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The psychological reality of the learned 
“p < .05” boundary
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Abstract 

The .05 boundary within Null Hypothesis Statistical Testing (NHST) “has made a lot of people very angry and been 
widely regarded as a bad move” (to quote Douglas Adams). Here, we move past meta-scientific arguments and ask 
an empirical question: What is the psychological standing of the .05 boundary for statistical significance? We find 
that graduate students in the psychological sciences show a boundary effect when relating p-values across .05. We 
propose this psychological boundary is learned through statistical training in NHST and reading a scientific literature 
replete with “statistical significance”. Consistent with this proposal, undergraduates do not show the same sensitivity 
to the .05 boundary. Additionally, the size of a graduate student’s boundary effect is not associated with their explicit 
endorsement of questionable research practices. These findings suggest that training creates distortions in initial 
processing of p-values, but these might be dampened through scientific processes operating over longer timescales.
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Significance statement Null Hypothesis Statistical Test-
ing (NHST) uses p-values to quantify the consistency 
between observed evidence and the predictions of scien-
tific hypotheses. By arbitrary convention, psychological 
scientists adopt .05 as the boundary between hypotheses 
that are “statistically significant” and those that are not. 
The pressure to achieve “significant” results may be one 
reason why researchers engage in questionable research 
practices, and one cause for the replication crisis more 
generally. We investigated whether through statistical 
training and reading a scientific literature still dominated 
by NHST, .05 becomes a psychological boundary in the 
minds of emerging psychological scientists. This was 
the case. Our findings raise the meta-science question 
of how the distortions in initial processing of p-values 

demonstrated here are dampened through the long-
term processes of science. They also suggest that com-
petitors to NHST that also include “magic numbers” may 
be susceptible to the same problems brought by the .05 
boundary.

Introduction
The long history of calls against Null Hypothesis Sig-
nificance Testing (NHST) has accelerated over the past 
15 years (e.g., Cumming, 2014; Kruschke & Liddell, 2018). 
A central villain in this story has been the 0.05 boundary 
that by convention demarcates “statistically significant” 
hypotheses from their null brethren (Wasserstein et  al., 
2019). Fall on the “virtuous” side of this boundary and 
take the first step towards publication and scientific glory 
(Simonsohn et al., 2014). Fall on the wrong side and find 
yourself on the path to abandoned projects and file-draw-
ered manuscripts (Rosenthal, 1979).

Within NHST, the 0.05 boundary has been criticized 
as partially to blame for the replication crisis (Benjamin 
et al., 2018; Ioannidis, 2005; Simonsohn et al., 2014). This 
value may be too high, resulting in a scientific literature 
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filled with too many false positives (Ioannidis, 2005). For 
this reason, some have argued for shifting the boundary 
downward, for example to the more conservative 0.005 
boundary (Benjamin et  al., 2018). More insidious is the 
possibility that the presence of any boundary may cause 
scientists to distort their behavior to push their results to 
the “virtuous” side (Neuliep & Crandall, 1993; Rosenthal, 
1979), for example by engaging in Questionable Research 
Practices (QRPs; John et al., 2012). In the quest to reduce 
costs and achieve the ever-increasing publication rates 
necessary for academic success, scientists are incentiv-
ized to run studies with small sample sizes, which have a 
higher probability of producing false positives with QRPs 
such as optional stopping (Simmons et  al., 2011) and 
selective reporting (Ioannidis & Trikalinos, 2007). More 
broadly, the culture of science might discourage scien-
tists from replicating findings that are “already known” 
(Neuliep & Crandall, 1993)—and when scientists attempt 
such replications and “fail”, they may be discouraged 
from publishing by journals uninterested in “null results” 
(Rosenthal, 1979).

These problems have caused some to call for moving 
away from NHST and the 0.05 boundary. One alterna-
tive emphasizes effect sizes and interpretations of their 
“practical” significance rather than statistical significance 
(Cumming, 2014). Another alternative promotes the use 
of Bayesian statistics, claimed to be more consistent with 
human intuitions about the nature of knowledge and evi-
dence evaluation (Kruschke & Liddell, 2018).

Here, we ask a different question, one that is not nor-
mative but empirical in nature: What is the psychological 
standing of the 0.05 boundary for statistical significance? 
(See Bishop, 2020 for other empirical questions about the 
psychology of research practice.) We teach psychology 
graduate students about 0.05 as a matter of convention. 
At the same time, they read heavy doses of a scientific 
literature where results have long been cast in terms of 
the “p < 0.05” boundary. Our central claim is that through 
this training, emerging scientists come to internalize 
0.05 as a psychological boundary between two categories 
that often affect publication: results that are “statistically 
significant” and those that are not. Subsequently, this 
boundary distorts their processing of p-values in the talks 
they hear, the papers they read, and the statistical results 
they generate in their own research. Thus, we predict that 
a boundary effect–akin to a categorical perception effect 
(CPE)1–follows from this training, such that pairs of 
p-values that straddle 0.05 will be processed as relatively 

different, whereas equidistant pairs on the same side of 
0.05 will be processed as relatively similar.

We are not the first to suggest that 0.05 might be a 
psychological boundary for scientists. Prior research on 
researchers’ confidence in the presence of an effect as a 
function of a test’s p-value suggests discontinuities at 
p = 0.05 (Beauchamp & May, 1964; Nelson et  al., 1986; 
Rosenthal & Gaito, 1963) and other nonlinearities across 
the range of p-values (Poitevineau & LeCoutre, 2001). 
More recently, researchers have investigated the role 
that confidence intervals play in these discontinuities 
(e.g., Coulson et  al., 2010; Helske et  al., 2021; Hoekstra 
et al., 2012). Our research focuses instead on lower-level 
speeded judgments of the similarity of p-values outside 
of the context of confidence in a particular result, while 
carefully controlling for mathematical cognition effects 
(Ashcraft, 1992). This situates our experiment in the 
emerging focus on statistical cognition (e.g., Ciccione & 
Dehaene, 2021).

Recently, we investigated whether graduate students in 
the psychological sciences show a boundary effect at 0.05 
when judging the similarity of pairs of p-values by adapt-
ing the AX paradigm from the categorical perception lit-
erature (Rao et  al., 2022). Participants saw two p-values 
and made speeded judgments of whether they were “dif-
ferent” or “similar”. They were more likely to judge p-val-
ues as “different” when they crossed 0.05 (e.g., {0.043, 
0.057}) versus when they crossed another nearby hun-
dredths boundary (e.g., {0.023, 0.037} or {0.063, 0.077}). 
This held regardless of the arithmetic distance between 
the p-values (see Fig. 1).

The current study goes beyond prior work in three 
important ways. First, we previously proposed that 
the psychological boundary for graduate students was 
due to their statistical training in NHST and the litera-
ture they read (Rao et  al., 2022). However, an alternate 
explanation for the results is that 0.05 is a boundary for 
all people. Mathematical cognition research has shown 
that some numbers are landmarks on the mental num-
ber line (MNL). For example, the 10s are psychological 
boundaries for people whose culture expresses numbers 
using base-10 notation (Nuerk et al., 2011). Furthermore, 
when reasoning about fractions, people use ½ as a land-
mark (Barth & Paladino, 2011). It is therefore possible 
that when reasoning about rational numbers (including 
p-values) expressed as proportions or probabilities, peo-
ple use 0.5 and 0.05 as domain-general landmarks. To 
rule out the possibility that 0.05 is simply a psychological 
boundary for everyone, we replicated our prior experi-
ment (Rao et al., 2022) while adding a comparison group 
of statistically novice undergraduate students. We pre-
dicted that emerging psychological scientists would show 
a boundary effect above and beyond any domain-general 

1 This psychological categorization of p-values involves both perception and 
cognition of symbolic numbers in a specific context. We invoke CPEs as a 
framework, not as a literal claim about statistical cognition.
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landmark effect when judging the similarity (or differ-
ence) of two p-values across 0.05.

Second, the AX paradigm on its own presents relatively 
weak evidence for the existence of CPE-like psychologi-
cal boundaries. Thus, we added the stronger ABX para-
digm (e.g., Greenaway, 2017; see Repp, 1984, for more 
information about the ABX paradigm). In this paradigm, 
participants see a triad of values from a continuous scale 
(typically perceptual) and must judge whether the value 
on the left or right end is more like the middle value. We 
had participants make this judgment for triads of p-values 
such as {0.043, 0.049, 0.054}. Here, the arithmetically cor-
rect answer is 0.054 because |.049− .054| < |.043− .049| . 
However, we propose that emerging scientists experi-
ence a CPE-like boundary at 0.05, and this increases the 
psychological distance between 0.049 and 0.054 while 
decreasing the psychological distance between 0.043 and 
0.049. Therefore, we predict they will be less likely to 
choose the numerically closer end value, with the com-
parison group again being undergraduates.

Since undergraduates have not received this domain-
specific training around 0.05, we predict they will experi-
ence no special p-value boundary at 0.05; instead, their 
judgments should be driven by domain-general land-
marks (e.g., hundredths-place values) and their intuitive 
sense of numerical distance, following the predictions of 
the logarithmically-compressed MNL model that is sup-
ported by decades of research in numerical cognition 
(Dehaene, 2003; Moyer & Landauer, 1967).

Third, we investigated whether there is an association 
between the initial processing of p-values and explicit 
beliefs about QRPs. We adapted the 10-item survey 
developed by John et  al. (2012) to measure emerging 

scientists’ explicit beliefs about the acceptability of vari-
ous QRPs (e.g., optional stopping). We compared these 
beliefs to quantifications of their individual boundary 
effects for 0.05 in the AX and ABX tasks. We hypoth-
esized that individuals who experience a larger psy-
chological boundary at 0.05 may also find QRPs more 
acceptable. This is important for potentially linking the 
moment-by-moment cognitive processing of emerging 
scientists to the replication crisis in psychological science 
more generally.

Materials and methods
Power analysis
Our previous study (Rao et  al., 2022) estimated the 
median rate ratio at which graduate students judge 
p-values that cross 0.05 as “different” to be 1.96 times 
the rate for p-values that are both on the same side of 
0.05. A goal of the current study was to be able to detect 
a medium effect by computing the relative difference in 
the rate ratios between undergraduate and graduate stu-
dents. We expected undergraduate students to also show 
a boundary effect due to the special significance of 0.05 
as a general landmark in numerical processing, though 
one smaller than that of graduate students. We therefore 
predicted there would be an average rate ratio of 1.4 (the 
square root of 1.96) for undergraduates with a standard 
deviation of 0.5 for the logarithm of rate ratios between 
undergraduates and graduate students (based on the 
results of Rao et al., 2022). Given these parameters and a 
desire to detect a relative difference in ratios between the 
two groups of approximately 1.4 with 80% power and 5% 
Type I error rate, we estimated that we needed to recruit 
at least 34 participants per group. Because of the novelty 
of using the ABX task with numerical stimuli, we deliber-
ately oversampled both groups.

Participants
To study emerging scientists in the psychological sci-
ences, we recruited graduate students in the psycho-
logical sciences from a large research university in the 
Midwestern US. We chose the sample size based on prior 
results and the power analysis detailed above.

A total of 42 graduate students completed the study 
(see Table  1 for demographics and Additional file  1: 
Table S1 for information about their areas of specializa-
tion). They were recruited via email, had previously com-
pleted a yearlong sequence in statistical methods at the 
doctoral level, and were in at least their second full year 
of graduate studies. A total of 49 undergraduate students 
completed the study (see Table  1 for demographics and 
Additional file  1: Table  S2 for information about their 
major disciplines). They were recruited from the same 

Fig. 1 Results of Rao et al. (2022). On average, for each unique 
stimulus (each dot) across the range of within-pair distances, 
graduate students were more likely to judge two p-values 
as ‘different’ when they crossed the 0.05 boundary (solid orange line) 
than when they crossed a different hundredths boundary, i.e., one 
above (short-dashed blue line) or below (long-dashed grey line)
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university via email, had previously taken an introductory 
course in educational psychology, and had participated 
in prior studies in our lab. Data for some participants in 
each group were excluded from some of the analyses for 
failure to comply with task instructions, as described in 
the Results.

Constraints on generality
This study’s population of interest is emerging scientists 
in the psychological sciences. We define them as gradu-
ate students with between 1 and 5  years of experience 
conducting psychological research, and with sufficient 
statistical training to understand p-values. Our sample 
frame included all current graduate students in the psy-
chological sciences in a large research university in the 
Midwestern US who had completed at least one year of 
graduate-level statistics. Although the study informa-
tion was emailed to all eligible graduate students, those 
who elected to participate are not a fully representative 
sample of their department demographics, much less 
demographically representative of all emerging scien-
tists in the psychological sciences across the US, let alone 
worldwide. However, the theoretical mechanisms caus-
ing a possible boundary effect should not differentially 
affect members of the target population based on any 
demographic characteristics. Other factors such as sta-
tistics curricula, prior mathematics and statistical experi-
ences, math anxiety, and prevalence of statistical tests in 
participants’ sub-fields may all be related to participants’ 

selection in the study tasks. This study did not explicitly 
control for these macro factors.

This study also used a control group of statistically 
untrained undergraduate students, defined as under-
graduate students who have not yet completed a post-
secondary statistics course. Our sample frame included 
undergraduate students who had previously completed a 
course in educational psychology at a large research uni-
versity in the Midwestern US or had completed a study in 
our lab in the past, having been recruited either through 
flyers, social media, or word of mouth. Thus, this sample 
is not representative of all undergraduates at the univer-
sity, much less all statistically untrained undergraduates 
across the US or worldwide. Once again, the theoretical 
mechanisms causing a possible boundary effect should 
not differentially affect members of the target population 
based on any demographic characteristics. Future stud-
ies may recruit from a broader participant pool for both 
groups in order to verify this study’s findings across aca-
demic institutions and cultures.

Materials
The graduate student participants completed four 
tasks in the following order: the AX discrimination 
task, an unrelated filler task, the ABX discrimination 
task, and a survey assessing their beliefs about QRPs. 
Undergraduate participants only completed the AX 
and ABX tasks because the filler task was for a sepa-
rate study for which undergraduate participants were 
not in the eligible participant pool. The goal of the AX 
and ABX tasks was to find converging evidence for the 
hypothesis that statistical training in the psychologi-
cal sciences results in a CPE-like boundary at 0.05. The 
critical contrast is whether participants’ responses dif-
fer when the values cross 0.05, relative to when they 
cross hundredths boundaries above or below 0.05 (e.g., 
0.07 or 0.03, respectively), and whether this relative dif-
ference is exaggerated for graduate students relative to 
undergraduates.

The AX task
In this task, participants were provided with two p-val-
ues and asked to judge whether they were “similar” 
or “different”. Note that there is no objectively correct 
answer for such judgments. There were 150 stimu-
lus pairs. Fifty experimental pairs crossed 0.05 (“0.05 
Crossing”, e.g., 0.043 vs. 0.057). Within this set, the 
distance between the two p-values was systematically 
varied between 0.002 and 0.014; see Table 2 for exam-
ple stimuli. This enabled evaluation of whether the pre-
dicted effect of crossing the 0.05 boundary varied as a 
function of distance, a factor known to affect number 
comparison (Moyer & Landauer, 1967).

Table 1 Gender and race/ethnicity identity for study 
participants by group

Attribute Participant group

Graduate 
students

Undergraduate 
students

Total 42 49

Gender identity

 Man 11 10

 Woman 29 36

 Non-binary 1 2

 Chose not to respond 1 1

Race/ethnicity (select all that apply)

 Alaska Native or American Indian 0 0

 Asian 17 15

 Black or African American 0 0

 Hispanic, Latino, or Spanish Origin 1 0

 Middle Eastern or North African 1 1

 Pacific Islander 0 0

 White 24 35

 Other 0 0

 Chose not to respond 0 0
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The remaining stimulus pairs formed the control 
pairs. For these, the p-values were either both below 
0.05 or both above 0.05, and also crossed a hundredths 
boundary. Their thousandths digits were yoked to those 
of the experimental pairs. For example, the experi-
mental pair {0.043, 0.057} generated one Below 0.05 
control pair {0.023, 0.037} and one Above 0.05 control 
pair {0.063, 0.077}. We constructed the control pairs 
in this way to balance the size effect, which also affects 
number comparison (Parkman, 1971). This is the find-
ing that smaller numbers (e.g., {0.023, 0.037}) are per-
ceived as farther apart than larger numbers (e.g., {0.063, 
0.077}), consistent with a MNL representation that is 
log-compressed (Varma & Karl, 2013). Thus, we include 
the numerical magnitude (i.e., the size) of each stimulus 
as a covariate in our statistical model, and after having 
equated for the size effect in this manner, we compare 
the experimental pair that crosses 0.05 (e.g., {0.043, 
0.057}) to the average of two yoked pairs, one below 
0.05 and one above 0.05. This approach enables us to 
measure whether a boundary effect at 0.05 exists above 
and beyond any boundary effects at other hundredths-
place boundaries like 0.03 and 0.07, after adjusting for 
the log-compressed MNL.

Critically, all three pairs had zero in the tenths place, 
the same digits in the thousandths place, and the same 
arithmetic distance between p-values. These constraints 
enabled us to control for the distance and decade-cross-
ing effects (Nuerk et  al., 2011; Schneider et  al., 2020) 
found in mathematical cognition research when compar-
ing the experimental vs. control pairs. Including control 
pairs both above and below 0.05 additionally controlled 
for the size effect (Parkman, 1971) as described above.

The ABX task
In this task, each stimulus consisted of an ordered triad of 
p-values, and participants had to judge which of the end 
values the middle value was “more like”. In the conven-
tional version of this task, the three values are perceptual 
in nature and equidistant from each other along some 
physical continuum, for example different food products 
with varying amounts of salt to measure participants’ 
perceptions of taste (e.g., Greenaway, 2017). In these tra-
ditional perceptual experiments, that the three values 
are equidistant makes the “more like” and “same” judg-
ments nonsensical to the extent that people have direct 
access to the raw physical sensations. However, the noise 
inherent in perceptual processing means that in practice, 
people are willing to make such judgments. The current 
study used numerical stimuli, not perceptual stimuli. It 
included symmetric triads where the middle p-value was 
equidistant from the two end p-values, e.g., {0.048, 0.051, 
0.054}. If 0.05 is a psychological boundary, participants 
should be more likely to judge the end p-value on the 
same side of the boundary (e.g., 0.054) as “more like” the 
middle p-value (e.g., 0.051). However, there is not neces-
sarily the same noise in processing numerical values as 
there is in processing perceptual values, especially given 
the ability to exactly compute the arithmetic differences 
via subtraction. Not surprisingly, then, some pilot partici-
pants commented on the infelicity of the symmetric tri-
ads, and so we treated them as filler trials in the present 
experiment.

Critically, we extended the ABX task to also include 
asymmetric triads, where the end p-value on the 
same side of 0.05 is also arithmetically further from 
the middle p-value, e.g., {0.043, 0.049, 054}, where 
|.043− .049| > |.054 − .049| . For these triads, the arith-
metically correct answer is the p-value across 0.05 from 
the middle value. If graduate students’ judgments are 
driven by a domain-specific boundary effect, then they 
should be less likely to make the arithmetically correct 
choice than undergraduate students. We adopted the 
“more like” phrasing to encourage judgments from intui-
tion, especially given the speeded nature of the task. There 
were 102 asymmetric triads. Of these, 34 were experimen-
tal triads where one of the end p-values crossed 0.05 (e.g., 
{0.042, 0.048, 0.052}, {0.045, 0.051, 0.059}). The distance 
between the two p-values on the same side of the bound-
ary varied between 0.003 and 0.008. The distance between 
the middle p-value and the p-value on the opposite side of 
the boundary varied between 0.002 and 0.007, and criti-
cally, this was always at least 0.001 less than the distance 
between the two p-values on the same side of the bound-
ary. Each experimental triad was used to generate control 
triads in the same manner as for the AX task, with one 

Table 2 Example stimuli for the AX task by stimulus type and 
within-pair distance

Distance Stimulus Type

Below 0.05 Crossing Above

0.002 {0.019, 0.021} {0.049, 0.051} {0.069, 0.071}

0.003 {0.038, 0.041} {0.048, 0.051} {0.058, 0.061}

0.004 {0.028, 0.032} {0.048, 0.052} {0.078, 0.082}

0.005 {0.027, 0.032} {0.047, 0.052} {0.057, 0.062}

0.006 {0.017, 0.023} {0.047, 0.053} {0.067, 0.073}

0.007 {0.039, 0.046} {0.049, 0.056} {0.079, 0.086}

0.008 {0.026, 0.034} {0.046, 0.054} {0.076, 0.084}

0.009 {0.018, 0.027} {0.048, 0.057} {0.068, 0.077}

0.011 {0.034, 0.045} {0.044, 0.055} {0.054, 0.065}

0.012 {0.024, 0.036} {0.044, 0.056} {0.064, 0.076}

0.013 {0.031, 0.044} {0.041, 0.054} {0.071, 0.086}

0.014 {0.013, 0.027} {0.043, 0.057} {0.053, 0.067}
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spanning a hundredths barrier Below 0.05 (e.g., {0.025, 
0.031, 0.039}) and the other one Above 0.05 (e.g., {0.065, 
0.071, 0.079}). Again, this construction process ensured 
that the stimuli controlled for the well-known distance, 
decade crossing, and size effects in the mathematical cog-
nition literature (Ashcraft, 1992). See Table 3 for example 
asymmetric triads.

The QRP survey
All graduate students completed a short survey about 
their beliefs related to QRPs. (Undergraduate participants 
did not receive this survey because they were unlikely to 
have had previous research experience involving making 
such decisions.) Participants were asked to respond to 10 
items providing examples of QRPs and to rate “how often 
they are acceptable”. The items were those used by John 
et al. (2012), with the exception of item (5).2 That study 

recruited full-time faculty with experience writing and 
reviewing peer-reviewed publications, and asked them 
to rate how “defensible” each QRP was. Because our par-
ticipants were less likely to have had such experience, we 
instead used the word “acceptable”, to reflect that their 
responses were more driven by the training they were 
receiving in their coursework and research labs. See 
Table 4 for the items measuring QRPs.

Procedure
Participants completed the study online. It was pro-
grammed in jsPsych (De Leeuw, 2015) and hosted on 
Pavlovia. Participants completed the study on their own 
computers.

The AX discrimination task
This task was completed in three blocks of 50 stimuli 
each, with each experimental stimulus and two matched 
control stimuli randomly assigned to different blocks, 
and the stimuli within each block presented in a random 
order for each participant. Half of the experimental stim-
uli and their matching control stimuli were selected to 

Table 3 Example stimuli for the Asymmetric ABX task by stimulus type and within-triad distance

Hundredths crossing distance Stimulus type

Below 0.05 Crossing Above

0.002 {0.029, 0.031, 0.034} {0.049, 0.051, 0.054} {0.059, 0.061, 0.064}

0.003 {0.015, 0.019, 0.022} {0.045, 0.049, 0.052} {0.055, 0.059, 0.062}

0.004 {0.028, 0.032, 0.038} {0.048, 0.052, 0.058} {0.068, 0.072, 0.078}

0.005 {0.023, 0.029, 0.034} {0.043, 0.049, 0.054} {0.073, 0.079, 0.084}

0.006 {0.016, 0.022, 0.029} {0.046, 0.052, 0.059} {0.056, 0.062, 0.069}

0.007 {0.021, 0.029, 0.036} {0.041, 0.049, 0.056} {0.061, 0.069, 0.076}

Table 4 Survey items measuring participants’ relative frequencies of the acceptability of questionable research practices, adapted 
from John et al. (2012); our implementation of the survey included an error in the phrasing of item (5) and thus it was excluded from all 
analyses

Relative frequency (n = 36)

Never Rarely Sometimes Often Always

1. In a paper, failing to report all of a study’s dependent measures 13 17 6

2. Deciding whether to collect more data after looking to see whether the results were significant 20 11 4 1

3. In a paper, failing to report all of a study’s conditions 18 17 1

4. Stopping collecting data earlier than planned because one found the result that one had been 
looking for

26 9 1

6. In a paper, selectively reporting studies that ‘worked’ 19 14 2 1

7. Deciding whether to exclude data after looking at the impact of doing so on the results 26 10

8. In a paper, reporting an unexpected finding as having been predicted from the start 24 5 4 2 1

9. In a paper, claiming that results are unaffected by demographic variables when one is actually 
unsure

29 7 1

10. Falsifying data 34 2

2 Item (5) of the John et al. (2012) survey is: "In a paper, ‘rounding off ’ a p 
value (e.g., reporting that a p value of .054 is less than .05)”. Our implemen-
tation of the survey accidentally changed the parenthetical phrase to: “(e.g., 
reporting p = .054 as p = .05)”. This changes the meaning of the item enough 
that we elected to exclude it from all analyses.
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have the larger p-value presented first. On each trial, the 
first p-value was presented for 1000 ms. Next, the other 
p-value was presented just below it. Participants were 
instructed to “determine whether the two p-values are 
similar to or different from each other”. They pressed the 
‘F’ key if they judged the p-values to be “similar” and the 
‘J’ key if they judged them to be “different”. Participants 
were instructed to respond as quickly as possible but no 
time limit was enforced. Beforehand, they completed a 
short practice block of seven practice trials. Participants 
had the opportunity to rest between blocks.

The ABX discrimination task
This task was completed in four blocks of approximately 
50 stimuli each, with each experimental triad and the 
two matched control triads randomly assigned to differ-
ent blocks, and the stimuli within each block presented 
in a random order for each participant. On each trial, 
the end p-values in the triad were presented simulta-
neously, with the smaller one on the left and the larger 
on the right; this ordering is congruent with that of the 
MNL (Dehaene et  al., 1993). After 750  ms, the middle 
p-value was then presented below and centered between 
the end p-values. Participants were instructed to judge 
whether the middle p-value was “more like” the left/
smaller or right/larger p-value, pressing the ‘F’ and ‘J’ 
keys, respectively. Again, they were instructed to make 
their judgments as quickly as possible but no time limit 
was enforced. Beforehand, they completed a short prac-
tice block of seven practice trials. They had the opportu-
nity to rest between blocks. The 102 asymmetric stimuli 
triads were presented randomly interspersed with 96 
symmetric stimuli.

The QRP and participant survey
The graduate students also completed the QRP survey. 
They were asked to rate 10 different QRPs on “how often 
they are acceptable”, with response options of “never 
acceptable”, “rarely acceptable”, “sometimes acceptable”, 
“often acceptable”, and “always acceptable” (see Table 4). 
They then answered questions related to their major or 
area of research, their previous training in statistics, and 
their familiarity with p-values and the 0.05 threshold. 
Next, they were asked about possible demand character-
istics of the study, specifically what they thought the tasks 
were meant to assess, and whether their guess about the 
study purpose affected their behavior. The survey also 
included items asking for demographic information such 
as age and field of study. Finally, it queried engagement 
with open science initiatives. See the Additional file 1 for 
the full survey.

Results
Study and trial completion times
The median total time to complete the study was 36 min 
for graduate students (IQR: 33–45) and 24 min for under-
graduates (IQR: 20–29). (Recall that the undergraduates 
did not complete the filler task or the QRP survey.) The 
two groups took roughly equal amounts of time to per-
form each trial of the AX and ABX tasks, with a median 
trial response time (RT) of 884 ms for graduate students 
(IQR: 700–1130 ms) compared to 835 ms for undergrad-
uates (IQR: 676–1067 ms).

The AX task
Data from five graduate students and 10 undergraduate 
students were excluded from the analysis of the AX task 
for failure to comply with instructions as evidenced by 
their response profiles (e.g., 100% of responses marked 
as “different” or an average RT less than 150 ms per trial, 
which is well below the minimum required for processing 
numbers). Thus, the data analyzed for this task consisted 
of 37 graduate students and 39 undergraduates.

Following Rao et  al. (2022), participants’ responses 
were analyzed with mixed-effects log-binomial models 
with a selection of “different” as the outcome. Random 
effects included whether the stimulus pair crossed 0.05 
and a random intercept for between-participant differ-
ences in the subjective interpretation of “similar” and 
“different”. Fixed effects included the distance between 
p-values in the pair, the average size of the p-values, and 
whether the first p-value presented was smaller than the 
second.

Graduate students were an estimated 1.805 (95% CI 
[1.29, 2.52], p < 0.001) times as likely (i.e., 80.5% more 
likely) to judge a pair of p-values as “different” when they 
crossed 0.05 versus when they did not; see the left panel 
of Fig. 2. Thus, the boundary effect observed previously 
in Rao et al. (2022) for the AX task replicated here in a 
larger sample. Model results also suggest a distance effect 
on graduate students’ selections (95% CI rate ratio for 
selecting “different” per 0.001 increase in within-pair dis-
tance [1.12, 1.15], p < 0.001) as expected, with graduate 
students more likely to judge two p-values as different as 
the distance between them increased. Graduate students’ 
selections were likely not predominantly affected by 
the size of the p-values (p = 0.100)—as predicted by the 
standard logarithmically-compressed MNL model—nor 
whether the smaller or larger p-value was presented first 
(p = 0.221). (For the full statistical output, see Additional 
file 1: Table S3).

Strikingly, model results for undergraduates suggest 
no clear boundary effect (as was the case with graduate 
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students), as depicted in the right panel of Fig. 2. There 
was little if any difference in how frequently they judged 
p-values as “different” when they crossed 0.05 versus 
when both were on the same side (Rate Ratio = 1.069, 
95% CI [0.987–1.16], p = 0.102). This suggests that 0.05 
is not a domain-general landmark for rational numbers 
in this task; rather, the boundary effect observed among 
graduate students reflects a domain-specific demarcation 
due to statistical training about p < 0.05. Model results 
suggest a distance effect on undergraduates’ response 
selections (95% CI rate ratio for selecting “different” 
per 0.001 increase in within-pair distance [1.14, 1.17], 
p < 0.001) of similar magnitude as the estimated distance 
effect for graduate students. Undergraduates’ selections 
were likely not predominantly driven by the size of the 
p-values nor whether the smaller p-value was displayed 
first (ps > 0.70). (For the full statistical output, see Addi-
tional file 1: Table S4.)

CPE-like boundary effects manifest as both exag-
gerated cross-category differences and diminished 
within-category differences. Thus, we directly compared 
graduate students’ estimated boundary effects to under-
graduate students for the 0.05 crossing stimuli and those 
stimuli where both p-values lie on the same side of 0.05 
(i.e., the “Below 0.05” and “Above 0.05” stimuli), looking 
for an interaction; see Fig.  3. For stimuli crossing 0.05, 
graduate students were 1.325 times as likely (i.e., 32.5% 
more likely) to judge the p-values as “different” relative 
to undergraduates (95% CI [1.19–1.47], p < 0.001). Thus, 
they experienced an exaggerated psychological differ-
ence across 0.05. Conversely, graduate students were 
only 0.769 times as likely (i.e., 23.1% less likely) to judge 
p-values as “different” when both were on the same side 

of 0.05, relative to undergraduates (95% CI [0.68–0.87], 
p < 0.001). Thus, their psychological differences were 
diminished across boundaries other than 0.05. Together, 
the exaggerated cross-category difference and dimin-
ished within-category difference are strong evidence of a 
boundary effect. (Model results suggest no other differ-
ences in effects on response selections between the two 
groups.)

The ABX task
Data from nine graduate students and 14 undergraduates 
were excluded from the analysis of the ABX task for the 
same reasons as in the AX task, leaving 33 graduate stu-
dents and 34 undergraduates in the data analyzed for this 

Fig. 2 Unadjusted Results of the AX Discrimination Task for Graduate Students (left panel) and Undergraduate Students (right panel). On average, 
for each unique stimulus (each dot), graduate students but not undergraduate students were more likely to judge two p-values as different 
when they crossed the 0.05 boundary (solid orange line) than when they crossed a different hundredths boundary, i.e., one above (short-dashed 
blue line) or below (long-dashed grey line). This was true regardless of the absolute distance between the pair

Fig. 3 Unadjusted distribution of the proportion of ‘different’ 
selections across all AX stimuli for each participant, shown by group 
and stimulus type. Orange error bars represent 95% confidence 
intervals for the mean
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task. As with the AX task, responses were analyzed with 
mixed-effects log-binomial models. Unlike the AX trials 
(and the symmetric filler ABX trials), on the asymmetric 
ABX trials of interest, there is an arithmetically correct 
response. However, the prompt (‘more like’) was meant 
to elicit intuitive and subjective judgments. We analyzed 
participants’ selections of the arithmetically incorrect 
responses, i.e., the selection of the p-value with the same 
hundredths digit as the outcome (e.g., for the triad {0.046, 
0.049, 0.051}, selecting 0.046 as “more like” 0.049). If 0.05 
is indeed a psychologically-real boundary for gradu-
ate students, then they should make this arithmetically 
incorrect selection at a higher rate when the p-values 
cross 0.05 than when they cross other hundredths-place 
boundaries. Specifically, this rate should be higher than 
for undergraduates because only graduate students expe-
rience a psychological boundary at 0.05.

After adjusting for covariate effects of distance, decade-
crossing, and size, graduate students were an estimated 
1.135 times (95% CI [1.01, 1.28]; p = 0.038) as likely (i.e., 
13.5% more likely) to select the same-hundredths-digit 
p-value (i.e., the arithmetically incorrect one) when the 
triad crossed 0.05 relative to when it crossed a different 
hundredths boundary; see Fig.  4 and Additional file  1: 
Table  S5. This effect was in the expected direction, pro-
viding further evidence that 0.05 is a psychologically real 
boundary for graduate students. With respect to the covar-
iates, model results suggest the distance between p-values 
also affected participants’ selections (p < 0.001): the fur-
ther away the end p-value with the same hundredths digit 
(i.e., the arithmetically incorrect one) was from the middle 
p-value, the less likely participants were to select it. Results 
suggest that none of the other factors in the model were 
predominant factors affecting participants’ responses.

By comparison, model results suggest that under-
graduates’ responses were not driven by a 0.05 bound-
ary effect, as was the case with graduate students. They 
were an estimated 1.009 times (95% CI [0.91–1.11]; 
p = 0.865) as likely (i.e., 0.9% more likely) to say that the 
middle p-value was more like the p-value with the same 
hundredths digit (i.e., the arithmetically incorrect one) 
when the triad crossed 0.05 relative to when it crossed a 
different hundredths boundary (see Fig. 4 and Additional 
file  1: Table  S6). With respect to the covariates, results 
suggest that undergraduates’ responses were affected by 
a distance effect similar to the one observed for gradu-
ate students (p < 0.001). They also likely were affected by 
a size effect: undergraduates were 1.296 times as likely 
(i.e., 29.6% more likely) to pick the same-hundredths-
digit p-value (i.e., the arithmetically incorrect one) per 
0.01 increase in the size of the p-values (95% CI [1.03, 
1.63], p = 0.027). To summarize, the evidence suggests 
there was no special boundary effect at 0.05 for under-
graduates: hundredths-place effects were found across 
the board.

Comparing graduate students to undergraduates, 
graduate students were 1.126 times as likely (i.e., 12.6% 
more likely) to say that the middle p-value was more like 
the same hundredths digit p-value (i.e., the arithmeti-
cally incorrect one) when the triad crossed 0.05 relative 
to undergraduates (95% CI: 0.97–1.31 times as likely, 
p = 0.064); see Fig. 4. Although the statistical evidence is 
not overwhelming in this case, the direction of the effect 
is consistent with the hypothesis that 0.05 is a psycho-
logical boundary for the graduate students, who have 
increased training on and exposure to it, more so than for 
undergraduates.

The undergraduates were more accurate in their 
responses than graduate students across all stimulus 
types. That this was the case for the control stimuli is 
counterintuitive at first glance. However, it is also con-
sistent with the overall prediction. If graduate students 
have the category ‘Below 0.05’, then they should see the 
choice between p-values below 0.05 (e.g., is p = 0.032 
more like p = 0.027 or p = 0.036?) as arbitrary because 
all three are the same in terms of their category mem-
bership. Thus, their judgments should be less driven by 
arithmetic distance, and they should be less accurate on 
the ‘Below 0.05’ stimuli. The same reasoning holds for 
‘Above 0.05’ stimuli. By contrast, if undergraduates do 
not possess these categories, then they should be more 
driven by arithmetic distance, and thus more accurate 
on the control stimuli. This was indeed the case, lending 
further credence to the hypothesis that 0.05 is a psycho-
logical boundary for graduate students more so than for 
undergraduates.

Fig. 4 Unadjusted distribution of the proportion of ‘arithmetically 
incorrect’ selections across all ABX stimuli for each participant, 
shown by group and stimulus type. Orange error bars represent 95% 
confidence intervals for the mean
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The QRP survey
Table 4 presents the response distributions of the gradu-
ate students to the QRP survey items. As in John et  al. 
(2012), almost all participants indicated that “falsify-
ing data” is never acceptable. The dominant pattern is 
that participants rated most practices as rarely or never 
acceptable. See Additional file 1: Table S7 for the average 
responses to the practices of our participants compared 
to those of John et al. (2012).

To evaluate whether graduate students with a larger 
estimated boundary effect tend to find QRPs more 
acceptable, we utilized log binomial mixed-effects mod-
els fitted separately to each of the participants’ responses 
for each of the AX and ABX tasks. This generated indi-
vidual estimates of the 0.05 boundary effect for each of 
the tasks. We converted participants’ responses to survey 
questions to a numerical scale using a process similar to 
John et  al. (2012), with “never acceptable” correspond-
ing to 0, “rarely” to 1, “sometimes” to 2, “often” to 3, and 
“always” to 4. We then computed acceptability scores for 
each participant as the average of their responses across 
the 9 items.

There was no evidence of a meaningful association 
between the size of participants’ boundary effects and 
their QRP responses. This is shown in the left panel of 
Fig.  5 for the AX task (Kendall’s τ = 0.09, p = 0.481) and 
in the right panel for the ABX task (Kendall’s τ = 0.08; 
p = 0.517). Thus, there was no support for the proposal 
that the moment-to-moment cognitive processing of 
graduate students is linked to their explicit self-reported 
beliefs about the acceptability of QRPs.

Discussion
This study moves the debate about p-values and NHST 
from meta-science to psychological science. We investi-
gated whether through statistical training and reading the 
Results sections of a literature still dominated by NHST, 

0.05 transcends from just a matter of statistical conven-
tion to become a psychological boundary in the minds 
of emerging scientists. The question of the psychologi-
cal status of statistical recommendations is not entirely 
new (e.g., Bishop, 2020; Rosenthal & Gaito, 1963). Here, 
we built on our recent work (Rao et al., 2022) using the 
tools of categorical perception to shed new light on this 
question.

We first used the AX paradigm to replicate previous 
findings (Rao et  al., 2022) that emerging scientists are 
more likely to judge p-values as different when they cross 
0.05 compared to when they do not. Going beyond prior 
work, we also found that undergraduates did not show 
the same sensitivity to the 0.05 boundary.

We then extended this psychological boundary effect 
for the first time to the ABX paradigm, a stronger test 
of CPE-like effects (e.g., Greenaway, 2017). Participants 
saw triads of ordered p-values (e.g., {0.045, 0.051, 0.059}) 
and had to judge which end value the middle value was 
“more like”. When 0.05 was between the middle value 
and an arithmetically closer end value (here, 0.045 and 
0.051), emerging scientists were more likely to choose the 
other end value—the one on the same side of 0.05 (here, 
0.059)—even though it was arithmetically more distant. 
Again, the undergraduates did not show this same sensi-
tivity to the 0.05 boundary.

Collectively, the findings from the AX and ABX tasks 
suggest that emerging scientists’ CPE-like boundary 
effects for p-values are a domain-specific consequence 
of their statistical training in NHST and their reading of 
a literature in which “p < 0.05” categorically demarcates 
“statistically significant” findings from null results.

One challenge to this conclusion is that these find-
ings might instead reflect pre-existing differences in the 
numerical processing of emerging scientists compared 
to undergraduates, and thus are the result of selection 
biases. This could be assessed in a future longitudinal 

Fig. 5 Relationship between the model-estimated 0.05 boundary effects from the AX task (left panel) and ABX task (right panel) with the average 
acceptability rating (0 = never; 1 = rarely; 2 = sometimes) across the nine QRP items, for each graduate student participant
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study evaluating whether sensitivity to the 0.05 boundary 
emerges during graduate training and increases further 
across post-graduate life in science (Nelson et al., 1986).

Another challenge is that the emerging scientists may have 
detected the purpose of the study and responded in a man-
ner they thought we desired. In fact, this does not appear 
to have been the case. An open-ended item in the post-
experiment survey asked participants what they thought the 
purpose of the study was. Of the 42 emerging scientists, 24 
correctly inferred that the research goal of the AX task was 
to measure whether p-value pairs crossing 0.05 are perceived 
as less similar than pairs below or above 0.05. We repeated 
the analysis above for the 18 remaining emerging scientists 
who did not guess the specific research goal. Their results 
still appear to be governed by a boundary effect: They were 
an estimated 1.544 (95% CI [1.06, 2.25], p = 0.024) times as 
likely to judge a pair of p-values as “different” when they 
crossed 0.05 versus when they did not. (See Additional file 1: 
Table S8 for the full statistical output.) A parallel analysis of 
the ABX task found that the 18 graduate students who did 
not guess the specific research goal of the study were an esti-
mated 1.156 times (95% CI [0.97, 1.37]; p = 0.098) more likely 
to select the same-hundredths-digit p-value (i.e., the arith-
metically incorrect one) when the triad crossed 0.05 relative 
to when it crossed a different hundredths boundary. (See 
Additional file 1: Table S9 for the full statistical output).

Speeded processing of p-values occurs on a quite differ-
ent timeline than the production of scientific knowledge. For 
this reason, we adapted the John et  al. (2012) QRP survey 
to assess whether psychological boundary effects at 0.05 as 
measured in the AX and ABX tasks are associated with QRP 
acceptability ratings. We predicted that there would be a 
positive association between the size of the 0.05 boundary in 
emerging scientists and how acceptable they find QRPs. This 
prediction found no empirical support.

There are at least three interesting explanations for this 
lack of association, beyond the usual suspects (i.e., insuf-
ficient sample size, measurement reliability, response bias 
due to social desirability effects). The first is that over 
the past 10–15  years, psychological science has broadly 
acknowledged the replication crisis and the NHST con-
troversy. Thus, new students might be enculturated into 
a different set of beliefs, values, and practices than more 
experienced researchers. Consistent with this, our par-
ticipants showed a floor effect, with almost all responses 
to almost all QRPS either “never” or “rarely”. (Note 
that floor effects inhibit the ability to detect differences 
between groups or relationships between factors, which 
might also explain the lack of association.) By contrast, 
there was no such floor effect among faculty participants 
10 years ago (John et al., 2012). The second explanation is 
that our participants lacked sufficient practical research 
experience compared to the faculty at PhD-granting 

universities in John et  al. (2012). Emerging scientists 
may endorse a stricter interpretation of methodological 
maxims that does not reflect the pragmatic challenges of 
working scientists.

The third explanation is perhaps the most interesting. Sci-
ence occurs at multiple timescales. Oversensitivity to the 
0.05 boundary might be a feature of scientists’ moment-by-
moment thinking. The same might be said of confirmation 
bias and other deviations from normative reasoning (Bishop, 
2020). Over longer timescales, however, the processes of sci-
ence might work to mitigate these deviations. Thus, when 
explicitly asked about QRPs from their own labs, scientists 
might judge them to be unacceptable, and they might mean 
it.

Note that both the AX and ABX tasks are speeded judg-
ments. We do not propose that researchers’ ability to per-
form explicit decimal subtraction is irrevocably damaged in 
the p-value context, merely that CPE-like boundary effects 
play a role in p-value processing. Thus, it is important to 
examine a potential link between the in-the-moment cogni-
tive processing of individual psychological scientists and the 
broader replication crisis in psychological science.

We close with a word of caution to those who have 
long since dismissed “p < 0.05” from their thinking about 
data: There is no reason to believe that the bound-
ary effects observed here are limited to p-values or the 
NHST framework. Moving to a new framework that also 
includes magic numbers—especially dichotomies—will 
likely bring versions of the boundary effects we have 
documented. This is because categorization is a gen-
eral feature of human cognition (Goldstone, 2003; Har-
nad, 2017). Categories are formed when people learn to 
demarcate continua, regardless of the statistical school 
to which they belong. We likewise predict that pairs of 
Bayes factors that cross conventional boundaries (e.g., 3 
or 1/3) will be perceived as psychologically more differ-
ent than those that fall on the same side. While statistical 
guidelines may be useful, their entrenchment may also 
carry psychological side effects. 
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