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The message matters: changes to binary 
Computer Aided Detection recommendations 
affect cancer detection in low prevalence search
Francesca Patterson1*   and Melina A. Kunar1 

Abstract 

Computer Aided Detection (CAD) has been used to help readers find cancers in mammograms. Although these auto-
mated systems have been shown to help cancer detection when accurate, the presence of CAD also leads to an over-
reliance effect where miss errors and false alarms increase when the CAD system fails. Previous research investigated 
CAD systems which overlayed salient exogenous cues onto the image to highlight suspicious areas. These salient 
cues capture attention which may exacerbate the over-reliance effect. Furthermore, overlaying CAD cues directly 
on the mammogram occludes sections of breast tissue which may disrupt global statistics useful for cancer detec-
tion. In this study we investigated whether an over-reliance effect occurred with a binary CAD system, which instead 
of overlaying a CAD cue onto the mammogram, reported a message alongside the mammogram indicating the pos-
sible presence of a cancer. We manipulated the certainty of the message and whether it was presented only to indi-
cate the presence of a cancer, or whether a message was displayed on every mammogram to state whether a can-
cer was present or absent. The results showed that although an over-reliance effect still occurred with binary CAD 
systems miss errors were reduced when the CAD message was more definitive and only presented to alert readers 
of a possible cancer.

Keywords Mammogram, Artificial intelligence, Low prevalence, Computer Aided Detection (CAD), Over-reliance, 
Binary CAD, Automation

Introduction
Observers often miss rare targets in visual search at dis-
proportionately high rates (Wolfe et  al., 2005). Previous 
laboratory research involving participants searching for 
a target amongst a set of distractors suggests that as the 
prevalence rate of the target decreases, the proportion 
of miss errors (failing to notice the target) increase (e.g., 
Godwin et al., 2015; Hout et al., 2015; Kunar et al., 2010, 
2021; Mitroff & Biggs, 2014; Rich et al., 2008; Russell & 
Kunar, 2012; Van Wert et  al., 2009; Wolfe et  al., 2005, 

2007). This low prevalence (LP) effect has also shown 
to be robust against real-world tasks where targets are 
rare, such as breast screening, where radiologists inspect 
mammogram images for breast cancers. For example, it 
is estimated that 20–40% of cancers are missed in initial 
screening (Bird et  al., 1992; see also Evans et  al., 2013) 
and research by Evans et  al. (2013) has highlighted LP 
as a cause of miss errors for expert mammographers in 
a clinical setting.1 Failing to detect a cancer in radiology 
poses serious health risks, and as such, it is vital to find 
ways to help improve cancer detection.
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Computer Aided Detection (CAD) has been developed 
to aid operators in the difficult perceptual task of can-
cer detection by using computer algorithms to highlight 
suspicious features of a mammogram (Castellino, 2005). 
CAD typically works by overlaying a salient visual cue 
on the breast tissue to indicate the location of a poten-
tially suspicious area which radiologists would then need 
to verify. CAD has been approved for use in radiology by 
the Food and Drug Administration in the USA, with a 
primary goal of increasing cancer detection, providing a 
more efficient workflow and reducing demands on radi-
ologists (Castellino, 2005). Standard practice involves the 
radiologist first viewing the mammogram in the absence 
of CAD, then activating CAD and re-evaluating the 
image before issuing their final conclusion (Castellino, 
2005). In laboratory studies, this reading mode has been 
shown to provide the optimal outcome in terms of can-
cer detection in comparison to conditions where readers 
were simultaneously presented with CAD cues on first 
reading of the mammogram (Kunar, 2022).

Whilst many studies have investigated the effective-
ness of CAD, historically its assets and liabilities have 
remained controversial. For example, Lehman et  al. 
(2015) compared the effect of CAD on digital screening 
mammography performance in terms of sensitivity, spec-
ificity, and cancer detection rate in a large-scale multi-
screening centre study. They found that there was no 
improvement in screening performance when mammo-
grams were read with CAD, compared to when CAD was 
not used. Furthermore, Bennett et al. (2006) conducted a 
literature review to compare single reading with CAD to 
double reading procedures (where two radiologists read 
the mammographic images), but differences in meth-
odology produced indefinite conclusions. Using pooled 
estimates of effect sizes from two meta-analyses, Taylor 
and Potts (2008) found that there was no significant dif-
ference in cancer detection rates between single reading 
with CAD and double reading. However, differences in 
screening programmes used in the meta-analyses may 
have affected these results. While a double reading pro-
cedure remains an effective method for cancer detection 
(Kunar et al., 2021; Taylor & Potts, 2008), it may not be a 
feasible long-term approach due to the increasing num-
ber of women needing screening and the demands this 
place on an already limited workforce (Chen et al., 2023; 
Guerriero et al., 2011; James et al., 2010). Instead, recent 
developments in automation and Artificial Intelligence 
(AI) suggest that there could be improved efficacy of 
CAD for use in medical diagnostic imaging with systems 
using AI deep learning models (e.g., Fujita, 2020; Salim, 
et al., 2020). For example, recent research using AI as an 
independent supporting reader in breast cancer screen-
ing, was found to be a comparable (and in some cases 

superior) method to human double reading (Ng et  al., 
2023).

With this advancement in AI capabilities, Ng et  al. 
(2023) also note that there is a need to evaluate new 
strategies for using AI technology, as supporting readers, 
alongside humans. Previous research has shown that the 
way CAD is presented to humans affects their ability to 
detect cancers (Kunar, 2022; Kunar & Watson, 2023). For 
example, it has been shown that the presence of a CAD 
prompt can result in an over-reliance effect which biases 
reader judgements depending on the accuracy of CAD 
(Kunar, 2022; Kunar & Watson, 2023; Kunar et al., 2017; 
Zheng et  al., 2004). The over-reliance effect shows that 
while the use of a CAD prompt that correctly highlights 
a cancer decreases the amount of miss errors, there is a 
large increase in miss errors when the CAD system fails. 
For example, if the CAD cue fails to highlight a cancer 
or the cancer falls outside of the highlighted area, miss 
errors are increased in comparison to if no CAD system 
is used (Drew et  al., 2020; Kunar et  al., 2017). Further-
more, incorrect CAD cues lead to higher false alarms and 
subsequently recall rates where women are incorrectly 
recalled for further assessment (e.g., Fenton et al., 2007; 
Kunar, 2022; Kunar & Watson, 2023; Kunar et al., 2017). 
Although one could argue that miss errors, where a can-
cer goes undetected has potentially more serious con-
sequences for the women involved, an increase in false 
alarms also has its own problems. Women who have been 
recalled due to a false alarm have been shown to experi-
ence psychological distress in relation to their experience 
(Aro, 2000) and are more likely to delay participation, or 
not participate at all, in future mammography screening 
(Kahn & Luce, 2003). Furthermore, an increase in false 
alarms creates unnecessary demands on healthcare sys-
tems which are already over-burdened and in crisis due 
to a shortage of healthcare workers (e.g., Darzi & Evans, 
2016; Konstantinidis, 2023).

The over-reliance effect of using CAD is robust and is 
difficult to remove (although it can be mitigated in some 
circumstances; Kunar & Watson, 2023). One of the rea-
sons proposed for this robust over-reliance effect is that 
CAD cues often use salient exogenous cues to alert the 
location of a cancer (Drew et  al., 2020; Kunar & Wat-
son, 2023). Exogenous cues are thought to receive higher 
weightings in attentional priority maps and thus capture 
attention automatically (Remington et  al., 1992; Theeu-
wes, 2004; Wolfe, 2021). Even when people are told to 
specifically ignore these CAD cues, they still seem to 
elicit attentional priority leading to beneficial results 
when they cue the cancer, but over-reliance effects when 
they do not (Kunar & Watson, 2023). Having the CAD 
cue be a salient marker and physical presence on a mam-
mogram may also result in other issues. For example, 
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having a salient marker overlayed onto the mammogram 
may occlude parts of the breast tissue and interfere with 
the global regularities or ‘gist’ statistics of the mam-
mogram. This is important as the ability to process the 
global image statistics of breast tissue is known to be an 
influential factor in detecting abnormalities in mammog-
raphy (Evans et al., 2016; Raat et al., 2023).

In light of this, other CAD systems have been pro-
posed. For example, Goldenberg and Peled (2011) dis-
cussed the advantages of CAD systems that output a 
simple binary recommendation of ‘positive’ or ‘negative’, 
indicating the presence or absence of an anomaly. Here, 
instead of a salient CAD cue being presented on a mam-
mogram, a message indicating the presence or absence 
of a cancer would be presented elsewhere on the screen 
which radiologists would then have to verify (for example 
the message would state that a cancer is present or that a 
cancer is absent). This type of CAD system has recently 
been implemented in some AI systems within mammog-
raphy where the AI system will result in a binary message 
to recall a woman (as a suspected cancer is present) or to 
not recall a woman (as either there is no cancer present 
or the AI has failed to detect a possible malignancy; Ng 
et al., 2023). CAD systems that generate binary Recall/No 
Recall recommendations have an advantage as they pro-
vide assistance and recommendations to human readers 
without the need for salient and exogenous CAD markers 
that are overlaid on the mammogram. However, sparse 
research has been conducted investigating how this type 
of binary message affects human decision making and in 
particular whether there is an over-reliance effect with 
this type of CAD prompt. As binary CAD systems do not 
use exogenous, salient cues to highlight a potential region 
of interest on a mammogram, then there will not be com-
plications from over-laying a strong salient attentional 
cue on the breast tissue. Therefore, without these exog-
enous cues capturing attention the over-reliance effect 
previously observed with CAD markers may be reduced 
or eliminated. In contrast as humans are susceptible 
to biases, particularly in relation to recommendations 
given by technology (e.g., Salim Jr et  al., 2023; Wysocki 
et al., 2023) it may be that an over-reliance effect is still 
observed even in the absence of these salient cues. We 
investigated this here.

The present study was the first investigation (at least, 
that the authors are aware of ) into the human–com-
puter interaction of a binary CAD system in search for 
a low prevalence cancer. We investigated whether users 
demonstrated an over-reliance on binary CAD, whereby 
a simple message indicated that a cancer may be present 
or absent. We also investigated whether there was an 
optimal way to present these binary CAD cues as previ-
ous research has shown that the way CAD is presented 

affects cancer detection. In particular, we varied the CAD 
messages, first, by their degree of certainty and, second, 
by whether the CAD message was presented only on 
some of the mammogram images to indicate the possi-
ble presence of a cancer or whether it was presented on 
every mammogram, stating that a cancer was either pre-
sent or absent.

In relation to CAD certainty, it has been found that 
framing a CAD system to be more fallible led to a reduc-
tion in the over-reliance effect (Kunar & Watson, 2023). 
That is, people were more likely to perform a more 
exhaustive search if they were told that the CAD system 
was less accurate. This is particularly important in rela-
tion to search for LP targets where it is found that peo-
ple often terminate their search prematurely, before they 
have searched the display in full (Wolfe & Van Wert, 
2010). Therefore, we investigated whether manipulating 
the CAD message to either be definitive (i.e., a cancer 
is present—Experiments 1 and 3) or instead to be more 
probabilistic and less certain (i.e. a cancer is likely—
Experiments 2 and 4) would lead to a difference in target 
detection.

Furthermore, we manipulated whether it was better to 
present CAD messages in situations where it only alerted 
readers to the possible presence of a cancer or whether it 
would be better to present messages on all mammograms 
to state that a cancer was either present or absent. We 
predicted that giving a message on some of the mammo-
gram images versus giving a message on all mammogram 
images would lead to a difference in the over-reliance 
effect. For example, miss errors may be more pronounced 
under conditions where it was explicitly stated that a can-
cer was absent in comparison to when no message was 
shown. In this latter condition we hypothesised that, with 
no explicit recommendation, people would be more likely 
to perform an exhaustive search of the mammogram, 
which would result in fewer miss errors. Accordingly, in 
Experiments 1 and 2, we only presented the CAD mes-
sage on some of the mammogram images to alert people 
to the possible presence of a cancer. In these experiments, 
if participants were shown a CAD message it was a recall 
message where we indicated the potential presence of a 
cancer (i.e., that a cancer was ‘present’ in Experiment 1 
or ‘likely’ in Experiment 2). In a clinical setting, a ‘recall’ 
message would suggest indications of a possible can-
cer and that the woman should return to the clinic for 
further assessment. In contrast, a ‘no recall’ message 
would suggest no further assessment was needed. In 
Experiments 3 and 4 we presented a CAD message on all 
images of the mammograms to indicate whether a cancer 
was present or not. In these experiments a CAD message 
would either contain a recall or no-recall message (i.e., 
stating that a cancer was ‘present’ or ‘absent’, respectively 
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in Experiment 3, and ‘likely’ or ‘not likely’, respectively in 
Experiment 4).

Throughout this study we used laboratory-based 
experiments where we recruited non-expert observ-
ers to search for a low prevalence simulated cancer in a 
mammogram. Lab-based experiments have been found 
to successfully examine search behaviour in applied set-
tings (Cunningham et al., 2017; Drew et al., 2012; Drew 
et al., 2020; Kunar et al., 2017; Kunar et al., 2021; Kunar, 
2022; Kunar & Watson, 2023; Raat et el., 2023) and are a 
legitimate way to test a variety of conditions that would 
not be otherwise feasible. Lab-based experiments using 
non-expert observers enable the presentation and testing 
of a range of CAD display options, which would not be 
practical in Randomised Clinical Trials (RCTs) and diffi-
cult to test with radiologists, given the demands on their 
time. For example, RCTs are often expensive and time-
consuming. By the point of RCTs it would be important 
to know which are the optimal ways to present CAD and 
which to rule out. This information can be determined 
from lab-based studies, which can then be used to inform 
trials in a clinical setting. Furthermore, research findings 
that have been found to be observed in the lab have also 
been observed in clinical settings (Evans et al., 2013) and 
given that all humans share the same underlying search 
principles, it has been established that the search behav-
iour of non-expert participants is similar to those of clini-
cians (Drew et al., 2012; Taplin et al., 2006; Wolfe et al., 
2016). Therefore, these lab-based experiments provide a 
valid way to investigate how binary CAD affects cancer 
detection.

Method
Transparency and openness
The data can be found on the Open Science Framework 
(https:// osf. io/ jgxz5/). All data were compiled in Micro-
soft® Excel® for Microsoft 365 MSO (Version 2112 
16.0.14729.20254) and imported into SPSS (Version 27, 
Release 27 0.1.0) and JASP (Version 0.16; JASP Team, 
2021) for statistical analysis. The experimental programs 
were written in PsychoPy (Peirce et al., 2019). The study 
design, hypotheses and analytic plan were not pre-regis-
tered. All manipulations, data exclusions and measures 
are reported.

Participants
All participants were recruited via the University of 
Warwick’s Research Experience panel and received 
course credit as compensation for their participation 
in the study. A G* power analysis (alpha = 0.05, effect 
size = 0.5) determined that a minimum sample size of 34 
participants per experiment was required to achieve a 
power of 0.8. Participant numbers varied slightly across 

experiments due to participants opting out of complet-
ing the experiment and choosing to partake in a sepa-
rate activity for course credit. Thirty-nine participants 
took part in Experiment 1, thirty-nine participants took 
part in Experiment 2, thirty-eight participants took part 
in Experiment 3, and thirty-six participants took part in 
Experiment 4. None of the participants took part in more 
than one experiment.

Stimuli
Stimuli included 338 images of mammograms sourced at 
random from the volume of 695 normal mammograms 
(those not containing a cancer) on the Digital Data-
base for Screening Mammography (DDSM; Heath et al., 
2001). Images were presented in the centre of a computer 
display and subtended approximately 10.7 degrees by 
18.6 degrees at a viewing distance of 57 cm in size (please 
note that the actual size of each image varied as they were 
of real mammograms). They were categorised into ‘pre-
sent’ images (an image of a cancerous mass sourced from 
the cancer volume of the DDSM was transposed onto the 
normal mammogram images using image editing soft-
ware) and ‘absent’ images where no cancer was shown.

Procedure
The experiment was created using PsychoPy, presented 
on a PC, and took approximately 30  min to complete. 
Participants were instructed to search for a cancer in the 
mammogram images being presented to them and were 
presented with example images of both mammograms 
containing a cancer and mammograms that did not. To 
familiarise participants with the task, participants were 
then asked to complete a training set, whereby they were 
presented with 10 present images and 10 absent images 
and were required to respond whether a cancer was pre-
sent or absent via a two-alternative forced choice task 
and pressing the ‘m’ or ‘z’ key, respectively. Participants 
were required to respond correctly on 70% of the training 
set trials in order to continue to the experiment proper. 
If they failed to do so, they were given four attempts at 
re-completing the training block until they got (at least) 
70% correct. The training block ensured that participants 
were able to recognise the appearance of a cancer. Fol-
lowing this, participants were given the experimental 
instructions and informed that during the experiment a 
cancer would be rarely present within the mammogram 
displays. Example images of the four trial types for that 
experiment were presented (manipulating both the pres-
ence of the cancer and the CAD message), followed by a 
practice block. Once completed, participants proceeded 
to the experimental block.

For each experimental block, there were 300 trials: 
30 present images and 270 absent images (to give a 10% 

https://osf.io/jgxz5/
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prevalence rate). For the present trials, 20 trials contained 
a ‘Recall’ CAD prompt explicitly indicating the presence 
of a cancer. The remaining 10 trials contained no CAD 
prompt in Experiments 1 and 2 or an explicit ‘No Recall’ 
CAD prompt indicating the absence of a cancer in Exper-
iments 3 and 4. For absent trials, 180 images contained 
no CAD prompt in Experiments 1 and 2 or contained an 
explicit ‘No Recall’ CAD prompt in Experiments 3 and 
4. The other 90 mammogram images contained a Recall 
CAD prompt. The CAD accuracy rate in these experi-
ments was chosen to reflect CAD accuracy in a clinical 
setting, which is estimated to vary from 57% (Soo et al., 
2005) to 85% (Obenauer et  al., 2006; see also Henrik-
sen et al., 2019, who report a CAD accuracy of between 
65 and  77%). Therefore, CAD accuracy of 67% in these 
experiments falls within this range. Participants were not 
informed of the CAD accuracy rate but told that in some 
trials the CAD cue would give accurate information and 
in some trials it would not.

For Experiments 1 and 3 the Recall CAD prompt gave 
the message ‘Cancer Present’. For Experiments 2 and 
4 the Recall CAD prompt showed the less definitive 
message of ‘Cancer Likely’. In Experiments 1 and 2 the 
CAD prompt (i.e., a Recall CAD message) appeared on 
only some of the trials. For Experiments 3 and 4 a CAD 
prompt appeared on all the trials. Therefore, for Experi-
ments 1 and 2, on ‘No Recall’ trials there was no CAD 
prompt shown, whereas in Experiment 3, the No Recall 
message was ‘Cancer Absent’ and in Experiment 4, the 
No Recall message was ‘Cancer Not Likely’. Participants 
were made aware of what the CAD message would say 
before each experiment (e.g., ‘Cancer Present’ or ‘Cancer 
Likely’). Tables  1 and 2 give a summary of the different 
experimental conditions. Example stimuli can be found 
in Fig. 1.

In both the practice and experimental blocks, for each 
trial participants were asked to respond whether a can-
cer was present or absent by pressing the ‘m’ or ‘z’ key, 
respectively. Images were presented to each participant 
in a random order and remained on the screen until 
participants gave a response. Reaction Times (RTs) and 
error rates were recorded. In accordance with Fleck 

and Mitroff’s (2007) theory that the LP effect could be 
due to response-execution motor errors (where partici-
pants made motor errors by responding too fast) par-
ticipants were asked to confirm their response on each 
trial by pressing the ‘m’ or ‘z’ key for target present and 
absent responses respectively. This allowed participants 
to self-correct any motor mistakes if they realised they 
had pressed the wrong key by accident. This confirmed 
response was used to calculate final error rates for analy-
sis. For both the training and practice trials, feedback 
was provided, however none was provided on the experi-
mental trials, mimicking conditions in a clinical setting 
where readers receive no immediate feedback. RTs over 
10,000  ms and those less than 200  ms were considered 
outliers and removed from data analysis.

The over-reliance effect was measured as the difference 
in error rates when the CAD message indicated a cancer 
(i.e., in Recall trials) compared to when it did not (No 
Recall trials). That is, when a cancer went unprompted by 
CAD, were participants more likely to miss it? Further-
more, on trials where no cancer was present were par-
ticipants more likely to report a false alarm with a Recall 
message compared to a No Recall message.

Results
The outlier procedure removed 1.02%, 1.33%, 0.39% and 
0.90% of all data in Experiments 1, 2, 3 and 4 respectively. 
Error rates for all conditions are presented in Figs. 2 and 3. 
In line with previous work, we were concerned with how 
CAD affected miss errors and false alarm rates indepen-
dently from each other (Alberdi et al., 2004; Drew et al., 
2020; Kunar, 2022; Kunar & Watson, 2023; Kunar et  al., 
2017). Thus, data were analysed accordingly throughout.

Table 1 Summary of experimental conditions

Experiment N Recall—CAD message No recall—CAD message CAD occurrence

1 39 ‘Cancer Present’ No message Some trials

2 39 ‘Cancer Likely’ No message Some trials

3 38 ‘Cancer Present’ ‘Cancer Absent’ All trials

4 36 ‘Cancer Likely’ ‘Cancer Not Likely’ All trials

Table 2 Trial numbers of conditions for each experiment

Number of 
recall trials

Number of no 
recall trials

Total 
number of 
trials

Cancer present trials 20 10 30

Cancer absent trials 90 180 270



Page 6 of 13Patterson and Kunar  Cognitive Research: Principles and Implications            (2024) 9:59 

Miss errors
Miss Errors were examined using a 2 × 2 × 2 repeated 
measures ANOVA with within participant factors of 
Recall (whether a CAD ‘Recall’ message was presented 
vs. ‘No Recall’ message) and between experiment fac-
tors of CAD Message (Present vs. Likely) and CAD 

Occurrence (Some vs. All trials). The results showed that 
there was a main effect of CAD Recall, F(1, 148) = 18.32, 
p < 0.001, η2

p = 0.11. Participants missed more cancers 
when there was a ‘No Recall’ message compared to when 
there was a ‘Recall’ message, showing an over-reliance 
effect. There was no main effect of CAD Message, F(1, 

Fig. 1 Examples of the images used in the Experiments. Note. Examples A(i) and A(ii) show a Recall CAD prompt with a ‘Cancer Present’ 
message (used in Experiments 1 and 3). Example A(i) contains a cancer, Example A(ii) does not. Examples B(i) and B(ii) show a Recall CAD 
prompt with a ‘Cancer Likely’ message (used in Experiments 2 and 4). Example B(i) contains a cancer, Example B(ii) does not. Examples C show 
mammograms where a cancer was present, however in the Experiments there were also images where there was no cancer. Example C(i) shows 
a No Recall trial with no CAD prompt given (used in Experiment 1 and 2). Example C(ii) shows a No Recall CAD prompt giving a ‘Cancer Absent’ 
message (used in Experiment 3). Example C(iii) show a No Recall CAD prompt giving a ‘Cancer Not Likely’ message (used in Experiment 4). In these 
examples a red dotted line highlights the position of the cancer. The red dotted line did not appear in the experiment proper
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148) = 1.74, p = 0.19, η2
p = 0.01. However, the main effect 

of CAD Occurrence was significant, F(1, 148) = 7.38, 
p = 0.007, η2

p = 0.05. Participants missed more cancers 
in conditions where CAD was shown on all trials com-
pared to when it was only present on some of the trials. 
The Recall × CAD Message interaction was significant, 
F(1, 148) = 9.03, p = 0.003, η2

p = 0.06, where the difference 
in miss errors between Recall and No Recall conditions 
(i.e., the ’over-reliance’ effect) was greater when the CAD 
message said the cancer was present compared to when it 
was likely. The Recall × CAD Occurrence interaction was 
also significant, F(1, 148) = 34.31, p < 0.001, η2

p = 0.19, 
where the difference in miss errors between Recall and 
No Recall conditions (the ’over-reliance’ effect) was 
greater when the CAD message was present on all trials 
in comparison to some trials. None of the other interac-
tions were significant (all Fs < 1.3, ps > 0.25).

False alarms
A 2 × 2 × 2 repeated measures ANOVA with within 
participant factors of Recall (Recall vs. No Recall) and 
between experiment factors of CAD Message (Present 

vs. Likely) and CAD Occurrence (Some vs. All trials) was 
conducted on False Alarms. There was a main effect of 
CAD Recall, F(1, 148) = 58.75, p < 0.001, η2

p = 0.28. Par-
ticipants made more false alarms when the CAD prompt 
indicated the presence of a cancer, compared to when it 
did not (or when no CAD prompt was given). There was 
no main effect of CAD Message, F(1, 148) = 0.16, p = 0.69, 
η2

p = 0.001. Neither was there a main effect of CAD 
Occurrence, F(1, 148) = 0.002, p = 0.96, η2

p = 0.000. None 
of the interactions were significant (all Fs < 1.8, ps > 0.19).

Signal detection theory
Signal Detection Theory (SDT, Green & Swets, 1966; 
Macmillan & Creelman, 2005) was used to calculate d’ 
(sensitivity) and c (criterion) in each experiment.2 Fig-
ures 4 and 5 shows the d’ and c values, respectively. 

Fig. 2 Miss error rates for all conditions. Note. Error bars represent 
the standard error

Fig. 3 False alarm rates for all conditions. Note. Error bars represent 
the standard error

Fig. 4 D’ values for all conditions. Note. Error bars represent 
the standard error

Fig. 5 C values for all conditions. Note. Error bars represent 
the standard error

2 False alarm or miss error rates of 0 and 1 were adjusted using the formulas 
1/2n and 1 − (1/2n), where n = the number of trials (Macmillan & Kaplan, 
1985, see also Russell & Kunar, 2012; Wolfe et al., 2007; Kunar et al., 2021; 
Kunar, 2020; Kunar & Watson, 2023, who used this procedure).
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Sensitivity (d’)
A 2 × 2 × 2 repeated measures ANOVA with within 
participant factors of Recall (Recall vs. No Recall) and 
between experiment factors of CAD Message (Present 
vs. Likely) and CAD Occurrence (Some vs. All trials) 
was conducted on d’. There was no main effect of Recall, 
F(1, 148) = 2.76, p = 0.10, η2

p = 0.018. Neither was there a 
main effect of CAD Occurrence, F(1, 148) = 1.99, p = 0.16, 
η2

p = 0.013. However, there was a main effect of CAD 
Message, F(1, 148) = 4.63, p = 0.03, η2

p = 0.03. D Prime 
was greater when the CAD message stated that a cancer 
was ‘present’ in comparison to when it was ‘likely’. There 
was a significant Recall × CAD Message interaction, F(1, 
148) = 4.31, p = 0.04, η2

p = 0.03, in which the difference in 
d’ between a Recall and No Recall CAD was greater when 
the CAD Message indicated a cancer was likely rather 
than a cancer was present. There was also a significant 
Recall x CAD Occurrence interaction, F(1, 148) = 13.28, 
p < 0.001, η2

p = 0.082, in which the difference in d’ 
between the Recall and No Recall conditions was greater 
when the CAD message was shown on some of the trials 
versus when it was shown on all of the trials. None of the 
other interactions were significant (all Fs < 1.2, ps > 0.28).

Criteria, (c)
A 2 × 2 × 2 repeated measures ANOVA with within partic-
ipant factors of Recall (Recall vs. No Recall) and between 
experiment factors of CAD Message (Present vs. Likely) 
and CAD Occurrence (Some vs. All trials) was conducted 
on c. There was a main effect of Recall, F(1, 148) = 176.74, 
p < 0.001, η2

p = 0.54, in which participants were less will-
ing to respond that a target was present in the No Recall 
condition in comparison to the Recall condition. There 
was no main effect of CAD Occurrence, F(1, 148) = 1.60, 
p = 0.21, η2

p = 0.011. Neither was there a main effect of 
CAD Message, F(1, 148) = 0.18, p = 0.67, η2

p = 0.001. There 
was a significant Recall × CAD Message interaction, F(1, 
148) = 17.58, p < 0.001, η2

p = 0.11, in which there was a big-
ger difference in response criteria between the Recall and 
No Recall condition when the CAD message said the can-
cer was present compared to when it said the target was 
likely. There was also a significant Recall × CAD Occur-
rence interaction, F(1, 148) = 25,14, p < 0.001, η2

p = 0.15, 
in which there was a bigger difference in response crite-
ria between the Recall and No Recall condition when the 
CAD message was presented on all trials compared to 
some of the trials. None of the other interactions were sig-
nificant (all Fs < 1.2, ps > 0.29).

Comparison of CAD systems: which system is best?
To compare CAD Systems across the experiments we 
calculated the mean overall miss errors, false alarms, the 

Recall Rate and the Positive Predictive Value (PPV) for 
Experiments 1–4 (see Figs. 6, 7 and Table 3). Recall Rate 
(i.e., the percentage of mammograms that were reported 
to have abnormal findings) and PPV (i.e., the percentage 
of women recalled for further tests who have cancer) are 
important clinical metrics within breast cancer screening 
(e.g., Norsuddin et  al., 2015; Rauscher et  al., 2021; Tay-
lor-Phillips et  al., 2024) and were calculated as follows, 
in which TP stands for True Positive, FP stands for False 
Positive (false alarms), TN stands for True Negative and 
FN stands for False Negative:

Fig. 6 Overall mean miss errors across CAD systems in experiments 
1–4. Note. Error bars represent the standard error

Fig. 7 Overall mean false alarms across CAD systems in experiments 
1–4. Note. Error bars represent the standard error

Table 3 Mean recall rate and PPV across experiments

Standard errors are shown in the parentheses

Recall rate (%) PPV (%)

Experiment 1 16.7 (1.30) 67.6 (3.44)

Experiment 2 16.5 (0.98) 61.0 (2.80)

Experiment 3 15.5 (0.99) 64.6 (3.03)

Experiment 4 16.9 (1.34) 61.6 (3.52)
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One way between experiment ANOVAs were used to 
analyse which of the CAD systems (if any) showed bet-
ter performance in each of these measures. The results 
showed there to be a difference in the miss errors across 
CAD systems, F(3, 148) = 3.22, p = 0.02, η2

p = 0.061, 
with the CAD system in Experiment 1 producing fewer 
overall miss errors compared to the other systems. 
However, there was no difference across CAD systems 
in false alarms, F(3, 148) = 0.29, p = 0.83, η2

p = 0.006, 
Recall Rates, F(3, 148) = 0.27, p = 0.85, η2

p = 0.006, or 
PPV,3 F(3, 148) = 0.68, p = 0.56, η2

p = 0.014.

General discussion
Previous research has shown that when a CAD system 
used exogenous cues to highlight a cancer, an over-reli-
ance effect emerged where participants became overly 
dependent on the CAD cues. The current study inves-
tigated whether an over-reliance effect also occurred 
with CAD systems that presented binary CAD recom-
mendations alongside the mammogram. Experiments 
1 and 2 presented a CAD message on some of the tri-
als to indicate the presence of a cancer. In Experiment 
1 the message stated that a cancer was present, while in 
Experiment 2, the message stated that a cancer was likely. 
Experiments 3 and 4 presented a CAD message on every 
trial to indicate that a cancer was either present or absent 
(Experiment 3) or that a cancer was either likely or not 
likely (Experiment 4).

The data make several important points. First, even 
when using CAD as a binary system, an over-reliance 
effect emerged. For False Alarms, participants were more 
likely to (incorrectly) respond that a cancer was present 
when shown a CAD Recall message. For miss errors, par-
ticipants were more likely to miss a cancer when there 
was no CAD message (Experiments 1 and 2) or when they 
were presented with a No Recall message (Experiments 3 
and 4). This over-reliance effect was greater when a CAD 
message was presented on all trials compared to when it 

Recall Rate =

∑
(TP+ FP)

∑
(TP+ FP+ TN+ FN)

× 100

PPV =

∑
TP

∑
(TP+ FP)

× 100

was only presented on some of the trials. Furthermore, 
the over-reliance effect was more pronounced when the 
CAD message said the cancer was ‘present’ compared to 
when it said a cancer was ‘likely’. In a clinical setting, any 
increase in miss errors and false alarms have their own 
associated problems. Miss errors are obviously worrying 
as it means that an undiagnosed cancer will go untreated, 
having potentially serious health consequences for the 
women involved. False alarms frequently mean that 
recalled women undergo further tests which can be both 
invasive and costly (in terms of time and money) to both 
the women involved and the healthcare system. Further-
more, women who have been falsely recalled have been 
known to report feelings of psychological distress (Aro, 
2000) and may delay participation or not participate at all 
in future screening programs (Kahn & Luce, 2003).

Please note that in Experiment 2, miss errors when a 
Recall message was present were higher than trials when 
there was no CAD message. This pattern was opposite of 
what would be predicted from the over-reliance effect. 
The reason for this was unclear. One could argue that 
the message ‘Cancer Likely’ led people to ‘second guess’ 
and dismiss the CAD cue more often compared to when 
the CAD cue was definitive (Cancer Present). However, 
this seems unlikely given that the same pattern was not 
observed in Experiment 4. It may be that miss errors in 
Experiment 2 were artificially inflated in this experiment, 
but as the mammogram stimuli were identical across 
experiments it is again unclear what would be driving 
this. Future research will be needed to investigate this 
further.

A comparison between binary CAD systems showed 
that while there was no difference in overall false alarms, 
Recall Rate or PPV across experiments, there were 
fewer miss errors for the CAD system tested in Experi-
ment 1. Miss errors are an important metric that can be 
measured in the laboratory but cannot be easily deter-
mined in a clinical setting as by definition, a radiologist 
will only become aware that they have missed a cancer 
if the woman becomes symptomatic between routine 
breast screening checks. An explanation for the reduc-
tion in miss errors in Experiment 1 may be gleaned from 
the SDT data, which showed that participants’ sensitiv-
ity to detect a target was greater when the CAD message 
read ‘present’ rather than ‘likely’. Furthermore, on No 
Recall trials participants were less willing to commit to 
a response that a cancer was present when the CAD was 
shown on all trials, versus some of them. Based on these 
experiments we would recommend the binary CAD 
system in Experiment 1 be tested for use in a clinical 
setting (e.g., definitive messages presented only on mam-
mograms where a cancer is suspected). Future research 
would, of course, be needed to ascertain whether the 

3 Please note that, although the PPV rates found in these experiments were 
similar to PPV rates found in Europe, they are higher than those typically 
found in the USA (which range from 15 to 30% approximately; Kopans, 
1992). These differences are likely to be due to these experiments being run 
in a laboratory compared to a clinical setting. Further research would be 
needed to investigate how Recall Rates and PPV are affected by binary CAD 
presentation within a real-world setting.
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same benefits would occur with medical readers. Despite 
this, there is compelling evidence to show that principles 
found in the lab can be applied to healthcare profession-
als. For example, the proportion of miss error rates in the 
lab are similar to radiologists reading mammograms in 
a clinical setting (Evans et al., 2013). Furthermore, over-
reliance effects with salient CAD cues, also appear to 
occur with radiologists (Zheng et  al., 2004). Given that 
similar search strategies have been found in both non-
medical and medically-trained readers (Wolfe et  al., 
2016) we would predict that a similar benefit found in the 
binary CAD system of Experiment 1 would also be likely 
to occur to breast cancer screening in the real world.

Please also note that the over-reliance effect observed 
in these binary CAD systems may be affected by radi-
ologist experience. It has been suggested that radiolo-
gists with more experience tend to interact with CAD 
less than those with less experience (Hupse et al., 2013). 
Goldenberg and Peled (2011) suggested that for binary 
CAD systems, outcomes that are positive in identifying 
a disease should be verified by more experienced read-
ers, while those with a negative outcome could be con-
sidered by less experienced staff (particularly if CAD 
systems were used as a way to triage patients). However, 
we would suggest that for mammography, dividing cases 
based on staff experience would not result in best prac-
tice. Triaging acute medical conditions based on CAD 
outputs would be important in emergency situations 
where diagnosis is time critical as urgent cases could be 
treated by an experienced physician in a timely manner 
(Goldenberg & Peled, 2011). However, in cases where 
the disease is chronic, such as with cancer screening, 
the benefit of separating CAD outputs via reader expe-
rience would be negligible and possibly damaging. That 
is, if less experienced clinicians were more dependent on 
CAD, they would be more likely to miss a cancer if it was 
not flagged by the CAD prompt. Thus, consideration of 
how to allocate CAD outputs across readers with differ-
ent experience needs to be considered by future research.

It is also worth noting that mammogram reading pro-
cedures differ globally. Double reading mammogram 
procedures are considered standard practice in the UK, 
(Chen et al., 2023) and across most other European coun-
tries (Balta et  al., 2020), whereas single reading is the 
more common practice in the USA. The use of CAD in 
mammogram screening across different countries will 
therefore be affected by current practices and regula-
tions in different parts of the world. Nevertheless, as 
double reading is considered labour intensive and there 
is continued concern about the number of radiologists 
currently available (Chen et  al., 2023) there has been 
increased interest as to whether AI and automated aids 
can be feasibly used as a ‘second reader’ to help workflow 

within mammographic screening (Geras et  al., 2019; 
Rodriguez-Ruiz et al., 2019). Data from experiments such 
as these can help inform clinicians of the optimal way to 
present AI prompts to readers.

There are, of course, limits to the conclusions that we 
can make based on this study given that the experimen-
tal procedure is very different to clinical procedures in 
mammography. First, in our experiments participants 
were only shown one mammogram image at a time with 
no control over how the image was presented. This is 
very different from normal clinical practice in which 
radiologists have a custom hanging protocol for how 
images are displayed. Furthermore, radiologists are able 
to view images from prior mammograms for comparison 
if they chose to whereas, participants were not offered 
that option in our experiments. This may have affected 
participant’s over-reliance on the CAD prompt, as they 
had less control of what they were presented. Second, in 
Experiments 3 and 4 a CAD message was shown on all 
trials. For present purposes, we have compared errors in 
the Recall vs. No Recall conditions to measure the over-
reliance effect. However, in future work it would be good 
to compare these data to a baseline condition in which 
No CAD message was presented. Third, in a clinical set-
ting the prevalence rate of a cancer is much lower than 
the 10% prevalence rates exhibited in our experiments. 
Wolfe et al. (2005) have found that miss errors increase 
as the prevalence of the target decreases. Furthermore, 
search strategies change under low prevalence condi-
tions. Wolfe and Van Wert (2010) proposed a Multiple-
Decision Model stating that at low prevalence, the time 
spent searching a display before terminating search is 
decreased and there is also a shift in response bias so that 
people require more evidence before committing to a tar-
get present response. Further research would be needed 
to determine if the effects found in the current study also 
apply to a clinical setting when searching for a cancer 
with a lower prevalence rate.

CAD use in mammography has the potential to help 
save lives. The rise of AI in breast screening is promising 
in terms of helping readers with the mammography task 
and helping with the workload in healthcare systems. Of 
course, along with the visual output of CAD recommenda-
tions it is also important to consider where to add AI into 
the healthcare workflow. Having AI be fully automated 
and used as a standalone reader to make a clinical recom-
mendation would be beneficial in relieving the workload 
for healthcare professionals (Raya-Povedano et  al., 2021). 
However, it has been found participants feel more comfort-
able with AI acting as an additional reader in the workflow, 
acting alongside a human rather than it being used to make 
an independent clinical diagnosis outside of human input 
(Ng et al., 2023; Ongena et al., 2021). Ng et al. (2023) have 
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suggested that adding AI into the workflow as a supporting 
reader may be the best approach to capture the benefits of 
CAD, while assuaging the concerns of patients. Here, the 
AI acts as a second reader. However, in  situations where 
there is a disagreement between the human reader and the 
AI then the case is deferred to another human reader for 
assessment. Given the range of possibilities of presenting 
CAD and how the different strategies affect clinical out-
comes it is clear that ever-more research is needed to inves-
tigate how humans optimally interact with CAD systems.

Conclusion
Previous research has found that over-trust in computer-
aided systems can lead users to make diagnostic errors 
(Jorritsma et al., 2015). The present data add to the nar-
rative that the way we present CAD to humans affects 
how we interact with it. Although Goldenberg and Peled 
(2011) hoped that binary CAD would be an advancement 
of traditional CAD systems, our work has shown that 
binary CAD systems are still susceptible to over-reliance 
behaviours. Showing that a similar effect also occurs in a 
clinical field will be important to establish going forward 
with the increased exploration of how AI and other auto-
mated decision systems will be rolled out across health-
care services.
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