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Transparency improves the accuracy 
of automation use, but automation confidence 
information does not
Monica Tatasciore1*  , Luke Strickland1,2 and Shayne Loft1* 

Abstract 

Increased automation transparency can improve the accuracy of automation use but can lead to increased bias 
towards agreeing with advice. Information about the automation’s confidence in its advice may also increase the pre-
dictability of automation errors. We examined the effects of providing automation transparency, automation con-
fidence information, and their potential interacting effect on the accuracy of automation use and other outcomes. 
An uninhabited vehicle (UV) management task was completed where participants selected the optimal UV to com-
plete missions. Low or high automation transparency was provided, and participants agreed/disagreed with auto-
mated advice on each mission. We manipulated between participants whether automated advice was accompanied 
by confidence information. This information indicated on each trial whether automation was “somewhat” or “highly” 
confident in its advice. Higher transparency improved the accuracy of automation use, led to faster decisions, lower 
perceived workload, and increased trust and perceived usability. Providing participant automation confidence 
information, as compared with not, did not have an overall impact on any outcome variable and did not interact 
with transparency. Despite no benefit, participants who were provided confidence information did use it. For trials 
where lower compared to higher confidence information was presented, hit rates decreased, correct rejection rates 
increased, decision times slowed, and perceived workload increased, all suggestive of decreased reliance on auto-
mated advice. Such trial-by-trial shifts in automation use bias and other outcomes were not moderated by transpar-
ency. These findings can potentially inform the design of automated decision-support systems that are more under-
standable by humans in order to optimise human-automation interaction.

Keywords Automation and human cognition, Automation transparency, Automation reliability, Uninhabited vehicle 
control, Decision-support systems, Automation confidence

Significance statement
Automation is increasingly prevalent in modern work-
place settings such as defence, aviation, and healthcare, 
and often human operators work with automation that 

assists them to make decisions. Such decision-support 
systems typically improve decision-making, but instances 
of inappropriate reliance on automation can lead to the 
misuse (accepting incorrect advice) or disuse (reject-
ing correct advice) of advice which can result in serious 
consequences in safety-critical work settings. This study 
manipulated two work-design factors that can poten-
tially enhance the understandability and predictability 
of automated advice; increased automation transparency 
regarding the reasoning underlying advice, and the pro-
vision of automation confidence information (i.e., auto-
mation’s prediction of its accuracy on a case-by-case 
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basis). Increased transparency resulted in more accurate 
automation use, faster correct decisions, lower perceived 
workload, and increased perceived trust and usability. 
Automation confidence information had no net impact 
on outcome variables, but there was decreased automa-
tion reliance on low compared to high confidence trials 
(indicated by increased correct rejection rates, decreased 
hit rates, slowed decisions, and increased perceived 
workload), which was not moderated by increased trans-
parency. These outcomes have potential application to 
inform the design of more predictable automated deci-
sion-support systems to optimise human-automation 
interaction.

Introduction
Automation is increasingly prevalent in modern work-
places. For example, people work with decision-support 
systems that provide information, recommendations, 
and/or predictions to enhance decision-making (NASEM, 
2022). Decision-support systems are common across 
work settings such as defence (e.g., advice for deploy-
ing uninhabited vehicles), aviation, healthcare, manu-
facturing, cybersecurity, and process control. Despite 
the potential for decision-support to improve decision-
making and other outcomes, mis-calibrated trust in auto-
mation can result in either over-reliance (automation 
bias; Mosier et al., 1996; Parasuraman & Manzey, 2010) 
and the misuse of automated advice (accepting incor-
rect advice), or under-reliance and the disuse of advice 
(rejecting correct advice; Lee & See, 2004; Parasuraman 
& Riley, 1997).

Trust in, and reliance on, automation is influenced by 
numerous factors, including operator characteristics 
(e.g., predisposition to trust), contextual factors (e.g., task 
complexity), and automation characteristics (e.g., reli-
ability; Hoff & Bashir, 2015). Reliance can be impacted by 
factors other than trust (e.g., decision risk, manual abil-
ity; Patton & Wickens, 2024), but nonetheless calibrated 
trust is critical for correctly relying on automated advice 
when it is accurate and for rejecting inaccurate advice 
(Lee & See, 2004). Trust calibration reflects human 
expertise in predicting automation errors, based upon 
understanding how automation performs under various 
conditions (Carter et  al., 2024; Strickland et  al., 2024), 
and thus work designs that improve understanding of 
automation performance could facilitate automation use. 
Indeed, increasing transparency regarding the rationale 
underlying automated advice can improve the accuracy 
of automation use (see reviews by Bhaskara et al., 2020; 
Van de Merwe et al., 2022). Providing automation confi-
dence information (i.e., automation’s expected accuracy) 
also increases the predictability of automation errors, 

and thus may improve automation use (e.g., McGuirl & 
Sarter, 2006).

To predict automation trust and reliance in workplace 
settings, it is essential to not only establish which fac-
tors enhance the understandability and predictability 
of automation errors, but also how those factors poten-
tially interact. It is plausible that providing automation 
transparency and confidence information could have 
interacting effects on automation use. For example, 
low confidence signalling by automation may encour-
age greater scrutiny of transparency information at key 
moments when automation is more likely to error, which 
should be more beneficial when high compared to low 
transparency is being provided. We examined the effects 
of transparency, confidence information, and their poten-
tial interaction on the accuracy of automation use and 
other outcome variables.

Automation transparency
There are many definitions in the literature of automation 
transparency as a work design principle. For example, 
automation transparency has been defined as providing 
“a real-time understanding of the actions of the AI sys-
tem” (NASEM, 2022, p.31), or enhancing the “under-
standability and predictability of a system” (Endsley et al., 
2003, p.146). The Situation-Awareness Agent-Based 
Transparency (SAT) model (Chen et al., 2014) proposes 
three tiers of transparency design including the goals and 
intent of the automation (Level 1), rationale underlying 
advice (Level 1 + 2), and projected outcomes if advice 
is actioned (Level 1 + 2 + 3). Whilst the SAT model is 
prominent in the literature, the task domain in which 
automation is being applied influences how transparency 
is operationalised and designed (Skraaning & Jamieson, 
2021; Van de Merwe et al., 2022, 2024). Narrative reviews 
and meta-analyses indicate that increased transparency 
can be associated with more accurate automation use, 
without costs to decision time or perceived workload (for 
reviews see Bhaskara et al., 2020; Sargent et al., 2023; Van 
de Merwe et al., 2022).

Numerous studies have applied uninhabited vehi-
cle (UV) management tasks to examine the effects of 
increased transparency, and this is the task under inves-
tigation here due to its relevance to Defence. Increased 
transparency in UV management has resulted in more 
accurate automation use, without costs to decision 
time or perceived workload (Gegoff et  al., 2023; Mer-
cado et al., 2016; Stowers et al., 2020; Tatasciore & Loft, 
2024; Tatasciore et al., 2023). Additionally, on occasions 
increased transparency has led to higher trust and usa-
bility ratings (Mercado et al., 2016; Stowers et  al., 2020; 
Tatasciore & Loft, 2024).
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However, Tatasciore et  al. (2023) and Tatasciore and 
Loft (2024) found that increased transparency resulted in 
a bias towards agreeing with automated advice. Despite 
increased sensitivity (i.e., better discrimination between 
correct and incorrect advice) with high transparency, 
these benefits were more due to improved hit rates 
(accepting correct advice) rather than improved cor-
rect rejection rates (rejecting incorrect advice). Further, 
Bhaskara et al. (2021) found that increased transparency 
led to increased automation bias, lower correct rejec-
tion rates, and poorer sensitivity. Thus, humans may not 
always process high transparency information adequately 
to validate automated advice. Our first aim was to rep-
licate the benefit of increased transparency reported 
by Gegoff et  al. (2023), Tatasciore et  al. (2023), and 
Tatasciore and Loft (2024) on the accuracy of automation 
use.

In addition to increased transparency, it may be use-
ful to provide humans with feedback from automation 
regarding its limitations. Specifically, humans may ben-
efit from confidence information regarding automated 
advice (i.e., automation’s prediction of its accuracy), pre-
sented alongside transparency information on a case-by-
case (i.e., trial-by-trial) basis (Mosier & Manzey, 2019). 
The provision of confidence alongside increased trans-
parency could work together to calibrate trust in auto-
mated advice.

Automation confidence
Theories of supervisory monitoring (Moray & Inagaki, 
2000; Senders, 1983) and attentional control (Steelman 
et al., 2011; Wickens et al., 2015) propose that the likeli-
hood of attending to information, and subsequent depth 
of information processing, is affected by the perceived 
expected value of that information in relation to task 
goals (i.e., people seek out information that they believe 
has higher expected value). According to supervisory 
monitoring theories then, confidence information should 
change the expected value of verifying task information 
(e.g., transparency information). Arguably, it is rational 
for humans to rely more on highly confident automated 
advice (Moray, 2003). Conversely, when automation indi-
cates lower confidence (i.e., indicating a higher prob-
ability that its advice is incorrect), it should encourage a 
higher expected value for attending to and scrutinising 
task information in order to check for automated advice 
errors.

Conceptually, automation confidence information 
overlaps with SAT Level 3 transparency (projected out-
comes). However, confidence information is specifically 
focused on automation’s statistical uncertainty, rather 
than insight into its inner workings. Such probability 
information is known to be subject to a range of human 

biases (Tversky & Kahneman, 1992; Zhang & Maloney, 
2012), which vary with task context (Wulff et al., 2018). 
Thus, for our purposes, it is useful to treat confidence as 
conceptually distinct from transparency, and confidence 
information can be presented alongside low and high 
transparency. However, transparency aside, there are rel-
atively limited, and mixed, findings regarding how indi-
viduals perceive automation confidence and subsequent 
effects on automation use.

McGuirl and Sarter (2006) examined how automa-
tion confidence impacted pilot in-flight icing deci-
sions. Confidence was presented in a graph display and 
updated on a case-by-case basis allowing pilots to assess 
current automation confidence (high, variable, or low). 
Pilots receiving confidence as opposed to overall reli-
ability information were less prone to automation bias. 
However, a common strategy reported by pilots was to 
invariably disagree with low confidence advice. This was 
problematic when the automation reported low confi-
dence but was still correct in its advice (i.e., automation 
disuse).

Positive outcomes have also been observed with 
graded likelihood alarm systems (e.g., “ok”, “potentially 
too high”, “too high”) compared to binary alarm sys-
tems (e.g., “ok”, “too high”), presumably because graded 
information improved estimation of the likelihood of 
critical events during alerts and thus graded advice 
whether to follow the alert (Wiczorek & Manzey, 2014; 
Wiczorek et al., 2014).

However, other studies have found no benefit of 
graded aid certainty. Bartlett and McCarley (2017, 
2019) examined performance on an aided task where 
participants classified dot images as blue or orange 
dominant. The aid provided an estimate of signal 
strength via a numeric rating (Bartlett & McCarley, 
2017), likelihood ratio (e.g., 39:1), or percentage confi-
dence rating (Bartlett & McCarley, 2019). Graded aid 
certainty (regardless of type) did not improve automa-
tion use (also see Endsley & Kiris, 1994).

Given these mixed findings, further research is 
required to examine whether presenting automation con-
fidence can improve the accuracy of automation use. The 
current study examined the impact of categorical confi-
dence (i.e., somewhat or highly confident) on the accu-
racy of automation use.

Automation transparency and confidence information
We were also interested in the potential interactive 
effects between transparency and confidence. To our 
knowledge, no prior research has tested for interac-
tions between transparency and confidence, where con-
fidence is provided on a trial-by-trial basis. A recent 
study demonstrated that transparency can interact with 
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“automation reliability” knowledge, where participants 
were informed about reliability prior to blocks of trials 
(Gegoff et  al., 2023). Higher transparency mitigated the 
disuse associated with lower compared to higher reliabil-
ity automation. Further, higher transparency improved 
the correct rejection of advice in low-reliability blocks. 
However, high transparency did not alleviate the misuse 
(i.e., lower correct rejection) linked with high-reliability 
automation use. Gegoff et al. concluded that participants 
may not have examined high transparency information 
closely enough to validate advice when using high-relia-
bility automation (Moray, 2003; Wickens et al., 2015), and 
thus it is possible they may do the same in the current 
study on high confidence trials.

Relatedly, some studies have examined the impact of 
presenting information relating to perceptions of uncer-
tainty in the task environment (e.g., “it is uncertain how 
fog will affect UV speed”) along with high transparency 
(Mercado et  al., 2016; Stowers et  al., 2020). Informa-
tion about environmental uncertainty, alongside high 
transparency, can be beneficial (e.g., increased hit rates). 
Environmental uncertainty information and confidence 
information are related in that both provide an indication 
of the likelihood that the automation is correct. How-
ever, the concepts should be distinguished. Although 
environmental uncertainty information instils doubt 
about environmental factors that the automation incor-
porates (inputs), it does not provide probability values 
surrounding its advice/output accuracy, which may be 
affected by complex interactions of multiple environmen-
tal inputs. In the current study, confidence information 
provides a direct categorical statement about how confi-
dent the automation is overall in its final advice (i.e., esti-
mated certainty/reliability). The distinction is important 
because environmental uncertainty and confidence infor-
mation may have different impacts on the cognitive pro-
cesses involved in using automated advice. For example, 
when environmental uncertainty information is provided 
it is still necessary to determine the level of transparency 
information scrutiny required to decide if advice can be 
relied on. In contrast, automation confidence signalling 
(i.e., low automation confidence signalling) may serve as 
a cue to direct attention towards transparency informa-
tion at the most appropriate times (i.e., when automa-
tion is more likely to error), and if so high transparency 
information should then be more beneficial than low 
transparency in aiding humans with subsequently under-
standing the rationale underlying automated advice and 
in predicting the reliability of that advice.

The current study examined whether the effects of 
transparency and confidence interact. Because trans-
parency and confidence each affect the predictability of 

automation errors (Carter et al., 2024; Lee & See, 2004), 
providing both could have redundant effects on out-
comes. For example, operators might attend to confi-
dence instead of transparency information or vice versa, 
if one type of information suffices to reasonably predict 
automation accuracy. Alternatively, either factor could 
amplify the effects of the other. As previously mentioned, 
increased transparency may assist with the verification 
and use of variable automation confidence information 
by facilitating understanding of the rationale underlying 
advice on a case-by-case basis.

Current study
The UV management task used in the current study 
required participants to choose the optimal UV to com-
plete missions by assessing UV capabilities (e.g., fuel con-
sumption), weightings of capabilities, and environmental 
factors affecting capabilities. The Recommender (decision 
aid) advised the optimal UV after considering these fac-
tors. The recommender was 75% reliable, requiring par-
ticipants to either agree with the advice and select Plan 
A, or to choose Plan B. This reliability exceeds the 70% 
reliability threshold which increases the probability that 
humans rely on automation (Wickens & Dixon, 2007), 
while providing enough data points for statistical power.

A mixed design was used, with confidence information 
(present, absent) the between-subjects factor, and trans-
parency (low, high) the within-subjects factor. The SAT 
model was used as a guiding model to design low versus 
high transparency conditions as this is a commonly used 
model in military task applications, but the transparency 
designs were also informed via consultation with Aus-
tralian Defence. The low transparency condition broadly 
equated to SAT Level 1 (e.g., information about the auto-
mation’s goals/intent) providing information about how 
the automation assessed the importance of UV capabili-
ties. The high transparency condition broadly equated 
to SAT Level 1 + 2 + 3 by providing further information 
about how the automation made its calculations (i.e., SAT 
2), including which environmental factors it considered 
and the projected impact of these factors on the two UV 
plans (i.e., SAT Level 3).

The current study aimed to replicate the benefits of 
increased transparency on the accuracy of automation 
use previously reported in UV management. More accu-
rate automation use (i.e., higher hit rates and sensitivity), 
without costs to decision time or perceived workload, 
was expected with increased transparency. Increased 
transparency may also increase perceived trust and 
usability.

We also examined the impact of presenting categori-
cal confidence information on a trial-by-trial basis on the 
accuracy of automation use. Lower compared to higher 
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confidence signalling may improve correct rejection rates 
due to greater scrutiny of automated advice. However, 
lower confidence may also lead participants to be more 
likely to disagree with correct advice (McGuirl & Sarter, 
2006), lowering hit rates compared to higher confidence 
trials. Conversely, hit rates may improve on higher com-
pared to lower confidence trials, but at a cost to the cor-
rect rejection of advice when it is (rarely) incorrect. If this 
is the case, there may be no net benefit to sensitivity (i.e., 
discrimination between correct and incorrect advice) 
from the provision of confidence information. It also is 
unclear how confidence will impact decision time, per-
ceived workload, or perceived trust or usability, but one 
might expect slower decision times and increased per-
ceived workload with decreased automation reliance.

The final question concerned whether increased 
transparency and confidence would interact to further 
improve the accuracy of automation use. As discussed, if 
lower confidence serves as a higher expected value cue to 
direct attention to transparency information, we would 
expect more correct rejections, and higher hit rates, on 
low confidence trials for high compared to low trans-
parency conditions. High transparency may also protect 

against the likely negative effect of higher confidence 
signalling on the correct rejection of automated advice. 
If these outcomes are observed, the benefit of increased 
transparency on the accuracy of automation use will be 
greater when automation confidence information is also 
provided.

Methods
Participants
Participants included 131 (91 female, 38 male, 2 non-
binary; M = 20.01  years) undergraduate students who 
were provided course credit and a maximum perfor-
mance incentive of AUD$30. Participants were randomly 
allocated to either the confidence information present 
(N = 67) or absent (N = 64) conditions.

Uninhabited vehicle management task
The UV task was presented on a single desktop moni-
tor (Fig. 1). Participants completed 200 trials (missions), 
with 100 trials completed in the low transparency block 
and 100 in the high transparency block. Mission state-
ments were displayed in the mission window for face 
validity, but they did not relate to optimal UV selection. 

Fig. 1 The uninhabited vehicle management task with low transparency. Note Here, the search area, UV capabilities, UV path to the search area, 
and environmental factor symbols are presented on the urban tactical map. A relevant factor symbol is placed on the path of UAV 1, and the impact 
of environmental factors can also be seen in the alerts window. The Recommender’s advice is presented in the Recommendation window, 
along with the time remaining and two UV selection buttons. In this example, the Recommender correctly recommended UGV 2 as Plan A. Low 
transparency information is presented in the table (top right) display and outlines how the Recommender evaluated the weighting of each 
capability, with larger rows signifying higher weightings. Confidence information is absent in this example.  Adapted from Tatasciore and Loft (2024)
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Rural, coastal, or urban areas were presented as an aerial 
tactical map. The tactical map also presented the search 
area and two UVs (ground [UGV]; surface [USV]; or aer-
ial [UAV]), which were randomly numbered 1 or 2 and 
assigned a unique colour (blue or purple). Attached to 
each UV was a line illustrating its path to the search area.

The optimal UV was selected based on UV capabili-
ties (time to destination, discoverability, fuel consump-
tion), capability weightings, and environmental factors 
impacting capabilities. Time to destination (value dis-
played adjacent to timer symbol in Fig.  1) denoted the 
duration the UV would take to reach the search area 
(lower = quicker). Discoverability (binocular symbol) 
denoted how discoverable the UV was by third parties 
(lower = less discoverable). Fuel consumption (fuel gauge 
symbol) denoted the amount of fuel the UV would con-
sume to reach the search area (lower = less fuel).

Displayed in the weightings window were importance 
weightings (%) for each UV capability (Fig. 1), which were 
pre-set for each mission (not determined by automa-
tion). One of five weighting sets was used for each mis-
sion, with weighting sets varying in difficulty. Sets were 

considered hard if two capabilities had equal weightings 
(e.g., 45%, 45%, 10%), requiring consideration of which 
UV had lower scores on two capabilities. Easy sets had 
one highly weighted capability (e.g., 80%, 10%, 10%), 
making it only necessary to consider which UV scored 
lower on the highest weighted capability.

During each mission, four environmental factors rep-
resented as yellow environmental factor symbols were 
displayed on the tactical map, which were relevant or 
irrelevant to UV capabilities. When relevant, environ-
mental factor symbols were positioned along the path 
of a UV, whereas irrelevant factors were not and could 
be disregarded (Fig.  1). Environmental factor symbols 
depicted the type of factor (e.g., rain), capability impacted 
(T = time to destination, D = discoverability, F = fuel con-
sumption), direction of impact (+ = positive, − = nega-
tive), and level of impact. Messages in the alerts window 
also listed factors and their impact. For each mission, 
there were one to three relevant factors.

The Recommender advised the optimal UV as Plan 
A, and the other as Plan B (Recommendation window; 
Fig. 1), after examining UV capabilities, their weightings, 

Fig. 2 The uninhabited vehicle management task with high transparency and confidence information. Note Here the Recommender 
has reported that it is highly confident in its recommendation. High transparency information is displayed in the table (top right) and graph 
(bottom right) displays. Plan A is positioned on the left and Plan B on the right in both the table and graph displays. In addition to presenting 
how the Recommender evaluated the weighting of each UV capability, the table display also presented which UV the Recommender considered 
to be better and poorer on each capability. The graph display presented how the Recommender calculated the score for each capability. When 
there were relevant environmental factors, the factor symbol was positioned above the relevant bar on the graph, along with the value added 
or subtracted from the original score. The Recommender’s calculated score was presented in the bar. Finally, the UV that the Recommender 
considered to be better on each capability was outlined in green.  Adapted from Tatasciore and Loft (2024)
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and environmental factors. Participants had 25 s (maxi-
mum) to either accept the Recommender’s advice and 
choose Plan A, or to choose Plan B. If no response 
was made within this time an incorrect response was 
recorded, and the next trial was presented. Following 
each mission, feedback was provided on the accuracy of 
the Recommender and the participant’s decision.

Participants were aware of the Recommender’s goals 
and intent, and further, the low transparency information 
provided in the table display illustrated how the Recom-
mender assessed the importance of UV capabilities, with 
table rows displayed larger for higher weighted capa-
bilities (Fig.  1). Note that when participants completed 
manual unaided training trials, the size of table rows was 
identical for each capability weighting.

When high transparency information was provided, the 
table display also indicated which UV the Recommender 
considered to be “better” and “poorer” on each capabil-
ity (Fig. 2). A graph display was also provided with high 
transparency. This display comprised of three bar graphs 
illustrating how the Recommender calculated the score 
for each capability, and which factors it considered. When 
an environmental factor was relevant to a UV capability, 
the factor symbol was presented above the relevant bar. 
Above the factor symbol was the factor impact value that 
the Recommender added or subtracted from the original 
capability score. The final calculated score was depicted 
within the respective bar (shorter bars = better capabil-
ity). High transparency therefore presented information 
about the automation’s projection of the consequences 
of variability in the task environment, and thus projected 
outcomes if its advice was actioned. A green border was 
placed around the bar of the UV that the Recommender 
considered to be better on each capability. In each graph, 
Plan A was always positioned on the left-hand side.

The reliability of the Recommender was 75% (it advised 
the incorrect UV as Plan A on 25% of trials). Participants 
were trained that “The Recommender is only reasonably 
reliable automation, and as such it may not always rec-
ommend the optimal plan.” When the Recommender’s 
advice was incorrect it either: missed a relevant factor, 
miscalculated the impact of a relevant factor, or a com-
bination of these errors across different relevant factors.

With high transparency, when the Recommender 
missed a relevant environmental factor, the factor sym-
bol would be missing from above the relevant bar in the 
graph display indicating it was missed by the Recom-
mender, and the original score incorrectly presented. 
When the Recommender considered but miscalculated 
the impact of a relevant factor, the factor symbol would 
be presented on the graph, but the value on the graph 
that the Recommender added or subtracted was incor-
rect, leading to an incorrect final score. Additionally, the 

green border may have been placed around the incorrect 
UVs bar on the graph. Due to these errors, the UV that 
the Recommender considered to be “better” and “poorer” 
on each UV capability in the table display could also be 
incorrect.

For 10% of the reliable (i.e., correct automated advice) 
trials, despite advising the correct UV as Plan A, the Rec-
ommender still made one or more of the above errors, 
but they did not impact in terms of their direction or 
magnitude to make the Recommender’s advice incorrect. 
Such trials were incorporated to prevent participants 
from selecting Plan B upon detecting any error made 
by the Recommender in the graph display (Gegoff et al., 
2023; Tatasciore et al., 2023).

Confidence information was presented on a trial-by-
trial basis in the Recommendation Window (Fig. 2) and 
referred to how confident the Recommender was in its 
advice. The Recommender was either “highly” or “some-
what” confident. Although studies have found simi-
larities in human judgement accuracy across linguistic 
and numeric representations of probability values (e.g., 
Bisantz et al., 2005), we used categorical representations 
of confidence to minimise the cognitive effort required to 
interpret numerical estimates (Bhatt et  al., 2021). How-
ever, one drawback of using predefined categories is that 
users may not be aware of or misinterpret the threshold 
criteria of the categories (Bhatt et al., 2021). As such, par-
ticipants were trained that when the Recommender was 
highly confident it was 90% confident, and when it was 
somewhat confident it was 60% confident.

The 200 trials were split into two 100-trial blocks. 
In each block, there was a similar number of capability 
weighting sets, relevant environmental factors, factor 
impacts, and type of Recommender errors. The pres-
entation order of blocks and transparency was coun-
terbalanced. The order of unique trials was randomised 
and yoked such that sets of four participants received 
the same randomised order of trials, with only two of 
the four participants receiving confidence information. 
Table  1 presents the number of trials assigned some-
what confident versus highly confident information, split 
by whether the advised plan was correct/incorrect. The 
assignment of confidence to specific mission trials (i.e., 
correct vs. incorrect automated advice) was randomised 
in accordance with the breakdown in Table 1.

Table 1 Breakdown of confidence information across trials

Information Recommended 
plan correct (Plan A 
correct)

Recommended plan 
incorrect (Plan B 
correct)

Somewhat confident 30 20

Highly confident 45 5
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Measures
Automation use accuracy
Hit rate represented the proportion of trials that Plan 
A was correctly selected. Correct rejection rate repre-
sented the proportion of trials that Plan B was correctly 
selected when the advised Plan A was incorrect. The Sig-
nal Detection metric d′ evaluated sensitivity to discrimi-
nate Plan A from B. The metric c evaluated bias towards 
agreeing with automated advice (negative values signify 
greater bias). Extreme hit or false alarm values (0 or 1) 
were adjusted by replacing values of 0 with 0.5/n, and val-
ues of 1 with (n − 0.5)/n, where n is the number of signal 
(Plan A correct) or noise (Plan B correct) trials (Macmil-
lan & Kaplan, 1985).

Decision time
Decision times were based on correct decisions only.

Workload
After each mission, the Air Traffic Workload Input Tech-
nique (ATWIT; Stein, 1985) was used to measure per-
ceived workload. Participants rated their workload from 
1 (very low) to 10 (very high) within 5 s.

Trust
A six-item questionnaire adapted from Merritt (2011) 
measured trust. A 5-point Likert scale from 1 (strongly 
disagree) to 5 (strongly agree) was used to rate items.

System usability scale
We adapted the 10-item System Usability Scale (SUS; 
Brooke, 1996) to measure perceived usability. A 5-point 
Likert scale from 1 (strongly disagree) to 5 (strongly 
agree) was used to rate items. Some items were reverse-
scored and then all items were added and multiplied by 
2.5 to yield a score from 0 to 100.

Procedure
The total duration was 2  h. Training started with a 
20 min audiovisual PowerPoint detailing the process for 
manually completing missions, followed by 20 manual 
practice trials. Participants then viewed a PowerPoint 

Table 2 Descriptive statistics for manual training trials as a 
function of confidence condition

s, seconds

Automation confidence

Absent Present

UV selection accuracy .84 (.13) .82 (.12)

Decision time (s) 14.02 (2.83) 14.40 (2.13)

Perceived workload 4.16 (1.31) 4.15 (1.42)

Table 3 Marginal means for transparency and confidence for each outcome variable

Standard deviations are presented in parentheses

Low T, low transparency; High T, high transparency; CR, correct reject; d’, sensitivity; c, criterion (response bias); DT, correct decision time in seconds

Hit CR d′ c DT Workload Trust Usability

Transparency

Low T .91 (.07) .72 (.20) 1.81 (.96) − .25 (.23) 11.67 (2.94) 4.52 (1.60) 2.41 (.83) 57.56 (17.15)

High T .86 (.08) .73 (.21) 2.15 (.96) − .39 (.30) 10.68 (3.34) 4.24 (1.52) 2.60 (.84) 61.05 (17.88)

Confidence

Absent .88 (.08) .73 (.19) 1.99 (.91) − .31 (.22) 11.29 (2.55) 4.44 (1.53) 2.44 (.73) 59.12 (14.62)

Present .89 (.06) .72 (.19) 1.98 (.84) − .33 (.21) 11.07 (2.83) 4.32 (1.44) 2.57 (.70) 59.48 (16.79)

Table 4 Descriptive statistics for test trials as a function of transparency (low, high) and confidence (present, absent)

Standard deviations are presented in parentheses

Low T, low transparency; High T, high transparency; CR, correct reject; d’, sensitivity; c, criterion (response bias); DT, correct decision time in seconds

Hit CR d′ c DT Workload Trust Usability

Confidence absent

Low T .85 (.09) .72 (.20) 1.79 (1.00) − .23 (.22) 11.92 (2.88) 4.56 (1.61) 2.29 (.80) 57.27 (16.30)

High T .91 (.08) .73 (.22) 2.18 (1.01) − .40 (.31) 10.67 (3.08) 4.31 (1.58) 2.58 (.90) 60.98 (17.30)

Confidence present

Low T .87 (.07) .72 (.21) 1.83 (.92) − .27 (.24) 11.44 (2.99) 4.48 (1.59) 2.52 (.84) 57.84 (18.03)

High T .91 (.07) .73 (20) 2.13 (.93) − .39 (.29) 10.70 (3.60) 4.17 (1.47) 2.62 (.78) 61.12 (18.54)
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presentation specific to the transparency assigned during 
the first block. Training regarding confidence informa-
tion was also included in this presentation for partici-
pant’s assigned confidence. Participants then completed 
the first block of 100 trials with a 1 min (minimum) break 
after 50 trials. Participants then watched a PowerPoint 
specific to the transparency assigned during the second 
block, after which they completed 100 trials (1 min mini-
mum break after 50 trials). Participants completed the 
trust and SUS questionnaires after each block (counter-
balanced order).

Results
Descriptive statistics for manual training trials as a func-
tion of confidence condition are presented in Table  2, 
with no significant differences on outcome variables 
(smallest p = 0.39).

Automation transparency and confidence
Table  3 presents marginal means for transparency and 
confidence for each outcome variable. Descriptive sta-
tistics for outcome variables as a function of transpar-
ency and confidence are presented in Table  4 (also see 

Fig. 3). A series of 2 Transparency (low, high) × 2 Confi-
dence (present, absent) mixed ANOVAs were conducted. 
Main effects of transparency, or interactions between 
transparency and confidence, would be followed with 
planned contrasts comparing low to high transparency 
when confidence was absent and present. Partial eta 
squared (small = 0.01, medium = 0.06, large = 0.14) was 
used to estimate effect sizes for F-tests, and Cohen’s d 
(small = 0.20, medium = 0.50, large = 0.80) for t-tests 
(Cohen, 1992).

Automation use accuracy
We found a main effect of transparency on hit rates, 
F(1,129) = 65.28, p < 0.001, η2

ρ
=0.34, with higher hit 

rates with high compared to low transparency. There 
was no main effect of confidence, F < 1. There was a 
marginal interaction between transparency and confi-
dence, F(1,129) = 3.98, p = 0.05, η2

ρ
=0.03. When confi-

dence was both absent, t(63) = 6.61, p < 0.001, d = 0.70, 
and present, t(66) = 4.67, p < 0.001, d = 0.57, hit rates 
were higher with high compared to low transparency.

For correct rejection rates, there were no main effects 
of transparency, F < 1, or confidence, F < 1, and no inter-
action, F < 1.
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Fig. 3 Accuracy of automation use, decision time, perceived workload, trust, and usability as a function of automation transparency 
and confidence. Note Error bars represent the mean plus or minus the standard error. Low = low transparency; High = high transparency
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There was a main effect of transparency on sensitiv-
ity (d′), F(1,129) = 24.53, p < 0.001, η2

ρ
=0.16, with greater 

sensitivity with high compared to low transparency. 
There was no main effect of confidence, F < 1, and no 
interaction, F < 1. When confidence was both absent, 
t(63) = 3.72, p < 0.001, d = 0.39, and present, t(66) = 3.25, 
p = 0.002, d = 0.32, sensitivity was greater with high com-
pared to low transparency.

For response bias (c), there was a main effect of trans-
parency, F(1,129) = 28.62, p < 0.001, η2

ρ
=0.18, with greater 

bias towards agreeing with the automation with high 
compared to low transparency. There was no main effect 
of confidence, F < 1, and no interaction, F(1,129) = 1.04, 
p = 0.31. When confidence was both absent, t(63) = 4.65, 
p < 0.001, d = 0.63, and present, t(66) = 2.98, p = 0.004, 
d = 0.45, participants were more biased towards agree-
ing with automation with high compared to low 
transparency.

Correct decision time
There was a main effect of transparency, F(1,129) = 12.11, 
p < 0.001, η2

ρ
=0.09, with faster decision times with high 

compared to low transparency. There was no main effect 
of confidence, F < 1, and no interaction, F < 1. When con-
fidence was absent, decision times were faster with high 

compared to low transparency, t(63) = 3.22, p = 0.002, 
d = 0.42. However, when confidence was present, there 
was no difference in decision times between low and high 
transparency conditions, t(66) = 1.77, p = 0.08.

Workload
We found a main effect of transparency, F(1,129) = 10.13, 
p = 0.002, η2

ρ
=0.07, with lower perceived workload with 

high compared to low transparency. There was no main 
effect of confidence, F < 1, and no interaction, F < 1. 
When confidence was both absent, t(63) = 2.17, p = 0.03, 
d = 0.16, and present, t(66) = 2.34, p = 0.02, d = 0.20, per-
ceived workload was lower with high compared to low 
transparency.

Trust
We found a main effect of transparency, F(1,129) = 7.15, 
p = 0.01, η2

ρ
=0.05, with higher trust ratings with high 

compared to low transparency. There was no main effect 
of confidence, F(1,129) = 1.11, p = 0.30, and no interac-
tion, F(1,129) = 1.64, p = 0.20. When confidence was 
absent, trust ratings were higher with high compared to 
low transparency, t(63) = 2.68, p = 0.01, d = 0.34. However, 
when confidence was present, there was no difference in 

Table 5 Marginal means for transparency and confidence for the condition in which confidence was presented

Standard deviations are presented in parentheses

Low T, low transparency; High T, high transparency; CR, correct reject; d’, sensitivity; c, criterion (response bias); DT, correct decision time in seconds

Hit CR d′ c DT Workload

Transparency

Low T .87 (.07) .72 (.21) 1.83 (.92) − .27 (.24) 11.44 (2.99) 4.48 (1.59)

High T .91 (.07) .73 (.20) 2.13 (.93) − .39 (.29) 10.70 (3.60) 4.17 (1.47)

Confidence

Lower confidence .87 (.08) .74 (.17) 1.87 (.81) − .23 (.21) 11.99 (2.49) 4.47 (1.44)

Higher confidence .91 (.06) .64 (.28) 1.80 (.94) − .53 (.34) 10.28 (3.27) 4.18 (1.48)

Table 6 Descriptive statistics for the condition in which confidence was presented, as a function of transparency and level of 
confidence (lower or higher)

Standard deviations are presented in parentheses

Low T, low transparency; High T, high transparency; CR, correct reject; d’, sensitivity; c, criterion (response bias); DT, correct decision time in seconds

Hit CR d′ c DT Workload

Low T

Lower confidence .85 (.10) .74 (.20) 1.76 (.96) − .17 (.24) 12.22 (2.75) 4.58 (1.58)

Higher confidence .89 (.07) .62 (.30) 1.60 (.98) − .48 (.36) 11.76 (3.24) 4.37 (1.62)

High T

Lower confidence .89 (.10) .75 (.18) 1.99 (.85) − .29 (.32) 10.80 (3.50) 4.36 (1.46)

Higher confidence .93 (.07) .67 (.32) 2.01 (1.09) − .57 (.45) 9.76 (4.07) 3.98 (1.56)
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trust ratings between low and high transparency condi-
tions, t(63) = 1.03, p = 0.31.

Usability
For usability, there was a main effect of transparency, 
F(1,129) = 6.61, p = 0.01, η2

ρ
=0.05, with higher usabil-

ity ratings with high compared to low transparency. 
There was no main effect of confidence, F < 1, and no 
interaction, F < 1. When confidence was both absent, 
t(63) = 1.79, p = 0.08, and present, t(63) = 1.85, p = 0.07, 
the difference in usability ratings between low and high 
transparency conditions did not reach significance.

Automation transparency (confidence present only)
Table  5 presents marginal means for transparency and 
confidence for the condition in which confidence infor-
mation was presented. Descriptive statistics for the con-
dition in which confidence information was presented, as 
a function of transparency and confidence are presented 
in Table 6 (also see Fig. 4). We ran a series of 2 Transpar-
ency (low, high) × 2 Confidence (lower, higher) repeated 
measures ANOVAs. Main effects of confidence were fol-
lowed with planned contrasts comparing lower to higher 
confidence trials at each level of transparency.

Automation use accuracy
We found a main effect of transparency, F(1,66) = 23.88, 
p < 0.001, η

2
ρ
=0.27, and confidence, F(1,66) = 19.66, 

p < 0.001, η2
ρ
=0.23, with higher hit rates with higher com-

pared to lower confidence. There was no interaction, 
F < 1. With low, t(66) = 4.14, p < 0.001, d = 0.46, and high 

transparency, t(66) = 3.48, p < 0.001, d = 0.46, hit rates 
increased with higher compared to lower confidence.

We found a main effect of confidence on correct rejec-
tion rates, F(1,66) = 19.97, p < 0.001, η2

ρ
=0.23, with cor-

rect rejection rates lower with higher compared to lower 
confidence. There was no main effect of transparency, 
F(1,66) = 1.33, p = 0.25, and no interaction, F(1,66) = 1.22, 
p = 0.27. With low, t(66) = 4.27, p < 0.001, d = 0.47, and 
high transparency, t(66) = 2.81, p = 0.01, d = 0.31, correct 
rejection rates decreased with higher compared to lower 
confidence.

For sensitivity (d′), there was a main effect of trans-
parency, F(1,66) = 14.04, p < 0.001, η2

ρ
=0.18, but no main 

effect of confidence, F(1,66) = 1.12, p = 0.29, and no inter-
action, F(1,66) = 2.29, p = 0.14.

For response bias (c), there was a main effect of trans-
parency, F(1,66) = 7.31, p = 0.01, η2

ρ
=0.10, and confi-

dence, F(1,66) = 58.10, p < 0.001, η2
ρ
=0.47, with greater 

bias towards agreeing with the automation with higher 
compared to lower confidence. There was no interaction, 
F < 1. With low, t(66) = 7.03, p < 0.001, d = 1.01, and high 
transparency, t(66) = 5.04, p < 0.001, d = 0.72, participants 
were more biased towards agreeing with automation with 
higher compared to lower confidence.

Correct decision time
There was main effect of confidence, F(1,66) = 60.96, 
p < 0.001, η2

ρ
=0.48, with faster decision times with higher 

compared to lower confidence. There was no main effect 
of transparency, F(1,66) = 3.24, p = 0.08, and no inter-
action, F(1,66) = 3.53, p = 0.07. With low, t(66) = 4.98, 

0.6

0.7

0.8

0.9

1.0

Lower Confidence Higher Confidence

H
it 

R
at

e

0.4

0.5

0.6

0.7

0.8

Lower Confidence Higher Confidence

C
or

re
ct

 R
ej

ec
tio

n 
R

at
e

0

0.5

1

1.5

2

2.5

3

Lower Confidence Higher Confidence

Se
ns

iti
vi

ty
 (d

')

Low
High

-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0

Lower Confidence Higher Confidence

C
rit

er
io

n 
(c

)

8

9

10

11

12

13

14

Lower Confidence Higher Confidence

D
ec

is
io

n 
Ti

m
e 

(s
)

2

3

4

5

6

Lower Confidence Higher Confidence

Pe
rc

ei
ve

d 
W

or
kl

oa
d
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p < 0.001, d = 0.45, and high transparency, t(66) = 8.10, 
p < 0.001, d = 0.54, decision times were faster with higher 
compared to lower confidence.

Workload
There was a main effect of transparency, F(1,66) = 5.49, 
p = 0.02, η

2
ρ
=0.08, and confidence, F(1,66) = 25.76, 

p < 0.001, η
2
ρ
=0.28, with lower perceived workload 

with higher compared to lower confidence. There was 
an interaction between transparency and confidence, 
F(1,66) = 7.45, p = 0.01, η2

ρ
=0.10. With low, t(66) = 4.44, 

p < 0.001, d = 0.13, and high transparency, t(66) = 4.66, 
p < 0.001, d = 0.25, perceived workload was lower with 
higher compared to lower confidence.

Discussion
We examined the impact of automation transparency 
(low, high) and providing automation confidence (some-
what, highly confident) on the accuracy of automation 
use, decision time, and perceived workload, trust and 
usability. A core prediction was that transparency and 
confidence information could have interacting effects on 
automation use.

Automation transparency
Increased transparency led to more accurate automa-
tion use (improved hit rate and sensitivity), faster cor-
rect decisions, lower perceived workload, and increased 
perceived trust and usability. These findings are in line 
with prior work reported across a variety of task domains 
(e.g., air traffic control, robotics, ground troops support, 
search and rescue, process control) that increased trans-
parency can improve the accuracy of automation use and 
can have positive effects on other outcome variables (for 
reviews see Bhaskara et al., 2020; Sargent et al., 2023; Van 
de Merwe et  al., 2022). Compared to the vast majority 
of studies outlined in these prior reviews of the trans-
parency literature, it is notable that in the current study 
increased transparency impacted every single outcome 
variable, although we did not measure situation aware-
ness (Chen et  al., 2014). The current study therefore 
provides strong support for the utility of the automation 
transparency design principle.

The current transparency findings are also consist-
ent with prior UV management work demonstrating 
that increased transparency in UV management leads to 
more accurate automation use (e.g., Mercado et al., 2016; 
Stowers et  al., 2020; Tatasciore & Loft, 2024; Tatasciore 
et  al., 2023), but no difference in correct rejection rates 
(e.g., Gegoff et al., 2023) and thus a bias towards agree-
ing with automated advice (e.g., Bhaskara et  al., 2021; 
Tatasciore & Loft, 2024; Tatasciore et  al., 2023). Fur-
thermore, the faster correct decision times and lower 

perceived workload with increased transparency are in 
line with Gegoff et  al., but contrast with prior findings 
that increased transparency does not induce differences 
in decision time (Tatasciore et  al., 2023) or workload 
(Tatasciore & Loft, 2024; Tatasciore et al., 2023). Finally, 
findings of higher perceived trust and usability with 
increased transparency are consistent with Gegoff et  al. 
(2023) and Tatasciore and Loft (2024), but inconsistent 
with Tatasciore et al. (2023).

Automation confidence
There were no benefits to the accuracy of automation use, 
decision time, workload, or trust and usability ratings for 
participants provided with automation confidence infor-
mation. These findings are consistent with prior work 
that automation confidence, or graded decision aid cer-
tainty, did not improve the accuracy of automation use 
(Bartlett & McCarley, 2017, 2019). In contrast, they are 
inconsistent with prior findings of positive outcomes of 
graded likelihood alarms on performance compared with 
a binary alarm (Wiczorek & Manzey, 2014; Wiczorek 
et  al., 2014). A potential reason for these differences is 
that in the prior studies reporting benefits to automa-
tion use with graded decision aid certainty, participants 
completed an additional non-automated concurrent task. 
It might be that with concurrent task demands, and thus 
potentially less perceived time to verify advice, automa-
tion confidence and the associated information expected 
value cues (Moray & Inagaki, 2000; Wickens et al., 2015) 
is more depended upon to assist decisions (also in which 
case high transparency could be particularly useful for 
the efficient verification of advice). Future research could 
examine if there are benefits of automation confidence 
on the accuracy of automation use in UV management 
tasks with non-automated concurrent task demands (e.g., 
Tatasciore et al., 2023), as opposed to when a single UV 
management task aided by automation is completed.

Furthermore, the current findings differ from McGuirl 
and Sarter (2006) who reported that confidence infor-
mation (as opposed to overall reliability information) 
led to lower automation bias in cases of inaccurate auto-
mated advice. A key distinction between that study and 
the current study lies in the experienced reliability levels 
associated with the reported confidence information. In 
the current study, higher confidence corresponded to 
90% reliability, and lower confidence to 60% reliability. 
In contrast, in the McGuirl and Sarter study when high 
confidence was presented, the automation was correct 
on 89% of trials and when low confidence was presented 
it was correct on 25% of trials (i.e., worse than chance). 
With this design, heavily biasing decisions to disa-
gree with the low confidence recommendations would 
improve response accuracy, and some McGuirl and 
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Sarter participants reported using such a strategy. Future 
research could seek to systematically examine how par-
ticipants learn the automation reliability (see Strickland 
et al., 2024) associated with different levels of automation 
confidence and subsequently adapt their automation use 
strategies (Strickland et al., 2021, 2023).

Although there was little overall effect of providing 
confidence information versus not, within the confidence 
condition there were clear effects of confidence level 
from trial-to-trial. Specifically, for trials with low (‘some-
what confident’) compared to high (‘highly confident’) 
automation confidence, there were decreased hit rates 
and increased correct rejection rates, consistent with 
a bias shift against agreeing with advice (i.e., less reli-
ance on automation). Furthermore, and consistent with 
decreased automation reliance, lower confidence trials 
were associated with slower decision times and higher 
perceived workload. Critically, this indicates that partici-
pants clearly did attend to, and use, the confidence infor-
mation provided. It appears that there was little overall 
effect of confidence condition on outcomes because the 
high versus low confidence trials approximately balanced 
each other out (i.e., equal frequency of high vs. low con-
fidence trials). Future research could examine whether 
with different confidence frequencies (e.g., if “somewhat 
confident” was rare), providing confidence information 
could differentially affect overall levels of bias, decision 
times, and/or perceived workload.

Interaction between automation transparency 
and confidence
We hypothesised that transparency and confidence 
could have interacting effects on automation use, given 
that low confidence should cue a higher expected value 
for scrutinising transparency information in moments 
when automation is perceived to be more likely to error 
(Moray & Inagaki, 2000; Senders, 1983; Steelman et  al., 
2011; Wickens et al., 2015) and that if so, higher transpar-
ency displays should facilitate subsequent understanding 
of the rationale underlying advice and what to expect if 
automated advice is followed (predictability). We also 
theorised that high transparency may also protect against 
the negative effect of high confidence signalling on the 
correct rejection of automated advice (Gegoff et al., 2023; 
McGuirl & Sarter, 2006). These outcomes would lead to 
the benefit of increased transparency being greater when 
automation confidence information was also provided.

We found no evidence of such an interaction between 
transparency and confidence information. As reviewed 
above, on low confidence trials there was a shift in bias 
towards disagreeing with advice, as compared with high 
confidence trials. Although this benefitted correct rejec-
tion rates, there were costs of low confidence information 

to hit rates, decision times, and perceived workload. Crit-
ically, we did not find that these effects were modified by 
transparency information. Rather, these impacts of low 
confidence information persisted even in the high trans-
parency condition.

Limitations and conclusions
The UV task used in this study is broadly representative 
of environments where operators are provided decision 
support, but it does not contain the information com-
plexity and multitasking requirements of UV manage-
ment in the field. Further, novice participants likely have 
different cognitive skills and motivation than experts. 
However, studies that have used experts in higher-fidelity 
tasks [e.g., Pokam et al., 2019 (automated driving super-
vision); Sadler et al., 2016 (soldier manoeuvring); Skraan-
ing & Jamieson, 2021 (nuclear power plant control); Van 
de Merwe et al., 2024 (nautical navigation)], have gener-
ally reported evidence in support of improved perfor-
mance with automation transparency.

There are important lessons from these field stud-
ies for future research in the laboratory to consider, and 
to even emulate to the extent possible. First, the use of 
experts, higher-fidelity simulations, and associated 
ecologically-valid affordances and constraints make it 
difficult to neatly operationalise transparency (Skraan-
ing & Jamieson, 2021). Second is that experts are often 
not responding to controlled/isolated automated advice 
(proposals), but instead supervising automation to inter-
vene if required, or monitoring automation to enhance 
situation awareness (e.g., Pokam et al., 2019; Skraaning & 
Jamieson, 2021). Third, care should be taken when apply-
ing transparency to decision time-critical applications 
such as nautical navigation (Van de Merwe et al., 2024). 
Fourth, whereas transparency principles can readily be 
applied to local automation at the component level (as 
in current study), implementing transparency in work 
systems can change the operational concept (operator 
roles, task allocation, teamwork), which may produce 
unexpected effects on system performance (Skraaning & 
Jamieson, 2021; also see Tatasciore & Loft, 2024).

Another limitation of the current study was that we 
only used categorical confidence information rather than 
other forms of confidence information (e.g., numerical). 
A drawback of categorical confidence is that humans may 
not be aware of or may misinterpret the threshold crite-
ria of the categories (Bhatt et al., 2021). Future research 
could manipulate different forms of confidence informa-
tion (e.g., categorical, numerical).

In conclusion, increased transparency benefited the 
accuracy of automation use, decision time, and perceived 
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workload, and resulted in higher perceived trust and 
usability. Although increased transparency can benefit 
human-automation interaction, designers should be cau-
tious of the fact that increased transparency may also 
lead humans to over-rely on incorrect automated advice. 
Automation confidence had no net benefit on the accu-
racy of automation use. However, there was a bias shift 
from agreeing with the automated advice when it was 
highly confident to disagreeing when it was somewhat 
confident. Thus, confidence information does impact 
human reliance on automation, which is problematic 
in the rare occurrence that confidence information is 
incorrect (i.e., if automation has missed or does not have 
access to certain information). Increased transparency 
did not influence the effects associated with this shift in 
bias, and thus did not interact with confidence informa-
tion to further improve the accuracy of automation use. 
That said, we cannot rule out the fact that in field settings 
(e.g., where there may be concurrent task demands and 
other affordances/constraints) transparency and confi-
dence may interact to further benefit human-automation 
interaction.
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