely to correctly
make DL responses than those not interested.
Our GEE models in both Experiments 1 and 2 revealed

that shorter response times were linked with more correct
responses on both tasks. As in Experiment 1, this associ-
ation might be explained by several models of perceptual
decision making; however, determining which of these

models best accounts for our data is beyond the scope of
the current paper.

General discussion
In two separate experiments we have shown, for the first
time, that people’s ability to detect manipulated photos
of real-world scenes is extremely limited. Considering
the prevalence of manipulated images in the media, on
social networking sites, and in other domains, our find-
ings warrant concern about the extent to which people
may be frequently fooled in their daily lives. Further-
more, we did not find any strong evidence to suggest
that individual factors, such as having an interest in pho-
tography or beliefs about the extent of image manipula-
tion in society, are associated with improved ability to
detect or locate manipulations.
Recall that we looked at two categories of manipulation-

s—implausible and plausible—and we predicted that
people would perform better on implausible manipulations

Fig. 9 Mean proportion of correctly detected (a) and located (b) image manipulations by extent of pixel distortion as measured by Delta-E. The
graphs show the mean values for each of the five categories of manipulation type
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because these scenes provide additional evidence that
people can use to determine if a photo has been manipu-
lated. Yet the story was not so simple. In Experiment 1,
subjects correctly detected more of the implausible photo

manipulations than the plausible photo manipulations, but
in Experiment 2, the opposite was true. Further, even when
subjects correctly identified the implausible photo manipu-
lations, they did not necessarily go on to accurately locate

Table 5 Results of the GEE binary logistic and linear regression models to determine variables that predict accuracy in the detect
and locate tasks

Predictor B OR [95% CI] p

Detect (DL and DnL)

Response time

Accuracy 0.13 1.14 [1.10, 1.18] <0.001

d' −0.01 0.99 [0.98, 1.01] 0.40

c 0.004 1.00 [0.99, 1.01] 0.42

General belief about percentage of images manipulated = High (71–100%)

Accuracy 0.16 1.18 [1.02, 1.36] 0.03

d' 0.09 1.09 [0.97, 1.23] 0.14

c −0.04 0.96 [0.90, 1.03] 0.25

Gender = Female

Accuracy −0.01 0.99 [0.86, 1.15] 0.92

d' −0.03 0.97 [0.86, 1.09] 0.60

c −0.01 0.99 [0.93, 1.06] 0.82

Interest in photography = Interested

Accuracy 0.17 1.19 [1.02, 1.39] 0.03

d' 0.04 1.04 [0.92, 1.18] 0.56

c −0.05 0.95 [0.89, 1.02] 0.18

Frequency of taking photos = Daily/weekly

Accuracy −0.01 0.99 [0.84, 1.17] 0.91

d' −0.07 0.93 [0.82, 1.07] 0.31

c −0.05 0.95 [0.88, 1.02] 0.18

Locate (DL and nDL)

Response time 0.10 1.11 [1.08, 1.14] <0.001

General belief about percentage of images manipulated = High (71–100%) −0.01 0.99 [0.87, 1.12] 0.84

Gender = Female −0.10 0.91 [0.80, 1.03] 0.14

Interest in photography = Interested 0.16 1.17 [1.02, 1.34] 0.02

Frequency of taking photos = Daily/weekly −0.08 0.92 [0.80, 1.06] 0.27

Detect and locate (DL)

Response time: detect 0.17 1.19 [1.15, 1.23] <0.001

Response time: locate 0.13 1.14 [1.11, 1.18] <0.001

General belief about percentage of images manipulated = High (71–100%) 0.05 1.05 [0.91, 1.20] 0.51

Gender = Female −0.13 0.88 [0.77, 1.01] 0.07

Interest in photography = Interested 0.20 1.22 [1.06, 1.41] 0.01

Frequency of taking photos = Daily/weekly −0.09 0.92 [0.78, 1.07] 0.28

B and odds ratios (OR) estimate the degree of change in (a) accuracy on the task (based on the manipulated image trials), (b) d', or (c) c associated with one unit
change in the independent variable. An odds ratio of 1 indicates no effect of the independent variable on accuracy; values of 1.5, 2.5, and 4.0 are generally
considered to reflect small, medium, and large effect sizes, respectively (Rosenthal, 1996). The category order for factors was set to descending to make the
reference level 0. The reference groups are: General beliefs about percentage of images manipulated = Low (0–70%), Gender = Male, Interest in photography = Not
Interested, Frequency of taking photos = Monthly/yearly/never. For response time (RT) we divided the data into eight equal groups with level 1 representing the
slowest RTs (detect ≥47.1 s; locate ≥18.9 s) and level 8 the fastest (detect ≤8.1 s; locate ≤2.7 s). The 14 subjects who chose not to disclose their gender were
excluded from these analyses, leaving a total sample of n = 645. Because we did not have a fixed number of choices per condition in the location task, we were
unable to calculate the degree of change in d' or c associated with the predictor variables
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the manipulation. It is clear that people find it difficult to
detect and locate manipulations in real-world photos, re-
gardless of whether those manipulations lead to physically
plausible or implausible scenes.
Research in the vision science literature may help to

account for these findings. We know that people might
have a simplified understanding of the physics in our
world (Cavanagh, 2005; Mamassian, 2008). Studies have
shown, for instance, that the human visual system is
relatively insensitive to the physically impossible cast
shadows created by inconsistent lighting in a scene
(Ostrovsky, Cavanagh, & Sinha, 2005). It is not necessar-
ily the case that people ignore shadows altogether, but
rather that the visual system processes shadows rapidly
and uses them only as a generic cue. Put simply, as long
as the shadow is roughly correct then we accept it as be-
ing authentic (Bonfiglioli, Pavani, & Castiello, 2004;
Ostrovsky et al., 2005; Rensink & Cavanagh, 2004). Simi-
larly, people use shortcuts to interpret geometrical as-
pects of a scene; if the geometry is close enough to
people’s expectation, then it is accepted as accurate (Bex,
2010; Howe & Purves, 2005; Mamassian, 2008). Further-
more, the change blindness literature also highlights
people’s insensitivity to shadow information. Research
has shown that people are slower to detect changes to
cast shadows than changes to objects (Wright, 2005), even
when the shadow changes affect the overall meaning of
the scene (Ehinger, Allen, & Wolfe, 2016). It follows, then,
that when trying to distinguish between real and manipu-
lated images, our subjects do not seem to have capitalized
on the evidence in the implausible manipulation photos to
determine whether they were authentic. It remains to be
determined whether it is possible to train people to make
use of physically implausible inconsistencies; perhaps one
possibility would entail “teaching” the visual system to
make full use of physical properties of the world as op-
posed to automatically simplifying them.
Although the plausibility of a manipulation might not

be so important when it comes to detecting manipulated
images, we found that the extent to which the manipula-
tion disrupts the underlying structure of the pixels might
be important. Indeed, we found a positive correlation
between the image metric (Delta-E) we used to measure
the difference between our original and manipulated
photos and the likelihood that the photo was correctly
classified as manipulated. In other words, the manipula-
tions that created the most change in the underlying
pixel values of the photo were most likely to be correctly
classified as manipulated. Of course, from the perspec-
tive of signal detection theory, it follows that adding
greater signal results in greater detection of that signal
(Green & Swets, 1966; Wilken & Ma, 2004).
Although this might seem intuitive, recall that our

subjects never saw the same scene more than once. That

is, they never saw the non-manipulated versions of any
of the manipulated photos that they were shown; despite
this, their ability to detect the manipulated photos was
related to the extent of change in the pixels. It seems
possible that our subjects might have been able to com-
pare the manipulated photo with their expectations
about what the scene “should” look like in terms of
scene statistics. In doing this, subjects might have found
the manipulated photos with less change, and thus
smaller Delta-E values, were more similar to their prior
expectations of what the world looks like—resulting in
those photos being incorrectly accepted as authentic
more often. At the same time, the manipulated photos
with more change, and thus larger Delta-E values, may
have been more difficult to match to a prior expecta-
tion—resulting in these photos more often being cor-
rectly identified as manipulated. It seems that this
difference in ease of finding a match to prior knowledge
and expectation for the manipulated photo helped sub-
jects to make an accurate decision. If this is the case,
then one might speculate that it could be possible to de-
velop a metric that will predict people’s ability to detect
and locate manipulations of real-world scenes. A future
investigation using a wider range of stimuli where sub-
jects see more than one of each manipulation type might
consider whether there is an interaction between Delta-
E and manipulation type.
On a different note, our research highlights a potential

opportunity to improve people’s ability to spot manipu-
lations. In Experiment 2, we were able to compare sub-
jects’ ability on the two tasks: detection and location.
We were surprised to find that subjects performed better
on the location task than on the detection task. Al-
though this is an interesting finding, the reason for it is
not immediately apparent. One possibility is that these
two tasks might encourage subjects to adopt different
strategies and that subjects are better at the more direct
task of locating manipulations than the generic one of
detecting whether a photo has been manipulated or not.
Our research provides a first look at people’s ability to

detect and locate manipulations of real-world images. A
strength of the current method—applying each of the
five different manipulation types to the same image—is
that we know the differences in subjects’ performance is
owing to the manipulation itself rather than the specific
image. A drawback, however, is that the difficulty of
finding or generating a set of suitable images that
allowed all of the manipulation types to be applied re-
duced the total number of photos that could be tested to
some degree. Although, ideally, future work might ex-
tend the range of images tested, we nonetheless note the
close consistency in results that we obtained across the
two different and independent image sets used in Exper-
iments 1 and 2.
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Future research might also investigate potential ways
to improve people’s ability to spot manipulated photos.
However, our findings suggest that this is not going to
be a straightforward task. We did not find any strong
evidence to suggest there are individual factors that im-
prove people’s ability to detect or locate manipulations.
That said, our findings do highlight various possibilities
that warrant further consideration, such as training
people to make better use of the physical laws of the
world, varying how long people have to judge the ver-
acity of a photo, and encouraging a more careful and
considered approach to detecting manipulations. What
our findings have shown is that a more careful search of
a scene, at the very least, may encourage people to be
skeptical about the veracity of photos. Of course, in-
creased skepticism is not perfect because it comes with
an associated cost: a loss of faith in authentic photos.
Yet, until we know more about how to improve people’s
ability to distinguish between real and fake photos, a
skeptical approach might be wise, especially in contexts
such as law, scientific publication, and photojournalism
where even a small manipulation can have ethically sig-
nificant consequences.
But what should we be skeptical about? Are some

changes acceptable and others not? Should the context
of the manipulation be taken into account? Though we
are unable to answer these complex questions here, we
can offer some points for thought. Although it is true
that all image manipulations are to some extent decep-
tive, not all manipulations are intentionally deceptive.
This distinction is an important one and raises the possi-
bility that people do not set out to detect all image ma-
nipulations but instead are primarily concerned about
forgeries that have been created with the intention to de-
ceive the viewer. Of course, people might expect that all
images provided as evidence, for instance news images,
to have been subjected to rigorous validation processes.
It is unlikely, however, that people set themselves the
same standard for detecting manipulation in every day
contexts. Perhaps more important than being able to
identify all instances of manipulation, people are most
concerned about the extent to which they can trust the
message conveyed from the image. Although this poses
an interesting question, our results suggest that people
might struggle to detect image manipulations based on
either of these definitions. In the current research, not
only did subjects find it difficult to accurately locate the
specific aspects of the image that had been altered, they
also found it difficult to distinguish original, truthful
photos from manipulated, untruthful ones.
In light of the findings presented in this paper, it is not

surprising that World Press Photo have introduced a
computerized photo-verification test to their annual
photo contest. But at the end of the day, this is only a

competition. What do our findings mean for other con-
texts in which an incorrect decision about the veracity
of a photo can have devastating consequences? Essen-
tially, our results suggest that guidelines and policies
governing the acceptable standards for the use of photos,
for example, in legal and media domains, should be up-
dated to reflect the unique challenges of photography in
the digital age. We recommend that this is done soon,
and that psychological scientists work together with
digital forensic experts and relevant end-users to ensure
that such policies are built on sound empirical research.

Conclusions
The growing sophistication of photo-editing tools means
that nearly anyone can make a convincing forgery. Des-
pite the prevalence of manipulated photos in our every-
day lives, there is a lack of research directly investigating
the applied question of people’s ability to detect photo
forgeries. Across two experiments, we found that people
have an extremely limited ability to detect and locate
manipulations of real-world scenes. Our results in Ex-
periment 1 offer some support to the suggestion that
people are better able to identify physically implausible
changes than physically plausible ones. But we did not
replicate this finding in Experiment 2; instead, our re-
sults indicate that the amount of change is more import-
ant than the plausibility of the change when it comes to
detecting and localizing manipulations. Furthermore, we
did not find any strong evidence to suggest individual
factors are associated with improved ability to detect or
locate manipulations. These findings offer an important
first step in understanding people’s ability to identify
photo forgeries, and although our results indicate that it
might not be an easy task, future research should look
to investigate potential ways to improve this ability.
Moreover, our results highlight the need to bring current
guidelines and policies governing the acceptable stan-
dards for the use of photos into the digital age.

Endnotes
1In Experiment 2, subjects attempted to localize the

manipulation regardless of their response in the detec-
tion task.

2We report 95% confidence intervals to provide an es-
timate of the size of the effect—in 95% of cases, the
population mean will fall within this range of values
(Cumming, 2012).

3One limitation of the Delta-E measure is that a global
change to an image, for instance adjusting the brightness
of the entire image, would result in a high Delta-E value,
yet such a change is likely to be difficult to detect. That
said, in our research we are only concerned with local
image changes and therefore Delta-E provides a useful
measure.
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4This is based on a two-tailed test, given that we
would predict that detection rates would increase with
the amount of change, we might consider a one-tailed
test to be appropriate. With a one-tailed test, the rela-
tionship between Delta-E and the proportion of photos
correctly detected as manipulated would be significant
at the 0.035 level.
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