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Trust in automation and the accuracy 
of human–algorithm teams performing 
one-to-one face matching tasks
Daniel J. Carragher1*  , Daniel Sturman1 and Peter J. B. Hancock2 

Abstract 

The human face is commonly used for identity verification. While this task was once exclusively performed 
by humans, technological advancements have seen automated facial recognition systems (AFRS) integrated 
into many identification scenarios. Although many state-of-the-art AFRS are exceptionally accurate, they often 
require human oversight or involvement, such that a human operator actions the final decision. Previously, we have 
shown that on average, humans assisted by a simulated AFRS (sAFRS) failed to reach the level of accuracy achieved 
by the same sAFRS alone, due to overturning the system’s correct decisions and/or failing to correct sAFRS errors. The 
aim of the current study was to investigate whether participants’ trust in automation was related to their performance 
on a one-to-one face matching task when assisted by a sAFRS. Participants (n = 160) completed a standard face 
matching task in two phases: an unassisted baseline phase, and an assisted phase where they were shown the iden-
tification decision (95% accurate) made by a sAFRS prior to submitting their own decision. While most participants 
improved with sAFRS assistance, those with greater relative trust in automation achieved larger gains in performance. 
However, the average aided performance of participants still failed to reach that of the sAFRS alone, regardless of trust 
status. Nonetheless, further analysis revealed a small sample of participants who achieved 100% accuracy when aided 
by the sAFRS. Our results speak to the importance of considering individual differences when selecting employees 
for roles requiring human–algorithm interaction, including identity verification tasks that incorporate facial recogni-
tion technologies.

Keywords Identity verification, Human–computer interaction, Face recognition, Human factors, Collaborative 
decision-making

Significance statement
Automated facial recognition systems (AFRS) are com-
puter algorithms that can compare the appearance of 
two faces to indicate whether they likely show the same 
person or two different people. The exceptional accu-
racy of many modern AFRS (often > 99.9%) has led to 

their integration into many identity verification scenar-
ios, such as passport control. However, AFRS still make 
errors, meaning human involvement is often required. 
While we tend to be very good at matching familiar faces, 
the average human errs on 10–30% of trials in standard 
unfamiliar face matching tasks. As such, human involve-
ment in AFRS decision-making is not certain to produce 
perfect task accuracy. We have previously shown that 
human–AFRS teams were outperformed by the same 
simulated AFRS alone, since humans often overturned 
correct decisions from the system, while also failing 
to detect or correct actual errors. In the current study, 
we investigated whether certain characteristics might 

*Correspondence:
Daniel J. Carragher
daniel.carragher@adelaide.edu.au
1 School of Psychology, Faculty of Health and Medical Sciences, University 
of Adelaide, Adelaide, SA 5005, Australia
2 Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, 
Scotland, UK

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41235-024-00564-8&domain=pdf
http://orcid.org/0000-0003-2265-4737


Page 2 of 17Carragher et al. Cognitive Research: Principles and Implications            (2024) 9:41 

make some participants better at this task than others. 
Specifically, we examined whether participants’ trust 
in automation was related to the level of face matching 
performance they achieved when assisted by a simu-
lated AFRS. As expected, participants with greater trust 
in automation, or generally favourable attitudes towards 
the AFRS, achieved larger gains in performance when 
using the simulated AFRS as a decision aid, compared to 
participants with lower automation trust or greater self-
confidence. Our results may have implications for the 
selection and training of professionals working in roles 
that require the evaluation or oversight of identity verifi-
cation decisions made by facial recognition technologies.

Introduction
There are many scenarios in which the human face 
is used for identification. For example, when travel-
ling internationally, border control officers must decide 
whether a passport image matches the person present-
ing it for inspection. This is an example of a one-to-one 
face matching task, in which an observer must compare 
two faces—whether in the form of images, video, or live 
appearance—to determine whether they show the same 
person or two different people. These types of matching 
tasks can also occur in other contexts, such as buying 
age restricted products, opening bank accounts, or dur-
ing interactions with law enforcement officers. Despite 
the prevalence of face matching tasks for identifica-
tion purposes, decades of research have shown that the 
performance of the average human on this task is error 
prone when the faces are unfamiliar to the observer 
(Bruce et al., 1999; Burton et al., 2010; Kemp et al., 1997; 
Megreya & Burton, 2006).

Although there are substantial differences in unfamil-
iar face matching ability between individuals, the average 
observer commonly makes errors in 10–30% of judg-
ments, depending on the specific face matching test used 
(Burton et  al., 2010; Fysh & Bindemann, 2018b; White 
et al., 2022). However, the individual differences are such 
that some observers consistently achieve perfect, or near 
perfect, performance, while others barely surpass chance 
(Bobak et  al., 2016b; Burton et  al., 2010; White et  al., 
2017). Curiously, face matching ability is rather resistant 
to improvement via training (Towler et al., 2019; Towler 
et al., 2014; c.f. Towler et al., 2021), and employment in 
a professional role that requires making face matching 
decisions regularly is not certain to lead to improved per-
formance (e.g. White et  al., 2014; c.f. Wirth & Carbon, 
2017). In addition to being somewhat error prone, the 
performance of human observers deteriorates as time on 
task increases (Alenezi et al., 2015), and when subject to 
time pressures (Fysh & Bindemann, 2017). These perfor-
mance characteristics can be problematic in real-world 

contexts that require identity screening over prolonged 
periods of time, such as at airports.

Automated facial recognition systems (AFRS) are com-
puter algorithms capable of performing identification 
tasks (i.e. comparing one image to an entire database), or 
verification tasks (i.e. comparing one image to another 
specified image). Here we are interested in their perfor-
mance on verification tasks. While a detailed explanation 
of their computational structure is presented elsewhere 
(Noyes & Hill, 2021), we can summarise that these algo-
rithms must locate a face in the submitted image, before 
processing the face to produce a vector of numbers that, 
in effect, describes the characteristics of the face. The 
algorithm then compares this vector to that created for 
the other submitted image. The comparison of these 
vectors generates a similarity value, which is evaluated 
against a threshold that has been calibrated to an accept-
able level of false positive decisions (FRONTEX, 2015). 
Values to one side of the threshold are indicative of an 
identity match, while values to the other side signal an 
identity mismatch.

While the performance of early algorithms was 
comparable to average novice humans only on high-
quality imagery (O’Toole et  al., 2007b), many state-of-
the-art algorithms (deep convolutional neural networks: 
DCNNs) are now comparable to—or surpass—the best 
human observers (Hancock et  al., 2020; Phillips et  al., 
2018). While performance varies substantially between 
algorithms, and can be influenced by a variety of image 
factors, publicly available testing data shows that many 
of the top algorithms achieve accuracy > 99.9% on stand-
ardised databases of high-quality images (National Insti-
tute of Standards and Technology, 2024). Despite their 
impressive performance, these algorithms still make mis-
takes (Grother et al., 2021; Hancock et al., 2020). As such, 
a human is often required to be included in the decision-
making process with AFRS (Fysh & Bindemann, 2018a; 
MacLeod & McLindin, 2011), a model of “human-in-the-
loop” oversight that is a form of human–algorithm team-
ing (Howard et al., 2020).

Previous research has suggested that significant perfor-
mance gains can be made by combining the independent 
identification decisions made by humans and algorithms 
(O’Toole et  al., 2007a; Phillips et  al., 2018). However, 
the few studies that have investigated the performance 
of interacting human–algorithm teams have not found 
such impressive performance gains (Barragan et al., 2022; 
Carragher & Hancock, 2023; Fysh & Bindemann, 2018a; 
Howard et al., 2020). Rather, these studies point to a pat-
tern of sub-optimal use of the AFRS as a decision aid by 
the human operator (Bartlett et  al., 2023). That is, they 
either disregard correct decisions from the system, or fail 
to correct errors from the system. Howard et  al. (2020) 
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reported that humans were biased to shift their identifi-
cation decision towards that of the AFRS, regardless of 
the accuracy of the algorithm’s decision. This tendency 
was exacerbated when the faces were shown wearing face 
masks (Barragan et al., 2022). Similarly, Fysh and Binde-
mann (2018a) showed that human accuracy was higher 
on trials that were answered correctly by the AFRS, but 
lower on those that the algorithm erred on. The findings 
from these studies suggest that humans tend to follow 
the decisions from the algorithm, regardless of whether 
the decision is correct. We note here that these labora-
tory-based studies differ in their use of AFRS; Carragher 
and Hancock (2023) showed participants decisions from 
a “simulated” AFRS that were informed by the perfor-
mance of a real algorithm on the same matching task, 
whereas both Fysh and Bindemann (2018a) and Howard 
et al. (2020) showed participants decisions from “AFRS” 
that was entirely fictitious (for further discussion, see 
Carragher & Hancock, 2023).

We have previously investigated changes in human 
face matching performance when assisted by a simulated 
AFRS (Carragher & Hancock, 2023). We use the term 
“simulated” AFRS to accurately convey that while a real 
DCNN was used to inform the performance of the simu-
lated AFRS that was shown to participants in our experi-
ments, we also introduced errors that the real system did 
not make, so that we could study participants’ ability to 
detect and overturn incorrect decisions from an algo-
rithm. We use the abbreviation sAFRS from here on in 
to refer to the simulated AFRS shown to participants in 
our experiments. Across five experiments, Carragher 
and Hancock (2023) found that participants significantly 
improved their own face matching performance when 
shown the identification decisions from a sAFRS that was 
given accuracy above 90.5%. However, the performance 
of the human–sAFRS team was consistently sub-optimal, 
failing to reach the level of performance that the sAFRS 
achieved alone. Human operators tended to overturn 
correct decisions from the sAFRS, while also failing to 
correct the errors made by the decision aid. This consist-
ent pattern of results demonstrated that, at least in this 
simplified model of human–sAFRS teaming, the human 
operator is a factor limiting the performance of the sys-
tem (Carragher & Hancock, 2023; Heyer et  al., 2018; 
White et al., 2015a).

To date, human–algorithm teaming research in the 
context of face matching has largely focused on address-
ing basic questions of collaborative performance when 
humans use AFRS as decision aids (Carragher & Han-
cock, 2023; Fysh & Bindemann, 2018a; Howard et  al., 
2020). These studies have not investigated whether 
there are individual differences in the effective use of 
these decision aids. Yet, factors that influence the use of 

automated decision aids more generally have been stud-
ied for decades in the field of human factors research 
(Lee & Moray, 1994; Parasuraman & Riley, 1997; Riley, 
2018; Wickens et  al., 2015). Among the many factors 
shown to influence automation use, including self-con-
fidence (Riley, 1989) and workload (Parasuraman et  al., 
1993), trust in the automated decision aid is crucial to 
use of automated systems (Hoff & Bashir, 2015; Lee & 
See, 2004).

Trust in automation requires an appropriate level 
of calibration between the expectations of the opera-
tor and the capabilities of the automation  (Lee & See, 
2004). Excessive trust in an automated system can lead 
to overreliance and complacency (Wickens et  al., 2015). 
That is, due to high levels of trust, operators might defer 
decision-making to the automated system, and subse-
quently fail to notice and correct errors made by the 
system (Dixon et  al., 2007). Conversely, mistrust in the 
automated system can result in under reliance or disuse, 
whereby operators reject correct decisions from the aid 
(Parasuraman & Riley, 1997; Wickens, 1995). Conse-
quently, in environments where there tends to be under 
reliance or disuse of a reliable automated decision aid, 
higher levels of trust in automation may be associated 
with better collaborative team performance.

Trust in automation is a multifaceted construct (Hoff & 
Bashir, 2015). While trust is dependent on the accuracy 
of the automation (Riley, 2018), trust can also be learned 
dynamically through experiencing the system’s accu-
racy (Ross et al., 2008). Perceptions of accuracy may also 
depend on the types of errors made by the automation. 
For instance, a system that makes errors that are obvious 
to a human might lead to a general distrust in the accu-
racy of its other decisions (Madhavan et al., 2006). Fur-
ther, the extent to which trust in automation influences 
reliance on the system is influenced by the human’s con-
fidence in their own ability to complete the task (Riley, 
2018). If trust in the automation exceeds self-confidence, 
there is increased likelihood of reliance on the automated 
decision aid (Lee & See, 2004). These findings suggest 
that reliance on an AFRS may be dependent on the inter-
play between the human’s trust in the system and self-
confidence in their ability to match faces.

The aim of the current project is to investigate how 
operators’ trust in automation might influence their use 
of a sAFRS in a one-to-one face matching task. From the 
literature reviewed above, our overarching prediction is 
that there will be a positive relationship between trust 
in the sAFRS and collaborative performance gains, such 
that participants who express higher levels of trust in 
automation will benefit most when using the sAFRS as a 
decision aid.
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Experiment 1
We begin by briefly reporting the results of new explora-
tory analyses of previously unreported data from Car-
ragher and Hancock (2023), for the purpose of informing 
the pre-registered predictions that we make in Experi-
ment 2. At the end of several experiments reported in 
Carragher and Hancock (2023), we asked participants 
exploratory questions about their beliefs regarding the 
accuracy of humans and algorithms on face matching 
tasks. Participants were also asked whether they thought 
that they were more accurate than an AFRS at face 
matching, and whether they would prefer to work with 
a human or an AFRS if they were to do the task again. It 
was beyond the scope of our first paper to examine these 
responses. Here, we analyse these data for the first time 
to investigate whether the responses to these questions 
were related to the level of collaborative performance 
participants achieved when assisted by the sAFRS.

Methods
These analyses were conducted on the data of 101 par-
ticipants (Mage = 32.1, SD = 11.0), combined from the 
AFRS conditions of Experiment 1a and Experiment 1b 
of Carragher and Hancock (2023). Briefly, these par-
ticipants completed the Expertise in Facial Comparison 
Test (EFCT; White et al., 2015b) in two phases: an unas-
sisted baseline phase, and an aided task phase where 
they were shown the identification decision made by an 
sAFRS prior to making their own response. The EFCT 
was divided into Set A and Set B (which each consisted of 
42 match trials and 42 mismatch trials; see White et al., 
2015b), the presentation of which were counterbalanced 
across the baseline and aided task phases between par-
ticipants. The sAFRS was given an accuracy of 97.6% on 
the EFCT, such that it made 2 errors (1 match trial, 1 
mismatch trial), in the aided task phase (82/84 correct). 
At the conclusion of the face matching task, participants 
were asked exploratory questions including “Do you think 
that your face matching abilities are better than those of a 
computer system?” (Definitely Not, Probably Not, Prob-
ably Yes, Definitely Yes; converted to binary responses 
of “no” and “yes” for analysis here), “Imagine that you 
were going to do this task again. If you could choose your 
source of help, would you prefer to see the decisions made 
by a computer system or those made by another person?” 
(computer, person), and to estimate the accuracy of 
themselves, the average human, the simulated facial rec-
ognition system from the experiment, and “the best facial 
recognition system in the world”, on a face matching task 
(0–100%). For further methodological details, please see 
Carragher and Hancock (2023). The measure of perfor-
mance reported below is overall accuracy.

Ethics
The original research (Carragher & Hancock, 2023) was 
conducted with the approval of the General University 
Ethics Panel at the University of Stirling. All participants 
gave their informed consent prior to data collection. The 
current line of research received ethical approval from 
the Human Research Ethics Subcommittee in the School 
of Psychology at the University of Adelaide.

Results
While the average performance of all participants 
improved from baseline (M = 75.79, SD = 7.32) to the 
test phase (M = 84.97, SD = 9.31) with sAFRS assistance, 
(t(100) = 11.29, 95% CI [7.57, 10.80], p < 0.001, d = 1.12), 
participants who later reported that they would rather 
complete the face matching task again with the assis-
tance of a sAFRS (n = 50) showed greater absolute change 
in overall accuracy (Mchange = 12.86, SD = 6.90) than 
participants (n = 51) who had a preference for a human 
partner (Mchange = 5.58, SD = 7.76), (t(99) = 4.98, 95% CI 
[4.38, 10.18], p < 0.001, d = 0.99). Similarly, participants 
who reported that the sAFRS was likely better at face 
matching than they were (n = 72) showed greater abso-
lute change in performance when aided (Mchange = 10.23, 
SD = 7.99) than individuals who thought they were 
more accurate (n = 29) than the sAFRS (Mchange = 6.57, 
SD = 8.16), (t(99) = 2.07, 95% CI [0.16, 7.18], p = 0.041, 
d = 0.46). Finally, we created a relative estimated accu-
racy score by subtracting participants’ estimates of their 
own face matching accuracy (made as a percentage from 
0–100%) from their estimate of the accuracy of the sAFRS 
in the experiment, such that positive values meant that 
the sAFRS was estimated to be more accurate. A signifi-
cant positive correlation, r(99) = 0.23, p = 0.021, indicated 
that participants who estimated that the sAFRS was more 
accurate at face matching than they were showed greater 
improvement when using it as a decision aid.

Discussion
The results of these exploratory analyses suggest that 
participants who held favourable beliefs about the 
capabilities of the sAFRS achieved larger performance 
gains when given the opportunity to use it as a decision 
aid. This pattern of results is consistent with previous 
research showing that automation use is greatest in situ-
ations where trust in automation is higher than self-
confidence (Hoff & Bashir, 2015; Lee & Moray, 1994; Lee 
& See, 2004). However, we note here that none of these 
results are specifically about trust in automation. Rather, 
we are inferring that participants’ favourable responses 
towards the sAFRS are indicative of greater trust in auto-
mation. A second limitation to this experiment is that 
these exploratory questions were only asked at the end 
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of the task, when responses may have been influenced 
by the experience of completing the face matching task 
or using the sAFRS (Madhavan et  al., 2006; Ross et  al., 
2008). We address both limitations in Experiment 2.

Experiment 2
We aimed to replicate and extend the exploratory results 
of Experiment 1 in a pre-registered experiment that was 
specifically designed to measure trust in automation. In 
Experiment 2, we used an expanded set of questionnaire 
items to measure different aspects of trust in automation, 
which were completed both before and after participants 
used the sAFRS. Responses to two questions regarding 
self-confidence and trust in automation allowed us to cal-
culate Lee and Moray’s (1994) relative trust in automa-
tion measure, which is central to Hypothesis 4. We also 
asked participants explicitly whether they trusted the 
AFRS to help them with the task (binary response: yes, 
no). Finally, we sought to replicate the three exploratory 
results reported above in Experiment 1 using the same 
questionnaire items. All seven hypotheses below were 
pre-registered prior to data collection (see Data Avail-
ability). They can be separated into those (H1) that rep-
licate Carragher and Hancock (2023), those that replicate 
the results of Experiment 1 (H5, H6, H7), and those that 
extend the results of Experiment 1 (H2, H3, H4).

H1 Participants will improve their face matching per-
formance compared to baseline when using the sAFRS as 
a decision aid. Despite this improvement, performance in 
the aided task phase will fail to reach the level achieved 
by the sAFRS alone (overall accuracy = 95.0%).

H2 There will be a significant interaction between Task 
Phase (baseline, aided) and Trust (yes, no), such that the 
increase in face matching performance when aided will 
be greater for participants who trust the sAFRS than 
those who do not.

H3 Despite the predicted effect of trust (H2), we also 
expect that the aided performance of both trust condi-
tions (yes, no) will fail to reach the level of performance 
achieved by the sAFRS alone.

H4 The change in performance when aided (as a per-
centage of improvement possible from baseline) will be 
positively correlated with relative trust in automation 
(Lee & Moray, 1994), such that greater trust in automa-
tion will be associated with greater improvement when 
using the sAFRS as a decision aid.

H5 The change in performance when aided (as a per-
centage of improvement possible from baseline) will be 

positively correlated with relative estimated accuracy (a 
difference score calculated from participants’ estimates of 
their own accuracy and that of the sAFRS), such that pos-
itive values (the sAFRS is estimated to be more accurate 
than the self ) will be associated with greater improve-
ment when using the sAFRS as a decision aid.

H6 Participants who indicate that the sAFRS is better 
at face matching than they are (when asked directly) will 
experience a greater increase in performance (as a per-
centage of improvement possible) when using the system 
as a decision aid than participants who believe that they 
are more accurate.

H7 Participants who would rather complete the task 
again with an sAFRS partner will experience a greater 
increase in performance (as a percentage of improve-
ment possible) when using the system as a decision aid 
than participants who indicate a preference for a human 
partner.

Methods
Sample size
Our pre-registration describes re-analysing the “pre-
ferred partner” result in Experiment 1 according to the 
revised analysis strategy outlined for Experiment 2 (H7). 
This result returned a Cohen’s d effect size of 0.78. An a 
priori power analysis (G*Power: Faul et  al., 2007) indi-
cated that 54 participants (total) were required to achieve 
80% power to detect an effect of d = 0.78 in an independ-
ent samples t test. However, since trust in automation is 
an individual attribute that we expect to vary among our 
participants, we cannot randomly allocate participants 
to a particular trust condition. As such, we aimed to 
recruit a much larger sample of 170 participants, expect-
ing that data from approximately 160 participants would 
be available for analysis once our exclusion criteria had 
been applied. This sample size would exceed those pre-
viously collected by Carragher and Hancock (2023), who 
had approximately 40–50 participants in each between-
participants condition.

Participants
All participants were recruited from the online research 
platform Prolific (https:// www. proli fic. com/). We 
received consent from 174 unique participants, who 
were all USA nationals living in the USA. As per our pre-
registration, data were excluded from participants who: 
did not complete the face matching task (n = 7), failed an 
attention check face matching trial (n = 1), failed an atten-
tion check question (n = 3), attempted the face match-
ing task more than once (n = 2), or who took too long 

https://www.prolific.com/
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to complete the task (n = 1). The final analysis included 
data from 160 participants (Mage = 37.6, SD = 12.2). 
The experiment took an average of 16:03  min to com-
plete (SD = 7:12). Participants received £2.00 (approx. 
$2.41USD) for their participation, which is above the 
minimum payment rate of £6.00 ($8.00USD) per hour 
required by Prolific. Ethical approval was granted by the 
Human Research Ethics Subcommittee in the School of 
Psychology at the University of Adelaide.

Glasgow face matching test 2
Participants in Experiment 2 completed the short ver-
sion of the Glasgow Face Matching Test 2 (GFMT2-S; 
White et al., 2022). The GFMT2-S consists of 80 pairs of 
unfamiliar faces, which we split evenly into two sets (A, 
B) of equal difficulty (White et  al., 2022). Each set con-
sisted of 20 identity match pairs and 20 mismatch pairs. 
The presentation order (baseline, aided) of each set was 
counterbalanced between participants, such that half 
completed Set A at baseline, while the other half received 
sAFRS assistance on Set A. Within each set, trial order 
was randomised.

The two faces in each pair were presented simultane-
ously. During the baseline task, participants responded to 
the question “Do these photographs show the same person, 
or two different people?” with a 2AFC response (“same” or 
“different”). The trial display for the aided half of the task 
was nearly identical to that shown at baseline. The only 
change was that below the trial question, participants saw 
a new line that read “Facial Recognition System Says:”. 
Like the participants, the simulated AFRS gave identifica-
tion decisions of “SAME” or “DIFFERENT”. Participants 
were then asked to give their own “same” or “different” 
response to each pair (as they did at baseline). The two 
faces remained onscreen until a response was given.

Automated facial recognition system
Real DCNN
The decisions presented to participants from the sAFRS 
in the experiment were based on the performance of a 
real DCNN (that used in Carragher & Hancock, 2023) on 
the GFMT2-S (White et al., 2022). The real DCNN cor-
rectly resolved 78/80 trials in the GFMT2-S, making 1 
error on a match trial, and 1 error on a mismatch trial. 
Please note that “match” and “mismatch” trials are also 
known as “mated” and “non-mated” trials, respectively, 
in the computer science literature. We continue to use 
the terms “match” and “mismatch” here, which are more 
common in the study of human face matching ability.

Simulated AFRS
To ensure that the sAFRS made an error on one match 
trial and one mismatch trial in each counterbalance con-
dition of the GFMT2-S (Set A, Set B), we selected two 
additional pairs (one match, one mismatch) that the 
sAFRS would be seen to err on in the experiment. The 
pairs selected to be additional errors for the sAFRS were 
the trials that the real DCNN resolved correctly but 
received similarity values closest to the system’s decision 
threshold (i.e. those that were closest to being errors). 
The sAFRS erred on the same 2 pairs for all participants 
in each counterbalance condition (4 trials across the 
whole GFMT2-S), giving it an overall accuracy of 95% 
in this experiment. Participants were told the accuracy 
of the sAFRS in the task instructions (Carragher & Han-
cock, 2023). As the average accuracy of human observers 
on the GFMT2-S is 76.4% (SD = 10.0; White et al., 2022), 
we anticipated that an sAFRS with 95% accuracy would 
benefit most participants.

Attention checks
Face matching trials
As in our previous work, we added an attention check 
trial to each set of the GFMT2-S (Carragher & Hancock, 
2023; Carragher et al., 2022). These attention check trials 
were mismatched pairs of famous faces that could be cor-
rectly resolved by differences in gender or ethnicity. Data 
from participants who failed to correctly respond “differ-
ent” to both attention check trials were discarded from all 
analyses. The sAFRS did not make an identification deci-
sion for the attention check trial in the aided task phase—
rather, the system reported that it was “OFFLINE”.

Attention check question
At the conclusion of the experiment, participants were 
asked a multiple-choice question about the stated accu-
racy of the sAFRS in the task instructions (95% or 55%). 
All data were excluded from participants who responded 
incorrectly.

AFRS example trials
New to the current study, participants were shown three 
example displays with decisions from the sAFRS before 
starting the aided task phase. The text below the example 
displays told the participants how to interpret the deci-
sion from the sAFRS and stated whether the sAFRS was 
correct on that example trial (the only time feedback was 
provided in the experiment). Participants saw the sAFRS 
give two correct answers (one match trial, and one mis-
match trial), and one error (on a mismatch trial). These 
example pairs were unfamiliar faces from the Stirling 
Famous Face Matching Task (Carragher & Hancock, 
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2020). We included these example trials in the current 
experiment to give the participants some familiarity with 
the sAFRS before asking them to provide judgments 
about their trust in the system.

Initial estimates of ability
After reading the task instructions, participants were 
asked to indicate their confidence in their face matching 
ability, estimate their accuracy on the task, and whether 
they believed their unassisted performance would be 
below or above that of  the average human. We asked 
these three questions about individual ability before the 
baseline phase so that we could conduct exploratory 
analyses as to how perceived ability might change with 
task experience.

Trust in automation questionnaires
Though we report them separately here, participants 
completed these components as a single questionnaire 
in the experiment. The questionnaire was administered 
twice, once after baseline but before the aided task phase 
(pre-assistance), and again after the aided task phase 
(post-assistance).

Relative trust in automation (Lee & Moray, 1994)
Our primary measure of relative trust in automation was 
derived from Lee and Moray’s (1994) two item question-
naire of trust in automation and self-confidence. Partici-
pants were asked to indicate their level of confidence in 
their ability to match faces accurately (self-confidence), 
along with their level of trust in the sAFRS to accurately 
judge whether two photographs show the same person 
(trust in automation). Both ratings were made on a scale 
from 0 to 10. Relative trust in automation was calculated 
by subtracting ratings of self-confidence from ratings of 
trust in the sAFRS.

Exploratory trust questionnaire items
We also asked a number of exploratory questions that 
were developed for the current project. These questions 
included some that were first asked in Experiment 1 
(with minor wording changes to improve clarity), along 
with new questions for the current experiment, including 
a direct question about whether the participant trusted 
the AFRS to assist them in the task (yes, no).

Procedure
Participants were told that the experiment was about 
humans using state-of-the-art facial recognition sys-
tems to perform face matching tasks. They started the 
experiment by completing the initial estimate of abil-
ity questions, before going on to complete the unas-
sisted baseline phase of the face matching task. After 

completing the baseline task, the participants could take 
a short break, after which they were shown the sAFRS 
example trials, reminded that the sAFRS would give 
the correct answer on 95% of trials, and then asked to 
complete the pre-assistance trust in automation ques-
tionnaires. Participants then completed the aided face 
matching task with the assistance of the sAFRS. Finally, 
participants completed the post-assistance trust in auto-
mation questionnaires.

Analyses
Face matching performance
Participants’ binary identification decisions (“same”, “dif-
ferent”) were used to calculate all possible measures of 
performance on the face matching task. Below, we ana-
lyse performance using overall accuracy, [((Hits + Cor-
rect Rejections)/Total Trials) * 100)].

Performance change
Several hypotheses specify that we will measure change 
in performance from baseline. However, it is important 
that we account for the fact that skilled individuals who 
perform highly at baseline will likely continue to do so in 
the aided test phase, such that they will have fewer tri-
als on which they require the assistance of the sAFRS. As 
such, we calculated each participant’s change in perfor-
mance when aided, as a percentage of improvement pos-
sible from baseline, [((aided performance minus baseline 
performance)/(baseline errors))  *  100]. Using this for-
mula, an individual who correctly answers 26/40 trials at 
baseline and 33/40 trials when aided would have achieved 
50% of the total improvement possible from baseline, as 
would an individual who correctly resolves 36/40 trials at 
baseline and 38/40 trials when aided. This measure was 
designed to account for each participant’s underlying 
face matching ability, while acknowledging that partici-
pants were shown different pairs of faces in the baseline 
and aided phases of the task. This measure does, how-
ever, mean that a handful of (typically highly skilled) indi-
viduals who experience a decrease in performance when 
aided by the sAFRS can record very large negative values 
on this measure (i.e. someone who answers 38/40 trials 
at baseline, but 36/40 when aided, will record a value of 
-100%).

Trust in automation
Relative trust in automation was measured using Lee 
and Moray’s (1994) two item trust/self-confidence meas-
ure. As in their original study, we subtracted self-confi-
dence ratings from trust in automation ratings, to leave 
a change score in which positive values indicate higher 
trust in the automated system and negative values greater 
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self-confidence. Therefore, this is a measure of relative 
trust in automation.

Additionally, several of our hypotheses were addressed 
by responses to questions developed for the current pro-
ject. As in Carragher and Hancock (2023), we also asked 
participants questions related to trust in automation that 
were not the subject of planned analyses. All exploratory 
analyses are clearly identified in the results section.

Though participants completed the trust question-
naires twice (pre-assistance, post-assistance), we pre-
registered using only the pre-assistance responses to test 
our hypotheses. The pre-assistance responses reflect the 
participant’s initial intentions towards the sAFRS, which 
have not yet been influenced by the experience of using 
it (Madhavan et  al., 2006; Ross et  al., 2008). Post-assis-
tance responses were collected so that we could conduct 
exploratory analyses to examine changes in these ratings 
following sAFRS use.

Data availability
The data analysed in Experiments 1 & 2 are available in 
our Open Science Framework (OSF) repository (https:// 
osf. io/ g3eqm/). The design, hypotheses, and analysis plan 
for Experiment 2 were pre-registered prior to data collec-
tion (https:// osf. io/ rjfup). The trust in automation ques-
tionnaire used in Experiment 2 is also available in the 
OSF repository.

We have deviated from our pre-registration by only 
reporting the results for overall accuracy in the main text, 
rather than also including the signal detection measures 
(Macmillan & Creelman, 2004; Stanislaw & Todorov, 
1999) of d´ (sensitivity) and criterion (response bias). 
The rationale behind this change is simply that accuracy 
and sensitivity are very highly correlated in these data 
(Baseline: r = 0.97, p < 0.001; Aided: r = 0.97, p < 0.001), 
and the analysis of sensitivity leads to the same conclu-
sions presented here. Nonetheless, these signal detection 
measures are included with the data files available online. 
Finally, while we have followed the analysis plan outlined 
in our pre-registration, we have used equivalent non-par-
ametric tests where appropriate.

Results
Preliminary analyses
Initial examination of accuracy scores indicated that the 
data were negatively skewed in the baseline and aided 
task phases. While the distribution of accuracy scores at 
baseline was mesokurtic, the distribution of aided accu-
racy scores was leptokurtic. The change in aided perfor-
mance as a percentage of improvement possible was also 
negatively skewed and leptokurtic. Given the non-normal 
distribution of these data, non-parametric analyses have 
been used where appropriate.

Average accuracy scores in both task phases were 
higher than those observed in Experiment 1 (see Table 1). 
Three participants demonstrated perfect accuracy dur-
ing baseline (overall accuracy = 100%). Since we could not 
calculate a percentage of improvement possible score for 
these 3 individuals (requiring division by 0), they were 
omitted from the analyses for hypotheses H4–H7. For 
transparency, these 3 individuals achieved overall accu-
racy in the test phase of 92.5% (making 3 errors), 95% (2 
errors), and 97.5% (1 error).

Planned analyses

H1 A Wilcoxon Signed Ranks test showed that par-
ticipants improved their overall accuracy from baseline 
(M = 82.23, SD = 9.45) when assisted by the sAFRS at 
test (M = 91.30, SD = 6.91), Z = 9.11, p < 0.001. However, 
a one-sample Wilcoxon Signed Ranks test showed that 
aided performance failed to reach the level achieved by 
the sAFRS alone (95%), Z = − 6.29, p < 0.001. These results 
support H1 and replicate Carragher and Hancock (2023).

H2 Participants were allocated to a Trust Condition 
based on their response to the pre-assistance question 
about whether they trusted the sAFRS (yes, no). In con-
trast to our expectations of an approximately even split, 
only 30 participants explicitly reported that they did 
not trust the sAFRS to help them in the task. A mixed 
ANOVA revealed a significant main effect of task phase, 
such that performance improved with assistance from the 
sAFRS (see H1), F(1, 158) = 68.07, p < 0.001, η2p = 0.30. The 
main effect of trust condition was non-significant, F(1, 
158) = 0.02, p = 0.894, η2p = 0.00. Crucially, the interaction 
between the two factors was significant, F(1, 158) = 5.53, 
p = 0.020, η2p = 0.03. As predicted, a Mann–Whitney 

Table 1 Experiment 2 descriptive statistics

Variable Mean SD Median Min Max

Baseline accuracy 82.2 9.5 85.0 52.5 100.0

Aided accuracy 91.3 6.9 92.5 60.0 100.0

Change in accuracy 9.1 9.3 7.5 − 12.5 32.5

Change in accuracy as % 
of improvement possible

42.7 55.8 55.6 − 300.0 100.0

Self-confidence 5.9 1.9 6.0 0.0 10.0

Trust in sAFRS 7.5 1.8 8.0 0.0 10.0

Relative trust in automation 1.56 2.3 1.0 − 5.0 8.0

Estimated unassisted accuracy 64.2 17.0 65.5 20.0 99.0

Estimated accuracy of sAFRS 88.0 14.9 95.0 19.0 98.0

Relative estimated accuracy 23.8 21.9 24.0 − 51.0 74.0

Predicted accuracy using 
sAFRS

81.5 14.5 85.0 22.0 100.0

https://osf.io/g3eqm/
https://osf.io/g3eqm/
https://osf.io/rjfup
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test revealed there was greater improvement in accu-
racy when aided among participants who trusted the 
sAFRS (Median Improvement = 10.0), compared to those 

who did not (Median Improvement = 6.25), Z = 2.21, 
p = 0.027 (see Fig. 1). Please note, the difference in accu-
racy at baseline was not statistically significant, Z = 1.22, 
p = 0.222.

H3 Despite their greater improvement in performance, 
a one-sample Wilcoxon Signed Ranks test indicated 
that the aided performance of participants who trusted 
the sAFRS still failed to reach the level of performance 
achieved by the system alone (95%), Z = -3.29, p < 0.001. 
Likewise, the performance of participants who did not 
trust the sAFRS also failed to reach that of the system, 
Z = − 5.35, p < 0.001. Both results are consistent with our 
predictions.

H4 A relative trust in automation score (Lee & Moray, 
1994) was calculated by subtracting participants’ self-
confidence ratings from their trust in automation ratings. 
Positive relative trust scores represent greater trust in the 
sAFRS, while negative scores represent greater self-confi-
dence. There was a significant moderate positive associa-
tion between relative trust in automation and the change 
in accuracy when aided (as a percentage of improvement 
possible), rs = 0.32, p < 0.001, supporting our prediction 
that greater relative trust in automation would be asso-
ciated with greater improvements in performance when 
using the sAFRS as a decision aid (see Fig. 2).

Fig. 1 Overall accuracy in the baseline and aided task phases 
of Experiment 2, plotted separately by Trust Condition (yes, no). The 
accuracy of the sAFRS alone (95%) is indicated by the black dotted 
line above aided performance. Error bars show 95% confidence 
intervals

Fig. 2 The relationship between change in accuracy when aided (as a percentage of improvement possible from baseline) and participants’ relative 
trust in automation (Trust in Automation minus Self-Confidence)
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H5 A relative estimated accuracy score was calculated 
by subtracting participants’ estimation of their own 
accuracy from their estimation of the sAFRS’s accuracy. 
Positive relative estimated accuracy scores signal that the 
sAFRS was estimated to be more accurate, while negative 
scores indicate that the participant estimated that they 
would be more accurate than the sAFRS. There was a sig-
nificant weak-to-moderate positive association between 
relative estimated ability and performance change (as a 
percentage of improvement possible), rs = 0.27, p < 0.001, 
supporting our hypothesis that perceptions of the sAFRS 
having greater accuracy would be associated with larger 
performance improvements when using the sAFRS as a 
decision aid (see Table 2).

H6 Participants were allocated to a Perceived Superi-
ority Condition (self, sAFRS) based on their response to 
a direct question about whether they or the sAFRS are 
better at face matching. Only 25 participants indicated 
that they would be superior to the sAFRS. Importantly, a 
Mann–Whitney test indicated that the perceived superi-
ority conditions did not differ significantly in their base-
line face matching performance, Z = 0.44, p = 0.661. As 
predicted, participants who expected the sAFRS to be 
superior improved more (as a percentage of improvement 
possible) when aided (Median Improvement = 60.0%) 
than those who thought that they would be superior 
(Median Improvement = 22.2%), Z = 3.41, p < 0.001.

H7 Participants were allocated to a Preferred Part-
ner Condition (human, sAFRS) based on their response 
to a direct question about whether they would prefer a 
human or sAFRS partner if they were to do the task again. 
Only 33 participants indicated that they would prefer a 
human partner to the sAFRS. Importantly, the preferred 
partner conditions did not differ in their baseline face 

matching performance, Z = 0.05, p = 0.960. As expected, 
participants who would prefer to partner with an sAFRS 
improved more (as a percentage of improvement possi-
ble) when aided (Median Improvement = 58.3%), com-
pared to those who preferred a human partner (Median 
Improvement = 40.0%), Z = 2.04, p = 0.042.

Exploratory analyses
Self‑confidence and performance
Participants were asked to indicate their confidence 
in their own face matching ability before the baseline 
phase (initial estimates), after the baseline phase (pre-
assistance), and then again after the aided phase (post-
assistance). Initial self-confidence was not significantly 
correlated with baseline accuracy (prospective), rs = 0.12, 
p = 0.149. Similarly, pre-assistance confidence ratings 
were not significantly correlated with performance at 
baseline (retrospective), rs = 0.09, p = 0.239, or with 
aided performance (prospective), rs = -0.14, p = 0.088. 
Post-assistance confidence ratings were also not corre-
lated with aided performance (retrospective), rs = -0.09, 
p = 0.283. Taken together, these results suggest that gen-
eral global confidence ratings are not well aligned with 
actual face matching ability.

Estimated accuracy and performance
At the same time points, participants also estimated their 
accuracy on the face matching task (0–100%). Initial esti-
mates of accuracy were not significantly correlated with 
actual accuracy at baseline, rs = 0.12, p = 0.115. There was, 
however, a weak positive correlation between predicted 
self-accuracy following the baseline phase and perfor-
mance during the baseline phase, rs = 0.18, p = 0.025. 
Similarly, there was a weak positive correlation between 
expectations of self-accuracy with assistance from the 

Table 2 Spearman’s correlations for performance in Experiment 2

*p < 0.05, **p < 0.01

Variable 1 2 3 4 5 6 7 8 9

1. Baseline accuracy –

2. Aided accuracy 0.37** − 

3. Change in accuracy − 0.73** 0.29** − 

4. Change in accuracy as % 
of improvement possible

− 0.24** 0.77** 0.77** –

5. Trust in sAFRS 0.08 0.25** 0.12 0.18* –

6. Self-Confidence 0.09 − 0.14 − 0.18* − 0.17* 0.29** –

7. Relative trust in automation − 0.06 0.29** 0.27** 0.32** 0.57** − 0.56** –

8. Estimated unassisted accuracy 0.18* 0.01 − 0.17* − 0.11 0.21** 0.64** − 0.38** –

9. Estimated accuracy of sAFRS 0.09 0.28** 0.13 0.25** 0.61** 0.03 0.51** 0.17* –

10. Relative estimated accuracy − 0.15 0.16* 0.28** 0.27** 0.13 − 0.52** 0.61** − 0.78** 0.35**
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sAFRS prior to the test phase and test phase perfor-
mance, rs = 0.20, p = 0.011. These findings are consistent 
with the notion that participants have limited insight into 
their global face matching abilities (Bobak et al., 2019).

Estimated collaborative performance
Before starting the aided face matching task, participants 
estimated the level of accuracy they would achieve when 
assisted by the sAFRS. Curiously, despite being told that 
the sAFRS would give the correct decision on 95% of tri-
als, the average prediction of aided accuracy was 81.5% 
(SD = 14.5). A total of 127 (79.4%) participants indicated 
that their aided accuracy would be lower than 95%, while 
a further 21 (13.1%) indicated that their aided perfor-
mance would be exactly 95%. Only 12 (7.5%) partici-
pants predicted that their involvement in the task would 
improve the overall accuracy of the sAFRS. This pattern 
of results suggests that, on average, participants may have 
been aware that they would disregard correct decisions 
made by the sAFRS, despite knowing that this would 
result in lower performance than adopting a simple strat-
egy of deferring all decisions to the sAFRS.

Change in perceived ability through the task
Participants initially estimated that they would achieve an 
unassisted accuracy of 71.94% (SD = 16.21). After com-
pleting the baseline phase of the experiment, estimates 
of individual accuracy dropped to 64.15% (SD = 16.97). 
Curiously, average performance at baseline was 82.23% 
(SD = 9.45), suggesting that participants overestimated 
the difficulty of the task. At the conclusion of the experi-
ment, participants estimated that their accuracy in the 
aided phase without the assistance of the AFRS would 
have been 69.08% (SD = 17.01). Future research is needed 
to investigate whether this apparent increase in perceived 
ability represents a return to baseline, or whether it is due 
to the experience of using the sAFRS.

Participants’ confidence in their own face matching 
ability was higher after completing the task with assis-
tance from the sAFRS (M = 6.26, SD = 2.02) than it was 
after baseline (M = 5.90, SD = 1.89). Likewise, partici-
pants’ trust in the sAFRS was also higher after using the 
sAFRS (M = 7.78, SD = 1.72) than it was before the aided 
phase (M = 7.46, SD = 1.83). These results suggest that 
interacting with the sAFRS can influence perceptions of 
ability, both of the self and the automated system.

Change in attitudes following sAFRS assistance
Before the aided phase, 30 participants indicated that 
they did not trust the sAFRS to help them with the 
task. Following the aided phase, 14 of these participants 
(46.7%) responded that they trusted the sAFRS had 
helped them. In contrast, of the 130 participants that 

initially trusted the sAFRS to help them, only 6 (4.6%) 
later reported that the sAFRS had not helped them dur-
ing the task.

Of the 134 participants who initially believed the 
sAFRS would be more accurate than them, only 19 
(14.2%) indicated that they were more accurate than the 
sAFRS following the task. In contrast, 9 (34.6%) of the 
26 participants who initially believed that they would 
be more accurate changed their response after the aided 
task phase.

Of the 34 participants who initially indicated a prefer-
ence for a human partner, 11 (32.4%) changed their pref-
erence to be partnered with a sAFRS following the aided 
task phase. In contrast, only 3 (2.4%) of the 126 par-
ticipants with an initial preference for a sAFRS partner 
changed their preference to a human partner following 
the aided phase.

Correcting sAFRS errors
Participants saw the sAFRS make two errors during the 
aided task phase (one match trial, one mismatch trial). 
Here we investigate whether trust in the sAFRS might 
have led to greater acceptance of these errors. Impor-
tantly, although participants only saw the sAFRS make 
two errors during the aided phase, the sAFRS was pro-
grammed to make four errors across the entire GFMT2-S 
(due to counterbalancing). Below we compare accuracy 
on the two error trials that were shown at baseline (i.e. 
without the erroneous decision from the sAFRS) and the 
two error trials shown during the aided task phase with 
the incorrect decision from the sAFRS.

At baseline, participants who trusted the sAFRS 
(n = 130) answered an average of 1.55 (SD = 0.58) of the 
2 error trials correctly, while participants who did not 
trust the sAFRS (n = 30) correctly answered 1.57 tri-
als (SD = 0.57), Z = 0.05, p = 0.959. However, during the 
aided phase of the experiment, participants who trusted 
the sAFRS only correctly answered an average of 1.06 
(SD = 0.67) error trials out of 2, whereas those who did 
not trust the sAFRS correctly answered 1.33 (SD = 0.66), 
Z = 2.02, p = 0.044. This pattern of results provides pre-
liminary evidence that on average, participants were less 
accurate when trials were shown with an incorrect deci-
sion from the sAFRS, but that this decline was particu-
larly evident among participants who reported trusting 
the sAFRS compared to those who did not.

Individual differences in aided accuracy
Although the average aided performance of participants 
failed to exceed the performance of the sAFRS alone 
(95%), there was a subset of participants (n = 74) who 
managed to achieve or exceed this level of performance 
when aided by the system. Curiously, the participants 
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who achieved aided accuracy of exactly 95% (n = 37) did 
not simply accept the decision of the sAFRS on every 
trial (although some did, n = 8); among this group, some 
participants (n = 8) actually corrected both errors from 
the sAFRS, but then overturned two correct sAFRS deci-
sions. A further 22 participants achieved aided accuracy 
of 97.5%, while 15 participants (9.4% of the total sample) 
achieved 100% accuracy when aided by the sAFRS.

When attempting to characterise the attributes of these 
high performing individuals, we can see that the baseline 
accuracy of the participants who achieved aided accu-
racy of 95% or more was greater (M = 85.7, SD = 7.6) than 
those who failed to achieve aided performance equal or 
exceeding that of the sAFRS (M = 79.2, SD = 9.9). How-
ever, baseline accuracy did not appear to differ between 
those who achieved aided accuracy of exactly 95% 
(M = 85.1, SD = 8.3), 97.5% (M = 86.4, SD = 6.7) or 100% 
(M = 86.2, SD = 7.3). When considered alongside the gen-
eral finding that trust in automation (rs = 0.25, p = 0.001) 
and relative trust in automation (rs = 0.29, p < 0.001) were 
both positively correlated with accuracy in the aided task 
phase, these results suggest that individuals who show 
the greatest levels of performance with sAFRS assistance 
are those who are already quite skilled at face matching 
and have high levels of trust in automation.

Discussion
All seven of our pre-registered hypotheses were sup-
ported. The average participant made significant accu-
racy gains when using the sAFRS as a decision aid, 
replicating Carragher and Hancock (2023). Further, those 
participants who explicitly reported trusting the sAFRS 
improved more with the assistance of the sAFRS com-
pared to those who did not. Similarly, participants with 
greater relative trust in automation improved more with 
sAFRS assistance than those with lower trust in auto-
mation or greater self-confidence. Despite the benefit of 
trusting the sAFRS, the average assisted performance of 
both trust conditions failed to reach the level of accuracy 
achieved by the sAFRS alone. This pattern of results is 
indicative of sub-optimal collaborative decision-making 
(Bartlett & McCarley, 2017; Boskemper et  al., 2021), 
arising due to failures correcting errors from the sAFRS 
or overturning some of the system’s correct decisions. 
Indeed, our exploratory analyses suggested that partici-
pants who trusted the sAFRS were more likely to endorse 
the system’s erroneous decisions compared to those with 
less trust in the system, a potential example of automa-
tion misuse (Parasuraman & Riley, 1997). This result pro-
vides interesting nuance to Howard et al.’s (2020) finding 
that participants were biased towards confirming algo-
rithm decisions, regardless of the accuracy of the out-
put. Nonetheless, nearly half (46.3%) of our participants 

achieved assisted performance equal to, or exceeding, the 
sAFRS’s accuracy of 95%, with 15 participants achieving 
100% accuracy on the aided task. This finding suggests 
that a subset of individuals may employ highly efficient 
collaborative decision-making strategies when using the 
sAFRS as a decision aid.

General discussion
Across two experiments, we investigated whether trust in 
automation was related to the level of performance par-
ticipants achieved when using a sAFRS as a decision aid 
in a face matching task. Using a range of measures that 
were both established, such as relative trust in automa-
tion (Lee & Moray, 1994), and novel, including questions 
about perceived superiority (self or sAFRS) and preferred 
face matching partner (human or sAFRS), our results 
consistently showed that participants who gave responses 
that were more favourable towards the sAFRS achieved 
greater performance when using it as a decision aid. Our 
findings suggest that much like face matching ability (e.g. 
Bobak et  al., 2016b; Burton et  al., 2010), there are indi-
vidual differences in the ability to effectively use AFRS as 
decision aids.

Most participants experienced significant improve-
ments to their overall accuracy when using the sAFRS as 
a decision aid. These findings are consistent with previ-
ous research showing that human decisions are biased 
towards those of an AFRS (Barragan et al., 2022; Fysh & 
Bindemann, 2018a; Howard et al., 2020). When the AFRS 
has higher accuracy than most human participants, this 
tendency will generally lead to improved human per-
formance (Carragher & Hancock, 2023). The average 
participant, however, failed to achieve a collaborative 
performance gain when assisted by the sAFRS. Specifi-
cally, human intervention was likely to result in lower 
performance than if the sAFRS had been left to complete 
the task alone. Both results replicate our previous find-
ings (Carragher & Hancock, 2023), in a new face match-
ing task, speaking to the generalisability of these effects. 
The current study shows that even among individu-
als with favourable attitudes towards the sAFRS, aided 
performance is not certain to reach, let alone exceed, 
the capabilities of the system alone. While our results 
show that a sAFRS with accuracy higher than the aver-
age human is an effective decision aid that can improve 
human performance, these findings raise further ques-
tions about the efficacy of human–algorithm teams for 
face identification (White et al., 2015a).

The vast majority of participants (n = 130) indicated 
that they trusted the sAFRS to help them with the face 
matching task, when asked directly in the pre-assistance 
questionnaire. While participants who trusted the sAFRS 
experienced greater improvement in performance than 
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those who did not (n = 30), this improvement in personal 
performance potentially came at a cost to collaborative 
task performance. Our exploratory analyses suggested 
that these trusting participants were more likely to 
endorse incorrect decisions from the sAFRS. These 
results demonstrate the difficulty of evaluating the effi-
cacy of human–algorithm teaming in this context. That 
is, when the decision aid is considerably more accurate 
than the average human, most participants could signifi-
cantly improve their own performance simply by con-
firming every decision made by the sAFRS, including 
those that are errors. However, this strategy would make 
the role of the human in this workflow redundant, as they 
would fail to overturn any errors from the sAFRS. As 
we have previously noted (Carragher & Hancock, 2023), 
optimal human–algorithm teaming will  result in a level 
of collaborative performance exceeding that which the 
algorithm achieves alone. Our results suggest that in sce-
narios where the decision aid is often correct, high trust 
in automation—which is important if the human is to 
accept the many correct decisions from the sAFRS—can 
resemble the complete, uncritical, dependence on the 
decision aid, which renders human involvement point-
less. Therefore, it is important to remember that the effi-
cacy of human–algorithm teams should not be measured 
by the improvement experienced by the human, but by 
whether collaborative performance exceeds that offered 
by either agent alone.

Nonetheless, we did find a subset of participants who 
achieved levels of aided performance that were equal to, 
or exceeded, that of the sAFRS alone. Our preliminary 
investigation suggested that these participants were rela-
tively skilled at face matching, as indicated by their high 
accuracy at baseline, and had high levels of trust, and 
relative trust, in automation. These attributes are not sur-
prising when we consider the nature of the aided task. A 
skilled individual with low trust in the sAFRS may disuse 
the system by overturning its correct responses, whereas 
a less skilled individual who is trusting of the sAFRS may 
misuse the system by failing to correct erroneous deci-
sions (Parasuraman & Riley, 1997). Optimal collaborative 
performance can only be achieved if the observer accepts 
the system’s correct decisions and overturns its incor-
rect decisions (Bahrami et al., 2010), a level of calibration 
likely to require both individual skill and trust in the aid. 
Researchers have previously suggested that professional 
face matching roles (e.g. border control) would be well 
served by recruiting individuals known to be skilled at 
face matching (Bobak et  al., 2016a). Similarly, our find-
ings suggest that there may be individuals who are par-
ticularly well suited to professional identification roles 
that require human–algorithm teaming. While our data 
suggest that these observers are skilled face matchers 

who are also trusting of automation, additional research 
is needed to further characterise the attributes of these 
individuals, so that they can assessed for suitability in 
operational contexts.

When measured pre-assistance, trust in the sAFRS and 
self-confidence were both associated with face match-
ing performance when using the sAFRS as a decision aid. 
But our exploratory analyses suggested that trust in the 
sAFRS and self-confidence also increased after using the 
sAFRS. As such, experience using the sAFRS might influ-
ence operators’ perceptions, both of the system and their 
own ability. This suggestion is further highlighted by the 
fact that following the aided task phase, 46.7% of partici-
pants who initially did not trust the sAFRS reported that 
the sAFRS had helped them during the task. These find-
ings are consistent with Hoff and Bashir’s (2015) concepts 
of situational and learned trust. Situational trust is influ-
enced by external variables, such as task difficulty and the 
perceived benefits of automation (Madhavan et al., 2006; 
Ross et al., 2008), as well as internal factors such as self-
confidence (Lee & See, 2004). Learned trust is then devel-
oped through exposure to the automated system (Hoff & 
Bashir, 2015). Together, our findings suggest that relative 
trust in the sAFRS is not only dependent on the human’s 
initial perceptions of the system, but also on the human’s 
experience of using the system. As such, future research 
might examine the algorithm-assisted face matching per-
formance of participants with previous experience using 
such systems.

Participants were told several times during the experi-
ment that the sAFRS would show the correct identi-
fication decision on 95% of trials (in fact, the analyses 
consisted only of participants who correctly answered an 
attention check question about the stated accuracy of the 
sAFRS). Yet, the average aided performance of partici-
pants failed to reach this level of performance, replicat-
ing our previous findings (Carragher & Hancock, 2023). 
These data are potentially consistent with the common 
cognitive bias of probability neglect (Rottenstreich & 
Hsee, 2001; Sunstein, 2002). That is, participants may 
have disregarded the information that the sAFRS was 
95% accurate when estimating the assistance that the sys-
tem would provide on each trial. Interestingly, our data 
also suggest that the participants may have been aware 
that they were going to overturn some correct decisions 
from the sAFRS. When asked how accurate they would 
be when assisted by the sAFRS, the average estimate was 
just 81.5%. Moreover, only 7.5% of participants expected 
that partnering with the sAFRS would produce a col-
laborative performance gain, while 79.4% of the sample 
expected that they would limit the accuracy of the sys-
tem. These assisted accuracy estimates were positively 
correlated with actual assisted accuracy. Further research 
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is needed to investigate whether participants intention-
ally reported that they would limit the performance of 
the sAFRS, and if so, to uncover why such a belief existed 
among novice participants.

Interestingly, the proportion of participants report-
ing that they would rather complete the task again with 
the assistance of the sAFRS (as opposed to a human) dif-
fered between Experiment 1 (49.5%) and Experiment 2 
(78.7%). It is not immediately obvious why the two sam-
ples differed so considerably, particularly when they were 
recruited from the same online platform. One possibility 
is that by including the example sAFRS trial displays in 
the instructions for Experiment 2, participants were able 
to see the types of difficult face matching trials that the 
sAFRS can resolve correctly, potentially leading to an 
increase in their perception of its ability. Alternatively, 
a speculative suggestion is that attitudes towards sAFRS 
(or perhaps Artificial Intelligence more generally), may 
have changed between the periods of data collection for 
the two projects (Experiment 1: Q3 2021; Experiment 
2: Q1 2023). Whatever the reason for this discrepancy, 
there were fewer participants who were openly distrust-
ing of the AFRS in Experiment 2, leading to a smaller 
than expected sample size for the “no” trust condition. 
Nonetheless, as our participants were members of the 
general public, this sample should reflect the beliefs held 
among the wider population around AFRS, who may one 
day find themselves in professional roles requiring algo-
rithm-assisted identification as these technologies are 
introduced into different settings and workplaces (Noyes 
& Hill, 2021; Ritchie et al., 2021).

One curiosity in these data relates to the average per-
formance on the GFMT2-S in Experiment 2. As expected, 
baseline accuracy did not differ between Set A (M = 81.6, 
SD = 9.26) and Set B (M = 82.9, SD = 9.65), p = 0.361. 
However, average accuracy appears higher than reported 
by White et al. (2022) when creating the GFMT2-S (Set 
A: M = 76.4, SD = 9.1; Set B: M = 76.4, SD = 7.9). The rea-
son for this discrepancy is not obviously apparent. How-
ever, the difference does mean that the face matching task 
was easier than intended, and easier than the EFCT used 
by Carragher and Hancock (2023). As such, it is possi-
ble that the large number of participants who achieved 
high levels of aided performance may have been due to 
face matching task being easier than expected. Future 
research is needed to determine whether these high lev-
els of aided performance persist on harder face matching 
tasks. Nevertheless, it is notable that even with an easier 
face matching task, the aided performance of the aver-
age participant still did not exceed the level of accuracy 
achieved by the AFRS alone.

A limitation to this study is that our participants were 
novices, recruited online from the general population 

(as was the case in Carragher & Hancock, 2023). While 
working in a profession that regularly performs face 
matching does not automatically lead to improved face 
matching abilities (White et  al., 2014; c.f. Wirth & Car-
bon, 2017), there are certain face identification pro-
fessionals—“forensic facial examiners”—who do show 
exceptional performance (Phillips et  al., 2018; White 
et  al., 2015b). We found that the participants who were 
able to achieve high levels of performance when assisted 
by the sAFRS tended to have high face matching accuracy 
at baseline. One possibility arising from our research is 
that some professionals—those with exceptional face 
matching abilities—might be better suited to roles that 
involve use or oversight of AFRS than others. Moreover, 
we found that trust in automation increased after partici-
pants completed the face matching task with assistance 
from the sAFRS. This finding raises the possibility that 
professionals who regularly interact with AFRS might 
show higher levels of trust in automation than were seen 
among our sample of participants. While both sugges-
tions are speculative, they both demonstrate the need for 
future research to investigate the algorithm-assisted face 
matching performance of professionals who have experi-
ence using facial recognition technologies. Nonetheless, 
the current results still speak to the potential difficulties 
of recruiting individuals to professional roles that include 
AFRS use, or in introducing AFRS into tasks that were 
previously completed by humans.

A second limitation is our use of a simulated AFRS 
in these experiments. As noted in the introduction, 
we describe the AFRS as being “simulated” because 
we introduced additional errors into its performance 
that the real DCNN facial recognition algorithm did 
not make. We gave the sAFRS accuracy of 95% on the 
GFMT2-S, which is far higher than that of the average 
human (White et  al., 2022). While this performance 
appears to be considerably lower than the > 99.9% accu-
racy recorded by the best algorithms systems in cur-
rent 1:1 verification testing  with high quality imagery 
(National Institute of Standards and Technology, 2024), 
these numbers may not be directly comparable, since 
many algorithm tests generate false matches by com-
paring every face to every other in a database, whereas 
the pairs in face matching tasks for humans are delib-
erately chosen to be difficult. Nonetheless, real state-
of-the-art AFRS may be more accurate than the sAFRS 
used here. Moreover, we have previously seen that 
human and AFRS performance is correlated, such that 
both are more likely to make mistakes on the same face 
pairs (Carragher & Hancock, 2023). Taken together, 
these points mean that although our current sample 
revealed a substantial proportion of participants who 
achieved or exceeded the level of performance of the 
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sAFRS alone when assisted by the system, they did so 
under relatively favourable conditions. Further research 
using a state-of-the-art AFRS, and a highly challeng-
ing face matching task, is needed to examine just how 
many participants are likely to achieve a collaborative 
performance gain under realistic task conditions.

Conclusions
Very few studies have investigated human–algorithm 
teaming in the context of one-to-one face matching tasks. 
While previous research has shown that human decisions 
are biased towards those of the AFRS (Barragan et  al., 
2022; Fysh & Bindemann, 2018a; Howard et  al., 2020), 
which can lead to improved participant performance 
when the aid is more accurate than most humans (Car-
ragher & Hancock, 2023), we believe that this is the first 
study to examine individual differences in the algorithm-
assisted face matching performance of participants. 
Across two experiments, we show that individuals with 
greater trust in automation experience greater improve-
ments in their face matching performance when assisted 
by the sAFRS compared to participants with lower trust 
in automation (or greater self-confidence). However, 
the aided performance of the average participant failed 
to reach the level of performance offered by the sAFRS 
alone, regardless of their trust in automation condition. 
This result is consistent with our previous research (Car-
ragher & Hancock, 2023), and offers further support 
for the suggestion that the human can be a factor limit-
ing the performance of the AFRS (White et  al., 2015a). 
Nonetheless, we identified a relatively skilled subgroup 
of participants who were able to achieve collaborative 
accuracy gains when working with the sAFRS. Though 
additional research is required to test the performance 
of these participants when assisted by state-of-the-art 
AFRS on even more challenging face matching tasks, the 
emergence of this subgroup offers hope that there may be 
routes to effective models of human–algorithm teaming 
in the context of face identification.
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