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Abstract 

Previous work has demonstrated similarities and differences between aerial and terrestrial image viewing. Aerial scene 
categorization, a pivotal visual processing task for gathering geoinformation, heavily depends on rotation-invariant 
information. Aerial image-centered research has revealed effects of low-level features on performance of various 
aerial image interpretation tasks. However, there are fewer studies of viewing behavior for aerial scene categorization 
and of higher-level factors that might influence that categorization. In this paper, experienced subjects’ eye move-
ments were recorded while they were asked to categorize aerial scenes. A typical viewing center bias was observed. 
Eye movement patterns varied among categories. We explored the relationship of nine image statistics to observers’ 
eye movements. Results showed that if the images were less homogeneous, and/or if they contained fewer or no sali-
ent diagnostic objects, viewing behavior became more exploratory. Higher- and object-level image statistics were 
predictive at both the image and scene category levels. Scanpaths were generally organized and small differences 
in scanpath randomness could be roughly captured by critical object saliency. Participants tended to fixate on criti-
cal objects. Image statistics included in this study showed rotational invariance. The results supported our hypoth-
esis that the availability of diagnostic objects strongly influences eye movements in this task. In addition, this study 
provides supporting evidence for Loschky et al.’s (Journal of Vision, 15(6), 11, 2015) speculation that aerial scenes are 
categorized on the basis of image parts and individual objects. The findings were discussed in relation to theories 
of scene perception and their implications for automation development.
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Introduction
Living on the ground, we are naturally drawn to explore 
our surroundings, observing and adapting to the arrange-
ment of the world in a gravitational frame. Daily expe-
rience tunes us to be adept at processing terrestrial 
images, which refer to views available from a viewpoint 
situated on or near the Earth’s surface, typically at eye 
level. Early pioneers envisioned transcending the grip of 

gravity to witness the world from a God’s-eye view, which 
became a reality with the advent of aerial photography. In 
1858, French photographer and balloonist Gaspar Felix 
Tournachon, also known as "Nadar," produced the first 
known examples of aerial photography (Cosgrove & Fox, 
2010).

“Aerial photography” pertains to visual data captured 
from elevated viewpoints, such as from an airborne plat-
form or satellite. These images offer a top-down view of 
the landscape. Such images may vary in imaging angles, 
such as oblique satellite photogrammetry. The present 
work focused on vertical aerial images, derived from 
Google Earth (Loschky et  al., 2015; Xia et  al., 2017), a 
platform providing ortho-rectified aerial imagery.

Nowadays, with the advancement of both photogra-
phy and space technology, the number and resolution of 
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aerial images have markedly increased with at least one 
basic goal unchanged: procuring geospatial informa-
tion on the ground from above. One typical type of this 
information is the scene category. High-resolution aerial 
images covering a large area of a city enable users to iden-
tify land uses, land covers, and other scene properties of 
different regions in the city without extensive and labori-
ous site investigation. Indeed, after extracting geoinfor-
mation using aerial images, onsite visits serve more as a 
method to supplement and verify the aerial information 
(Jiang et al., 2022; Zhao et al., 2018).

In addition to manual interpretation, bio-inspired 
computational intelligence methods (e.g., convolutional 
neural networks and vision transformer) have markedly 
boosted machine performances in remote sensing image 
(RSI) processing (Aleissaee et  al., 2023; Zhong et  al., 
2018). These bio-inspired methods have the merits of 
considerable cross-modal and cross-domain generaliz-
ability. However, model evaluation and optimization for 
aerial visual tasks have been primarily grounded in theo-
ries of human visual attention as understood from ter-
restrial viewpoints. For example, humans prioritize shape 
(95.9%) over texture when categorizing objects in natural 
everyday scenes (Geirhos et al., 2018). Based on this rev-
elation, in RSI processing, a model is considered better 
aligned with human visual perception when it shows a 
stronger shape-over-texture bias (Dehghani et al., 2023). 
However, whether the same bias applies to humans’ aerial 
image processing is not clear. In fact, it is well known that 
both human and computer interpretations of RSIs rely 
on texture analysis. To enhance RSI-oriented algorithm 
innovation and move toward full automation, it is crucial 
to understand how humans process aerial images.

Since none of us have lived in the sky, a core question 
is our ability to identify landscape features and infer the 
practical use of unfamiliar areas in aerial images. Inter-
estingly, this process appears to be intuitive for us, at least 
to some extent. For instance, we can roughly imagine the 
bird’s-eye view of our living areas without direct obser-
vations from above. Indeed, geographers can categorize 
objects in aerial images into land use with good accuracy 
even if they do not have extensive experience with either 
the categorization processes or with aerial photographs 
(Lloyd et al., 2002). Moreover, observers with little geo-
graphic knowledge also categorize aerial scenes with well 
above-chance accuracy, after processing those images as 
shortly as 24 ms (Loschky et al., 2015, Experiment 1).

This ability to generalize ground-based knowledge to 
an aerial viewpoint is believed to be closely related to 
the hierarchical information processing of visual input in 
both avian (for a review, see Pusch et al., 2023) and mam-
malian (Riesenhuber & Poggio, 2000; Vinken et al., 2016) 
sensory systems. Neuron groups at higher stages of the 

processing hierarchy in mammals (e.g., primate inferior 
temporal cortex) exhibit selectivity for complex shapes 
and invariance to nonlinear changes to some degree such 
as viewpoint (Bao et  al., 2020; Freiwald & Tsao, 2010). 
Thus, when we roam around our neighborhood, we are 
likely to be unconsciously creating a mental map of our 
surroundings, including our little house models as well as 
the park, nearby supermarket, etc.

This hierarchical mechanism of extracting viewpoint-
invariant information and the aerial viewpoint have 
sparked interest in comparing aerial and terrestrial scene 
categorization. Some aspects of behavior are similar. For 
instance, in Pannasch et al.’s (2014) study, they found for 
both types of images, observers’ fixation durations kept 
increasing and saccade amplitudes kept decreasing from 
beginning to end of viewing, with eye movement data 
binned in 2-s bins. On the other hand, the distinctive 
characteristics of aerial images become evident when 
images are rotated. While accuracy in categorizing ter-
restrial images was significantly reduced upon rotation, 
performance was stable for aerial images across different 
image orientations (Loschky et al., 2015, Experiment 2), 
leading researchers to conclude that the useful informa-
tion for aerial scene categorization was likely to be ori-
entation-/rotation-invariant. A following experiment 
justified this notion by showing that texture, a rotation-
invariant feature, contributed to rapid scene categoriza-
tion in aerial condition but not in terrestrial condition 
(Loschky et  al., 2015, Experiment 3). Given that aerial 
categorization accuracy was approximately 20% when 
only texture information was available, which was about 
one-third of the accuracy achieved with intact images, 
there must be other features that also provide categorical 
knowledge and affect aerial image processing.

Some studies have exclusively focused on human cog-
nition of aerial images. Certainly, aerial search depends 
on low-level features such as target size and location, 
and search template clarity (Rhodes et  al., 2021). Rho-
des et al. (2021) also suggested that search performance 
levels off around ten found targets when there are more 
than ten target instances in the image. This might be true; 
however, it could be also attributed to their experimen-
tal design, with the majority of trials (97%) having one to 
ten targets. In fact, when foraging for an unknown num-
ber of gas stations in satellite images, observers chose to 
proceed to the next, new image when the expected rate 
of target collection in the current image fell to an aver-
age rate of the environment, a rate-optimizing foraging 
strategy (Ehinger & Wolfe, 2016; Oaten, 1977). Lloyd and 
Hodgson (2002) identified serial searches for target-pre-
sent trials and parallel searches for target-absent trials in 
aerial images. Specifically, when determining the absence 
or presence of a target object in black and white aerial 
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images, the increase in the number of objects (e.g., cem-
etery) associated with the corresponding primary objects 
(e.g., church) in scenes shortened response times only 
for target-present trials, and the decrease in the distance 
between these objects contributed to faster responses for 
both target-absent and -present trials. In addition, exper-
tise also matters. Sophisticated interpretation of aerial 
images requires extensive experience/learning (Lloyd 
et  al., 2002). Compared to untrained observers, expe-
rienced participants were adept at leveraging semantic 
information in such images to perform tasks like change 
detection and delayed memory retrieval (Lansdale et al., 
2010; Šikl et al., 2019).

While these studies have separately examined the 
impacts of different image features on different visual 
tasks, there is still relatively little known about how peo-
ple recognize aerial scenes. Which kinds of features are 
used? How are attention and the eyes deployed during 
categorization. A better understanding of these aspects 
of human aerial scene perception could be useful when 
human and machine talents are combined in RSI tasks. 
For instance, when a task primarily depends on high-
level features, users might personalize image compres-
sion protocols to better preserve useful features and 
reduce the negative impact of compression-related image 
degradation on task performance (e.g., Xiang et al., 2023).

The current study
In this study, we explored viewing behavior for aerial 
scene categorization and factors that influence the eye 
movements in this process. Given that aerial image pro-
cessing is often a task for experts, we focused on the 
viewing behavior of experienced observers. The eye 
movement metrics used include fixation duration, the 
number of fixations, saccade amplitude, the entropy of 
fixation density map, and gaze transition entropy (scan-
path randomness).

Computational image analysis methods were used to 
calculate various image features and statistics at low, mid, 
and high levels. To extract low-level feature, we employed 
a set of Gabor filters due to its ability to simulate the 
response of the early visual cortex to natural images 
(Henderson et al., 2023; Kay et al., 2008; Lescroart & Gal-
lant, 2019). Low-level image statistic was defined as the 
mean of Gabor filter responses. For mid-level feature, we 
used Gray-Level Cooccurrence Matrix (GLCM), a widely 
accepted texture analysis method in remote sensing 
and medical images (Alvarenga et  al., 2007; Lane et  al., 
2014). Homogeneity, a second-order measure based on 
the GLCM was our specific mid-level image statistic. 
High-level image features are typically considered to 
include higher-order visual and/or semantic information. 
Deep features of neural network serve as a surprisingly 

effective metric to measure perceptual similarity between 
images (Zhang et  al., 2018). Therefore, deep features 
were used as our high-level feature. Perceptual similar-
ity across aerial images based on image deep features 
was used as high-level image statistics for both within- 
and across-category conditions. To expand the range of 
image statistics and reduce potential side effects of non-
exhaustive predictors in regression analyses, we also used 
outputs from other layers of the neural network model.

We hypothesized that the availability of critical objects 
influences observers’ eye movement patterns during 
aerial scene categorization. Some natural scenes may 
contain key objects or regions that, in Yarbus’ words, “in 
the observer’s opinion, may contain, information useful 
or essential for perception” (Yarbus, 1967, pp. 171, 175). 
These objects would be prioritized when people recog-
nize a scene without strict time constraints [see Hender-
son and Hollingworth (1999) for a review]. Even though 
aerial images are very different from daily terrestrial 
images, this strategy of searching for diagnostic objects 
is likely to still be applicable. In fact, Loschky et al. (2015) 
suggested that aerial scenes may be categorized by image 
parts and individual objects. However, this strategy may 
not be equally useful for all aerial scenes. For example, 
airport scenes often contain airplanes that are diagnos-
tic for that scene category while Industrial and School 
scenes share buildings and roads, making them difficult 
to distinguish from each other without more scrutiny. To 
study the impact of object-level information on influenc-
ing the eye movements for aerial scene categorization, we 
annotated critical objects in each image and used critical 
object saliency as object-level image statistic.

Furthermore, we investigated whether aerial viewing 
behavior systematically differs between different scene 
categories and which are the driving factors accountable 
for these differences. To this end, we conducted analyses 
at the scene category level. After determining the factors 
that contribute to aerial scene categorization, we were 
able to further study their tolerance for rotation. Based 
on the findings of Loschky et al. (2015, Experiment 2 & 
3) that showed orientation-/rotational invariance in rapid 
aerial scene recognition, we expected to find similar tol-
erance for image rotation in the image statistics that 
influence this categorization process.

Methods
Participants
Twenty participants (eight females) with a mean age of 
23.4  years (SD = 2.02) took part in this experiment. In 
studies of eye movements during scene perception, the 
numbers of participants vary from as small as 6 (Irwin & 
Zelinsky, 2002), 10 (Rayner et al., 2009) to 20 (Borji et al., 
2013; Castelhano et al., 2009), or 24 (Oehlschlaeger & Võ, 
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2020) participants, or even more. In terms of an a priori 
power analysis, since there is a lack of previous results 
reporting the effect size of scene categories on aerial 
scene perception, we were not able to conduct an a priori 
power analysis (Oehlschlaeger & Võ, 2020). However, if 
we assume a medium effect size (Cohen’f = 0.25) and use 
a significance level of 0.05 and a statistical power of 0.8, 
the computed required sample size is 13. A sample size 
of 20 provides a statistical power of over 0.95. This cal-
culation is based on G*Power (Faul et al., 2007). Hence, 
recruiting 20 participants would have successfully cap-
tured differences in eye movements for different aerial 
scene categories. All of them had normal or corrected-to-
normal vision. Participants were naïve to the purpose of 
this study and were asked to observe images in order to 
be able to make scene categorizations. All of the partici-
pants were students or graduates of the major in remote 
sensing from the School of Remote Sensing and Informa-
tion Engineering of Wuhan University. All would have 
had significant exposure to aerial viewpoint images dur-
ing their studies. Participants provided informed consent 
after receiving complete instructions and explanations 

about the experimental procedure, with the knowledge 
that their anonymized data may be openly shared with 
others. This work was approved by the Natural Science 
Ethics Committee of Wuhan University.

Stimuli and apparatus
Stimuli, as shown in Fig.  1a, were presented on a 
19-inch Dell P1917S monitor, with a screen resolution 
of 1280 × 1024 pixels and a refresh rate of 60 Hz. Partici-
pants were instructed to observe the aerial stimuli and 
answer the question about scene categories, while sitting 
in front of the monitor at a distance of 60 cm, with their 
heads largely immobilized by the use of a chin rest for the 
duration of data collection. The seating distance resulted 
in about 40 pixels on the screen subtending one degree of 
visual angle (dva).

Eye movements of the left eye were recorded using the 
EyeLink 1000 Plus eye tracker (SR Research Ltd, Ontario, 
Canada), with a sample rate of 1000  Hz. The average 
accuracy of Eyelink 1000 Plus is reported to be 0.15° 
with 0.25–0.5° typical according to its user manual. Two 
nine-point target grid detection routines were used for 

Fig. 1 Stimuli exemplars and experiment setup. A A sample image is shown for each category. B Trial schematic. A fixation cross was shown 
for 1 s, followed by a stimulus presented for 3 s. A four alternative-forced choice task asked observers to categorize the observed scene. Feedback 
was given after response



Page 5 of 17Jiang et al. Cognitive Research: Principles and Implications            (2024) 9:17  

calibration and validation of spatial accuracy of the eye 
tracking. Fixations and saccades were defined based on 
the saccade detection algorithm supplied by SR Research: 
saccades were identified by a minimum acceleration of 
9500°/second and a minimum velocity of 35°/s.

For stimuli, we used a subset of the dataset Aerial Image 
Dataset (AID) (Xia et  al., 2017). AID contains 10,000 
true-colored aerial images in total for 30 categories and 
more than 200 images for each category. In this experi-
ment, we chose 20 images from each of 12 categories, 
resulting in a total of 240 images. To mitigate the impact 
of potential individual differences in this task, categories 
were selected based on their relevance to everyday life 
(e.g., School and Parking) or suitability for effective learn-
ing with a limited set of exemplar images (e.g., Beach and 
Port). For each category, the first twenty images in the 
AID dataset were chosen. In occasional cases of image 
repetition or damage found during the stimuli screening 
progress, a randomly selected substitute image was used. 
All images were of 600 × 600 pixels, subtending approxi-
mately 15° in the horizontal and vertical directions.

Procedure
The experimental design is shown in Fig. 1b. The experi-
ment contained four blocks of sixty trials each. Before 
the formal experiment, participants had familiarized 
themselves with three images per category and achieved 
at least 90% accuracy on a 12-trial practice test. Stimuli 
used in practice were not presented in the formal test.

In the formal test, participants conducted eye-tracking 
calibration and validation processes prior to each block of 
trials. For a trial, a center cross appeared for 1 s followed 
by an aerial image presented at the center of the screen 
for 3 s. Upon stimuli offset, four category names, includ-
ing the target category and three foils, were presented as 
possible responses. Participants were asked to choose the 
scene category of the aerial image using four arrow keys, 
one of which had been randomly mapped to the correct 
answer. The presentation sequence for each participant 
was randomly generated. There were five images per cat-
egory per block presented in random order. Participants 
were instructed to maintain fixation on the cross before 
stimuli onset and to freely view presented images. A five-
minute rest was enforced after each block.

Data screening
Eye movements were recorded, starting 100  ms before 
the image onset. It is worth noting that trials on which 
first fixations had “drifted” were neither excluded nor 
treated differently as the literature suggests that central 
fixation bias in scene viewing is independent of the ini-
tial viewing point and serves as a viewing strategy (Tatler, 
2007; Tseng et al., 2009). Since eye tracking started before 

an image onset, we deemed the recorded first fixation 
to be uninformative. Thus, with recorded first fixations 
excluded, all trials were further screened. Specifically, 
we considered a trial as valid if it met these criteria: (1) 
The participant categorized the scene correctly (causing 
exclusion of 2.12% of all trials). (2) The number of valid 
fixations was larger than two, meaning that, during the 
scene viewing, the participant shifted fixation rather than 
sticking to one single location (causing exclusion of 2.71% 
of all trials). (3) For each trial, if the eye tracker lost the 
track of eyes for more than 100 ms, the trial was consid-
ered invalid unless the gap could be attributed to a blink 
(removed just 1 trial). (4) We would have excluded any 
participant who lost eye tracking over 25% of the whole 
viewing time or where 25% of all trials was excluded 
(Cronin et al., 2020). No observers were excluded on this 
basis.

After screening the trials, we obtained 39,374 fixations 
across all participants. Next, fixations outside the image 
region were excluded (0.35% of all valid fixations). Fixa-
tions with a duration less than 100  ms (3.93%) or more 
than two standard deviations above the grand mean of all 
fixation duration (5.05%), which obeyed a log-normal dis-
tribution (M = 296 ms, SD = 139 ms), were also discarded. 
This data screening led to the discarding of 9.33% of all 
fixations from valid trials, leaving 35,699 valid fixations. 
Similarly, we pre-processed saccade data. Note that, 
unlike the first fixation, the first recorded saccade was 
taken into consideration. Any saccade onset within 75 ms 
of stimuli presented was removed as an error of anticipa-
tion (1.70% of saccades) (Cronin et al., 2020). If either the 
pre-saccadic or post-saccadic fixation was located out-
side of the image region the saccade was invalid (0.86% 
of saccades). The remaining 38,945 saccades were labeled 
as valid.

Eye movement variables
Valid fixations of each image per participant were col-
lapsed into a fixation location map (FLM). Center bias 
was quantified following Tseng et  al.’s (2009) method, 
calculating the average distance of fixations to the image 
center. The values were normalized from zero (baseline 
condition with uniform fixation distribution) to 100 (all 
fixations precisely at the center). Standard error was esti-
mated through 1000 bootstrap runs. A fixation density 
map (FDM) was calculated from convolving the FLM 
with a Gaussian kernel. The full width at half maximum 
of the Gaussian kernel was set at 0.5° (Le Meur et  al., 
2006), approximately 20 pixels, according to the reported 
accuracy in the EyeLink user manual.

To investigate the differences between viewing behav-
ior for aerial images with different scene categories, we 
analyzed several eye-tracking parameters, including the 
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mean fixation duration, the entropy of FDM, the num-
ber of fixations, the mean saccade amplitude, and gaze 
transition entropy (a measure of scanpath randomness, 
see below). Fixation duration was defined as the average 
duration of all fixations executed during image viewing. 
Entropy of the resulting FDM (called FDM entropy here-
after) for participant p observing image I was calculated 
using the standard MATLAB function (MathWorks, Inc.) 
according to Eq.  (1), where i and j indicate pixels in the 
FDM of image I (Kaspar et al., 2013). The number of fixa-
tions was the fixation total during the 3-s viewing time. 
The mean saccade amplitude was defined as the average 
amplitude of all valid saccades during the image view-
ing. These variables were computed per observer per 
image. Then, the average of variable values across twenty 
observers represented the variable value for one image. 
For example, the number of fixations for one image was 
the mean of number of fixations across 20 observers. 
Similarly, these variable values for one scene category 
were the mean values across its twenty image samples. 
Thus, each scene category had 20 image samples, and 
each image has 20 observers.

Gaze transition entropy (GTE) examines the over-
all uncertainty in determining the next fixation location 
provided the current fixation location (for a review, see 
Shiferaw et  al., 2019). It considers spatial and temporal 
dependencies between two consecutive fixations and 
provides an overall estimation for the level of complexity 
or randomness in the pattern of visual scanning. Higher 
entropy suggests lower predictability. GTE was computed 
with Eq. (2). Given an image I, its spatial region is divided 
into N areas of interest (AOI). A vector v of length N  is 
produced where vi is the probability of fixations falling 
into Nth AOI of image I. Fixation transition matrix M is 
produced where Mi,j is the probability of fixations tran-
sitioning from ith to jth AOI. Thus, M characterizes the 
rate of fixation transitions between AOIs. The observed 
GTE was then normalized by dividing it using the theo-
retical maximum entropy GTEmax = log2(N ) . The ben-
efit of using normalized GTE was discussed by Shiferaw 
et al. (2019). GTE was calculated for each image and each 
participant.

We split the image into n = 6 equal segments in the 
horizontal and vertical directions, each subtending 2.5 

(1)

Entropy
p
I = −

600

i=1

600

j=1

FDM
p
I i, j × log FDM

p
I i, j

(2)GTEI (M) = −

N
∑

i=1

vi

N
∑

j=1

Mi,j × log2
(

Mi,j

)

dva, resulting in N = 36 AOIs. This parameter was used 
because the overall median saccade amplitude was 2.7 
dva. Given that GTE considers two consecutive saccades, 
we believe that using the median avoids the bias toward 
longer or shorter saccades. Using different values of n 
(i.e., 5, 6, 8, or 10) had only a minor impact on the regres-
sion results. n = 6 produced the best fitting results.

Overall, we consider five eye movement variables: (1) 
fixation duration, (2) the number of fixations, (3) saccade 
amplitude, (4) the entropy of fixation density map, and (5) 
gaze transition entropy (scanpath randomness).

Image features and statistics
At the low-level, we extracted energy-based features 
using Gabor filters with different orientations and spatial 
frequencies. They were used as a proxy for quantifying 
the early stage activation received by the visual system. 
Following the approach by Henderson et  al. (2023), the 
Gabor filters comprised 12 unique orientations, linearly 
spaced between 0° and 360°. This collection of filters was 
applied in eight unique spatial frequencies that were 
logarithmically spaced between 0.35 and 8.56 cycles per 
dva. The notion of population receptive field (pRF) was 
introduced to account for the fact that a neuron receives 
a limited spatial range of stimulation (Dumoulin & Wan-
dell, 2008). The pRF was described by a two-dimensional 
Gaussian response. Filter operation looped over a grid of 
candidate pRFs across images, producing a 96-dimen-
sional activation vector at each pRF. One difference of 
our calculation from Henderson et  al.’s (2023) was that 
we averaged the activations across pRFs in each dimen-
sion, focusing on the overall response rather than specific 
pRFs. This approach yielded a 96-dimensional activa-
tion vector for each image. Gabor features based on four 
lower spatial frequencies and four higher spatial frequen-
cies were used separately as Gabor responses on low S. 
F. and high S.F. The low S.F. and high S.F. were averaged 
separately and were used as two low-level statistics.1

As shown by Loschky et al. (2015) and various practi-
cal applications of aerial image processing (He & Wang, 
1990), texture is crucial in the identification of aerial 
scenes and objects. We applied Gray-Level Cooccur-
rence Matrix (GLCM) to analyze texture of aerial images 
(Lane et al., 2014). It calculates the number of pixel pairs 
with the same gray-level value for a given distance and 
direction (i.e., the offset) to reveal the texture and pat-
terns present in the images. A concentration on diago-
nal line in GLCM means that the majority of pixels is of 
the same gray-level and thus the image is homogeneous. 

1 The low/high spatial frequency partition produced the best regression 
results compared to the vertical/horizontal/oblique partition, or the grant 
mean of the 96-dimensional vector.
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Consequently, it yields a greater value of homogeneity, 
which is a second-order statistic based on GLCM. We 
performed this in MATLAB (MathWorks, Inc.), with a 
grayscale quantification level of 64 and a 3-by-3 process-
ing window (Lane et  al., 2014). Overall, the mid-level 
feature and statistic for each image were its GLCM and 
homogeneity value, respectively.

Given that categorization process evolves to more 
complex stages (e.g., scene discrimination) at later period 
of visual processing (Harris et  al., 2011; Rummukainen 
et  al., 2014), we used the within- and across-category 
perceptual similarities (Within Sim. /WS and Across 
Sim. /AS) of images as two high-level image statistics. In 
this work, VGG-16 (Simonyan & Zisserman, 2014) was 
used to extract image features. As mentioned earlier, we 
conducted an eye movement experiment using a sub-
set of 240 images from the AID dataset. These images 
were reserved as a test set for evaluation purposes. The 
remaining 3970 images from the twelve scene categories 
were divided into training and validation sets, containing 
3176 and 794 images, respectively. Using the pretrained 
weights on the ImageNet dataset, we fine-tuned the net-
work using the training data. This refinement yielded a 
satisfactory network for aerial scene classification with an 
accuracy of 93.75% in test. The output of block_5 from 
the network was extracted as the deep feature with 512 
feature channels and a spatial resolution of 7× 7 pixels. 
For each image, we calculated Within Sim. and Across 
Sim. statistics. WS was defined as the average Pearson 
correlation of deep features between the image and all 
other images from the same category. Similarly, AS was 
defined as the average Pearson correlation of deep fea-
tures between the image and all other images from differ-
ent categories. Note that only images that were correctly 
classified by the refined network were analyzed in this 
manner to minimize the impact of misclassified instances 
on the results.

Given that non-expert observers achieved a 68% true 
positive rate in searching for targets in aerial images 
(Rhodes et  al., 2021) and diagnostic objects would be 
prioritized when people recognize a scene without strict 
time constraints (Henderson & Hollingworth, 1999), 
it seems likely that object-level information is readily 
accessible and plays a significant role in identifying aerial 
scenes during the relatively long viewing time used here 
(3-s). To test this hypothesis, we established criteria for 
defining critical objects at the scene category level. These 
criteria include: (1) The identity of a critical object can be 
unambiguously identified based on its low-level proper-
ties such as color, shape, orientation, size, etc. Thus, an 
airport terminal would be quite unambiguous, while a 
school building, while identifiable as a building might 
not be unambiguously a school; (2) the critical object or 

a combination of critical objects serves as a predictable 
identifier of a scene category. It is important to note that 
in our data not every category contains critical objects 
(e.g., School and Park), and a defined critical object for 
a scene category does not imply that this object must be 
present in every scene from that category (19 out of 20 
Industrial images have blue roofs). We acknowledge that 
the definition of “critical objects” is somewhat subjective 
and differs in the aerial image and visual scene literatures. 
Thus, for example, a water area might be an “object” in 
an aerial image while being a texture or a substance in 
a terrestrial scene. Our list of critical objects for each 
scene category is available in Additional file 1: Table S1. 
For each image, two annotators with extensive experi-
ence of aerial image processing labeled a (visible and rec-
ognizable) target in the scene only if it was the defined 
critical object for that particular scene category. The 
experimenter explained the experiment to annotators 
and discussed with them the criteria for defining a critical 
object and the specific objects for every scene category. 
Agreements were reached. Critical objects were labeled 
using freeform polygons (86.11%) or rectangles (13.89%, 
for Farmland scenes and very small airplanes/tanks).

To quantify the influence of critical objects on the cat-
egorization process, we defined critical object saliency 
(COS) jointly considering the size and location of these 
objects. The size was defined as the ratio of the number 
of pixels enclosed by the polygon or rectangle annotating 
a critical object over the number of pixels of the image. 
Perceived size is a nonlinear, compressive function of 
physical area. According to Stevens’ power law, apparent 
size increases approximately with the 0.7 power of the 
area of the stimulus (Stevens, 1975, p. 54). This transfor-
mation was applied in this work. The location measured 
how close an object was to the image center. The distance 
from the mass point of a polygon/rectangle to image 
center was divided by the distance from image center to 
image corner, and then the ratio was subtracted from 1. 
The farthest four corners were indicated by a location 
value of 0 and the image center was 1. Then, the COS 
value for each image was calculated using the formula 
of Eq. (3), where n denotes the number of critical object 
instances in the image. Only scenes with the whole image 
area as one critical object would produce a greatest sali-
ency value of 1.

To expand the set of image statistics, we chose out-
puts from three specific VGG-16 layers (i.e., block_1, 
block_5, and fully connected layer 2) based on multi-
collinearity analysis (O’Brien, 2007; Ozturk, & Ullah, 
2022). This selection was prompted by weak to strong 

(3)
Critical Object Saliency =

∑n

c=1
Sizec × Locationc
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correlations among image statistics in our data (refer to 
Additional file  1 for Multicollinearity Analysis details). 
We conducted principal component analysis (PCA) (Jol-
liffe & Cadima, 2016) on VGG-16 features, utilizing all 
resulting components with 100% variance explained. 
The L2-norms of PCA features were then computed as 
statistics for these layers, providing a meaningful dis-
tance metric in an orthogonal PCA space (Zalocusky 
et al., 2021). Analyses revealed that deeper VGG-16 lay-
ers extracted more scene category-relevant information. 
Thus, blk1, blk5, and fc2 were used as low-, mid-, and 
high-level image statistics, respectively, in this study.

Nine image statistics were considered in this work: 
(1) Gabor response on low spatial frequencies, (2) Gabor 
response on high spatial frequencies, (3) homogeneity, (4) 
within-category perceptual similarity, (5) across-category 
perceptual similarity, (6) critical object saliency, (7–9) 
the L2-norms of PCA-transformed features based on out-
puts from VGG-16 (block_1, block_5, and fully connected 
layer 2). Low- and mid-level statistics were computed on 
grayscale images with dimensions of 240 × 240 pixels and 
600 × 600 pixels, respectively. For the VGG-16 model, 
true color images with dimensions of 224 × 224 pixels 
were used. Image annotations were conducted on images 
with dimensions of 600 × 600 pixels, using CoLabeler.2 
Since we defined no critical objects for Park and School 
scenes, their COS values were zeros. Scenes like Farm-
land and Beach contained critical objects covering a large 
proportion of the image area, resulting in greater saliency 
values.

Implementations of regression and rotational invariance 
tests
Stepwise linear regression modeling was performed at 
both image and scene category levels using R Studio (ver-
sion 2023.06.0 + 421, R version 4.3.1) (The R Foundation, 
Vienna, Austria). There were five dependent variables 
(i.e., eye movements) and each of them was regressed 
on nine predictors (i.e., image statistics). Model selec-
tion was based on Akaike information criterion (AIC) 
values and the stepwise regression used both backward 
and forward approach. Before the regression, luminance 
effect was controlled by regressing out the contribution 
of luminance from the eye movement data. Luminance 
was computed as the L component of the image in the 
CIE L*a*b* color space. The reason for this control is that 
image luminance values were not constant across the 
AID dataset (where our data was chosen from) and scene 
luminance influenced attention allocation during scene 
viewing as shown in other studies (e.g., Henderson et al., 

2013). Subsequent steps of regression were based on the 
residual data after controlling luminance influence.

Original images (0°) were rotated counterclockwise at 
90° intervals to produce images at 90°, 180°, and 270° ori-
entations. Oblique angles were omitted due to computer 
analysis methods requiring input in the form of a hori-
zontal rectangle. Otherwise, an oblique rectangle needs 
to be padded to create a minimum bounding horizontal 
rectangle. Such padding preserves the whole image space 
but introduces noise when calculating metrics that repre-
sent the whole image (e.g., homogeneity), or when pool-
ing values from multiple pixels into a single one (e.g., in 
VGG-16).

The computation of image statistics for the rotated 
images followed the same process as that applied to the 
0° images. Regarding the performance of the refined 
VGG-16 model classifying rotated images, the classifica-
tion accuracies were 93.75%, 92.5%, 90.83%, and 93.75% 
at 0°, 90°, 180°, and 270°, respectively. While the model’s 
accuracy was lower than that of human observers (Mean: 
97.88%) in this task, we argue that it was well trained and 
had learned useful rotation-invariant features for effec-
tive classification. Note that all 240 images were included 
in this analysis. As misclassified images differed among 
image orientations, restricting this analysis to only the 
correctly classified images for all orientations would lead 
to a reduction in the total number of images for certain 
categories (e.g., Industrial). This could potentially raise 
concerns related to statistical power. For each category, 
image statistics for different image orientations were sub-
jected to One-way ANOVA tests, with image orientation 
as the factor.

Results
General eye movement patterns
For a summary of specific values of the five eye move-
ment variables and the nine image statistics for each 
scene category, along with the One-way ANOVA results 
with scene category as a main effect, please see Addi-
tional file 1: Table S2 and S3.

Initially, we visualized the fixation points for all stim-
uli as well as for the stimuli of each category separately. 
The data for each category comprised fixations across all 
participants from all images belonging to that category. 
The fixation point maps were convolved using a Gauss-
ian kernel with a full width at half maximum of 1 pixel, 
for a clearer pattern demonstration. Figure  2 shows an 
overall center bias when observers viewed aerial images. 
Two reasons can be offered for the observed center bias. 
First, human observers are inclined to start from and be 
more attentive to the center of an image when observ-
ing it (Tatler, 2007; Tseng et al., 2009). Second, the scene 
categorization task might induce the image collectors to 2 An open-source annotation tool, available at http:// www. colab eler. com/.

http://www.colabeler.com/
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arrange scene-relevant information close to the center of 
an image, a phenomenon sometimes called “photogra-
pher bias” as a source of viewing center bias (Tseng et al., 
2009). In Fig.  1, for example, look how the terminal is 
located at the center of the image even though it could 
be located anywhere. In these senses, the observed view-
ing center bias should not be simply attributed to the pre-
stimuli center cross.

Notably, fixation location patterns varied across scene 
categories. First, center bias was quantified (see Meth-
ods). As shown by the numeric text labels on the individ-
ual panels of Fig. 2, the degree of viewing center bias was 
more profound for some categories (green) while weaker 
for others (yellow). Other eye movement measurements 
also differed across categories. As shown in Fig.  3, a 
dot indicates a scene category and error bars shows ±1 
Standard Error of Mean across image samples from each 

category. Lines were fitting results of linear regression, 
along with R squares and statistical significances. Within 
the 3-s time limit, observers dynamically adjusted their 
strategy of identifying aerial scenes, balancing between 
more areas explored and more details collected. Specifi-
cally, a greater number of fixations, higher FDM entropy 
values, and larger saccade amplitudes were linked to 
shorter fixation durations. Statistical tests showed that 
the number of fixations was most predictive of fixation 
duration  (R2 = 0.62, p = 0.002), followed by FDM entropy 
measure  (R2 = 0.36, p = 0.038). The predictive power of 
saccade amplitude to fixation duration achieved a mar-
ginal significance  (R2 = 0.26, p = 0.089). This marginal 
effect is increasingly viewed as evidence for hypotheses 
(Pritschet et al., 2016).

These negative correlations between fixation duration 
and each of the other three measurements seem to result 

Fig. 2 Illustrations of fixation locations in a dimension of 600 × 600 pixels. The left larger plot contains fixations from all stimuli. The right twelve 
smaller plots are the results for each scene category. Colorbars indicate the density of each plot. Each plot has its own scale because they were 
normalized independently to sum to one over pixels. On the top of each plot shows the measured center bias (mean ± SD) where a maximum value 
of 100 means that all fixations are on the center of images and a minimum value of 0 means fixations are of a uniform distribution. Some categories 
induced more (green) or less (yellow) centered viewing bias than measured using all scenes (white)

Fig. 3 Fixation duration as a function of the number of fixations (left), FDM entropy (middle), and saccade amplitude (right), respectively. In each 
plot, a dot is for a scene category and error bars show the ±1 SEM across image samples from individual category. Dotted lines are fitting results 
of linear regression, along with Pearson correlation coefficients (R), R squares and statistical significances (**p < 0.01, *p < 0.05)
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from the viewing time limit. That said, using more fixa-
tions naturally compresses individual fixation durations. 
It might be interesting to think about these results in 
terms of explore/exploit trade-off language. The distinc-
tion between exploration and exploitation has been used 
in domains from decision-making studies in animal for-
aging (Mehlhorn et al., 2015) to human betting behavior 
(Navarro et al., 2016). In our work, participants could be 
actively foraging for targets such as critical objects.

Among these five eye movement measures, gaze tran-
sition entropy (GTE) was not correlated with any of the 
other four (ps > 0.241). As indicated by the GTE values 
(0.072–0.088; Additional file  1: Table  S2), the unpre-
dictability of participants’ fixation sequences accounts 
for about 8% of the theoretical maximum unpredict-
ability, which means that the current fixation has a rela-
tively deterministic relationship to the next fixation. This 
might suggest that eye movements for categorizing aerial 
images are generally organized and predictable. Alterna-
tively, it might just be a side effect of the strong center 
bias observed in our data and the 6× 6 partition of image 
space in GTE calculation.

Image statistics predict eye movements
Above results showed that participants’ viewing behav-
ior during aerial scene categorization varied signifi-
cantly between different scene categories. To study the 

influential factors underlying this cognitive process, we 
then investigated which features contributed to the iden-
tification of aerial scenes at both the image and scene cat-
egory levels. According to our hypothesis, the availability 
of critical objects in aerial scenes impacts eye movements 
during this process. In addition, other factors are likely to 
simultaneously influence observers’ viewing, such as tex-
ture and perceptual similarity.

First, we performed stepwise linear regression mode-
ling at the image level using residual data after controlling 
the potential influence of image luminance (see Meth-
ods). Results are summarized in Table  1. All regression 
models were statistically significant (ps < 0.001). Mid- and 
object-level image statistics were largely predictive of 
the eye movement patterns. PCA-transformed VGG-16 
image statistics were strongly associated with various eye 
movement variables in this study. Since a support vector 
machine can be well trained with block_5 (91.54%) and 
FC_2 features (94.45%) to classify aerial scenes, we argue 
that scene category-relevant knowledge is represented 
in those layers. Therefore, it might suggest that in aerial 
scene categorization, scene category-level information 
itself plays a key role. Excluding COS values of 0 yielded 
similar regression outcomes.

Three plots in Fig.  4 show the relationship between 
image statistics and eye movements. For illustration 
purpose, only a subset of relationship between variables 

Table 1 Summary of regression models at the image level

***p < 0.001, **p < 0.01, *p < 0.05

Estimate
t value

Std. Error
p value

Coefficient information (Organized as shown to the left; Intercept omitted)

Image statistic Eye movement

Fixation duration Number of fixations FDM entropy Saccade amplitude GTE (Scanpath 
randomness)

Low Low S.F 10.20
2.02

5.06
*

0.18
2.36

0.08
*

High S.F 10.56
2.20

4.80
*

Block_1 PCA 6.4e−03
2.45

2.6e−03
*

− 3.3e−04
− 2.01

1.6e−04
*

− 3.3e−04
− 3.09

1.1e−04
**

− 1.9e−04
− 2.04

9.5e−05
*

Mid Homogeneity − 1.99
− 3.20

0.62
**

− 1.46
− 3.41

0.43
***

− 1.56
− 4.52

0.35
***

4.4e−02
4.66

9.5e−03
***

Block_5 PCA − 8.3e−04
− 2.62

3.2e−04
**

− 7.2e−04
− 3.91

1.8e−04
***

− 1.0e−03
− 4.46

2.3e−04
***

1.5e−05
2.89

5.3e−06
**

High Within Sim − 0.73
− 1.80

0.41
 = 0.073

− 1.61
− 3.22

0.50
**

Across Sim 2.06
1.98

1.04
*

FC_2 PCA 4.9e−03
2.05

2.4e−03
*

5.1e−03
3.4

1.5e−03
***

6.0e−03
3.37

1.8e−03
***

− 1.3e−04
− 3.36

4.0e−05
***

Object Critical object saliency 12.85
5.05

2.54
***

− 0.96
− 5.47

0.18
***

− 1.2e−02
− 4.42

2.7e−03
***

Adjusted  R2 0.15 (***) 0.42 (***) 0.35 (***) 0.20 (***) 0.16 (***)
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is demonstrated. These scatterplots show the direct 
relationship between the mentioned pairs of vari-
ables without accounting for any additional factors or 
predictors that might influence the relationship such 
as those in the regression models. Specifically, more 
homogeneous scenes led to fewer fixations and lower 
FDM entropy, indicating that a smaller image area was 
explored (Fig.  4a & 4b). Lower COS in aerial scenes 

induced more fixations and shortened fixation dura-
tions during viewing (Fig. 4a & 4c).

Regression results at the scene category level are shown 
in Table 2. It is worth noting that using nine independ-
ent variables to regress one response variable of 12 sam-
ples (i.e., 12 scene categories) suffers from power issues. 
To partly address this, we reported Adjusted  R2, as it 
penalizes the inclusion of variables that do not improve 

Fig. 4 Illustrations of the relationships between eye movement variables and image statistics. In all plots, each red dot represents one image. In 
(a), the number of fixations as a function of homogeneity and COS is shown, as well as the linear fitting plane. In (b, c), FDM entropy and fixation 
duration are shown as functions of homogeneity and COS, respectively. R indicates the Pearson correlation coefficients of two variables in each plot

Table 2 Summary of regression models at the scene category level

***p < 0.001, **p < 0.01, *p < 0.05

Estimate
t value

Std. Error
p value

Coefficient information (Organized as shown to the left; Intercept omitted)

Image statistic Eye movement

Fixation 
duration

Number of fixations FDM entropy Saccade 
amplitude

GTE (Scanpath 
randomness)

Low Low S.F − 19.49
− 2.23

8.7
= 0.076

High S.F − 1.12
− 2.17

0.51
= 0.073

Block_1 PCA

Mid Homogeneity − 1.74
− 2.92

0.60
*

Block_5 PCA − 1.8e−03
− 4.5

3.9e−04
**

− 1.7e−03
− 4.22

3.9e−04
**

− 0.002
− 4.86

0.0004
**

1.8e−05
2.41

7.4e−06
= 0.053

High Within Sim − 2.24
− 2.73

0.82
*

Across Sim 7.03
2.81

2.51
*

FC_2 PCA 2.5e−02
4.93

5.0e−03
**

0.014
3.26

0.004
*

0.017
3.872

0.004
**

Object Critical object saliency 14.31
3.72

3.85
**

− 1.32
− 6.92

0.19
***

− 0.47
− 2.87

0.16
*

− 0.018
− 3.09

6.0e−03
*

Adjusted  R2 0.66 (*) 0.96 (***) 0.82 (**) 0.81 (**) 0.57 (p = 0.062)
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the model and takes into account the number of predic-
tors and the sample size in the model. Additionally, the 
scene category-level analyses were reported despite the 
potential power issues for two reasons: 1) Statistical tests 
indicate significance; 2) consistent relationships between 
eye movements and image statistics exist at both image 
and scene category levels, as indicated by the same signs 
( ±) of estimate values (except for the one with Gabor 
Low S.F.), suggesting a stable impact of these features on 
aerial viewing behavior. Thus, we argue that at the scene 
category level, image statistics that impacted aerial view-
ing behavior mainly came from higher- and object-level 
information.

Figure  5 shows the number of fixations (5a), fixation 
duration (5b), and GTE (5c) as functions of critical object 
saliency. The category-level viewing patterns partly 
resembled image-level results. When an image was from 
a scene category containing fewer or no salient critical 
objects (e.g., School and Industrial), observers’ view-
ing behavior was systematically more exploratory, and 
slightly more random. The results from both the category 
and image levels supported our hypothesis that the avail-
ability of critical objects influences eye movements when 
categorizing aerial scenes.

Multicollinearity and non‑exhaustive image statistics
Some image statistics we used were correlated with each 
other (Additional file 1: Fig. S2). There is an asymmetry in 
this multicollinearity issue (Belsley et al., 2005; O’Brien, 
2007): if the ith regressor is statistically significant even 
if it has considerable multicollinearity, it is statistically 
significant in the face of that collinearity. However, if the 
ith regressor has a large amount of multicollinearity and 
turns out to be a nonsignificant predictor, this may be the 
situation where collinearity has a negative effect. Thus, 
we think the correlations among these selected image 

statistics would not contradict their predictive power as 
detected, especially after we had controlled the multicol-
linearity. Given that Gabor High S. F. showed severe mul-
ticollinearity (Multicollinearity analysis in the Additional 
file  1), one might attribute its lack of detected predic-
tive power in regressions to this. It is possible. However, 
Gabor Low S. F., while less collinear than the other three 
VGG-16 L2-norm based image statistics, still poorly pre-
dicted eye movements. Thus, Gabor responses may be 
truly insufficient to capture aerial viewing patterns.

While other image statistics might also predict aerial 
eye movement patterns, the relatively broad predictor 
range in this study yielded reasonable and interpretable 
outcomes. We argue that the results are not mere arti-
facts of non-exhaustive predictors. Further research may 
uncover additional image statistics contributing to aerial 
visual attention in this context.

Rotational invariance of image statistics
Rapid aerial scene categorization has been found to 
depend on rotation-invariant information (Loschky 
et al., 2015). Obviously, image rotation has no impact on 
the size of an object in an image or its distance from the 
image center. Thus, we tested whether other image sta-
tistics we analyzed in this work are sensitive to rotational 
variations. Results showed that nine image statistics at 
four image orientations (0°, 90°, 180°, and 270°) are not 
statistically different (One-way ANOVA tests, ps > 0.187) 
or marginally different (Within Sim. of Beach, p = 0.064). 
Why Within Sim. of Beach scenes were more affected by 
image rotation is not clear. It might be because the used 
Beach stimuli had their water bodies more frequently 
appear in the lower half of the image, which could have 
biased model training. When images were rotated, 
water bodies were relocated to areas originally occupied 
by sandy lands, possibly introducing noise in feature 

Fig. 5 From left to right, the number of fixations, fixation duration, and GTE (scanpath randomness) are plotted as functions of critical object 
saliency. Each dot is for one category. Error bars indicate the ±1 SEM across image samples within that category. Lines are fitting results of linear 
regression, along with Pearson correlation coefficients (R), R squares, and statistical significances (**p < 0.01, *p < 0.05). On a scene category basis, 
FDM entropy was correlated with COS significantly (p = 0.025), saccade amplitude (p = 0.091), and GTE (p = 0.100) were marginally correlated 
with COS
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extraction. Note that the rotational invariance test for 
Gabor features is trivial in this work, as Gabor responses 
were averaged across twelve Gabor filter orientations 
(i.e., 0° to 165° at a step of 15°).

Conclusions from results
In this work, the relationships between viewing behavior 
for aerial scene categorization and image statistics was 
examined. Twenty experienced subjects’ eye movements 
were recorded while they categorized aerial scenes. A 
general center bias in viewing was observed. Eye move-
ment patterns varied among scene categories in terms of 
fixation durations, the number of fixations, the entropy 
of fixation density map, saccade amplitudes, and gaze 
transition entropy (scanpath randomness).

Results showed that viewing behavior was more 
exploratory when (1) an image featured a less homoge-
neous texture, and/or (2) when the image contained few 
or no salient objects that could provide category-diag-
nostic information. VGG-16 based image statistics were 
strongly correlated with viewing patterns, suggesting that 
other image features from low- to high-level impacted 
visual attention in this task. However, the exact features, 
corresponding to those VGG-16 layers, are not entirely 
known. At the scene category level, higher-level image 
statistics and critical object saliency were found to be 
more predictive of viewing behavior. Scanpaths were gen-
erally organized, showing minor differences across cat-
egories. These differences could still be roughly captured 
by critical object saliency. Participants were inclined to 
fixate on defined critical objects (Additional file  1: Fig. 
S3). The image statistics tested in this study were rota-
tion-invariant. In summary, our results supported our 
hypothesis that the availability of critical objects influ-
ences scene sampling and overt visual attention in aerial 
scene categorization.

General discussion
Why objects are emphasized in aerial scenes
The impact of critical objects on eye movements dur-
ing aerial scene categorization may be also attributed to 
the fact that most scene categories we used were man-
made. Man-made scenes are defined by their functions 
in contrast to natural scenes that are defined more by 
their appearance/texture. Lloyd et  al. (2002) referred to 
these man-made scenes as lower-order, or more specific 
categories. Two man-made scenes can look similar while 
serving different purposes. For instance, distinguish-
ing between commercial and industrial land uses can be 
difficult if relevant contextual scene information is not 
available (e.g., in an aerial image the shop signs are sel-
dom visible and building height information is limited). 
Searching for critical objects representing functional 

purposes may be the most efficient way to determine land 
use for man-made scenes, and, perhaps, more generally. 
When such functionally meaningful objects are absent, 
scenes that share similar-looking objects but belong to 
different scene categories can produce categorization 
errors. This is evidenced by Loschky et al.’s work (2015), 
showing that compared to natural aerial scenes, subjects 
made more categorization confusion between man-made 
aerial scenes no matter the scenes were either intact or 
texturized images.

Our experimental use of a 3-s viewing time may have 
contributed to the observed attentional emphasis on 
local regions and objects. Without strict time constraints, 
diagnostic objects were prioritized when people had to 
recognize a scene (Henderson & Hollingworth, 1999). 
It would have been possible to use briefer presenta-
tion times, as prior research has shown that observers 
can identify aerial scene categories with just ~ 300  ms 
or shorter presentation. Under those short-viewing 
conditions, a global-to-local bias is observed and cat-
egorization becomes dependent on low-frequency 
information rather than on selective attention to any 
diagnostic objects (Schyns & Oliva, 1994). One might 
expect similar results with briefly presented aerial images 
though, of course, eye movements become less useful 
and other methods would be needed to analyze the data.

Global information like spatial relationships that are 
available from low-pass filtered images is believed to be 
useful enough in rapid scene analysis (Oliva & Torralba, 
2001, 2006; Sanocki, 2003; Schyns & Oliva, 1994; Wilder 
et al., 2018). Others argued that localized information is 
at least as essential as global information in scene cate-
gorization (Loschky & Larson, 2008; Vogel et  al., 2007). 
Recently, Wiesmann and Võ (2022) have demonstrated 
that global scene properties are useful for scene catego-
rization with above-chance level performance, but fast, 
effortless, and high-accuracy performance requires local, 
high-resolution information such as objects. Indeed, 
observers can efficiently report object-level information 
in a single glance of grayscale images (Fei-Fei et al., 2007). 
In our work, we verified the importance of critical objects 
in influencing viewing behavior for aerial categorization. 
In addition, participants preferentially fixated on criti-
cal objects (Additional file 1: Fig. S3). They also showed 
longer RTs for scenes of lower COS values (Additional 
file  1: Fig. S4) and reported greater categorization diffi-
culties for Park and School scenes (Additional file 1: Fig. 
S5). These results align with Loschky et al.’s (2015), sug-
gesting that aerial scenes may be categorized based on 
their parts and individual objects.

The combination of the effects of critical objects and 
image homogeneity on aerial viewing behavior may indi-
cate that aerial scene categorization is based on both 
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specific object recognition and broader scene perception 
mechanisms. This would be consistent with Groen et al.’s 
(2017) argument that low- and mid-level properties may 
be particularly diagnostic for scene perception and high-
level properties for object recognition. To be clear, while 
we stress the key role of critical objects in aerial scene 
viewing behavior and in aerial scene analysis, we are not 
arguing that specific objects are indispensable for cat-
egorizing aerial scenes. Observers can effectively catego-
rize aerial images even in the absence of critical objects 
(Additional file  1: Fig. S1), but, all else being equal, 
observers seem to make more use of specific object infor-
mation in our aerial scene task than they might in a ter-
restrial task.

It might be interesting to examine this issue with briefly 
presented stimuli. The ability to detect object-level infor-
mation from a brief glance of daily images has not been 
extensively studied with aerial images. This raises a pos-
sibility that humans emphasize objects but are less effi-
cient at detecting and recognizing them in aerial scenes, 
so they perform more poorly (e.g., Loschky et al., 2015) 
and might need longer processing times compared to ter-
restrial scenes.

Categorical guidance and implications for automation
During image perception, category-relevant information 
is building up even if observers are merely told to memo-
rize the images (Damiano et al., 2019; Long et al., 2018). 
Interestingly, both of these studies found the effects of 
mid-level visual features, either on the level of organized 
response elicited from object-selective cortex along the 
entire ventral pathway (Long et al., 2018) or on the guid-
ance of fixations in a more top-down, categorical-specific 
way during the viewing (Damiano et al., 2019). The pre-
sent work also supports the effectiveness of mid-level fea-
tures in scene processing by showing that homogeneity 
significantly influenced image-level viewing patterns in 
this task.

The development of Artificial Intelligence has helped 
people in various trades reduce the burden of process-
ing massive volumes of aerial images. Most existing 
methods of automated aerial image processing (e.g., 
Dimitrovski et  al., 2023; Kotaridis & Lazaridou, 2021) 
exploited low- to high-level deep features without spec-
ifying categorical information during feature extraction. 
However, four facts deserve more attention in thinking 
about future development of AI systems: 1) Because 
humans can rapidly categorize scenes and/or extract 
scene gist (Loschky et al., 2015; Oliva, 2005), it is likely 
that the later period of viewing can be strongly biased 
by a preliminary assessment of the scene that is quite 
likely to be correct. 2) Even in category-irrelevant tasks, 
category-selective information modulates neuronal 

responses in the human brain (Long et  al., 2018) and 
guides human visual attention (Damiano et  al., 2019). 
3) Experts make sophisticated use of semantic infor-
mation to perform memory tasks using aerial images 
(Lansdale et  al., 2010; Šikl et  al., 2019). Finally, 4) as 
we revealed in this work, observers’ visual attention 
patterns vary across different aerial scene categories. 
Future development of automated systems could ben-
efit from the adoption of these aspects of human pro-
cessing of aerial images. These advances could, in turn, 
prove beneficial in designing and evaluating automated 
decision-support systems (e.g., Deepak & Ameer, 2021; 
Barata et  al., 2023) and facilitate cognitive research 
(e.g., Agudo et  al., 2024; Liu et  al., 2020; Xu & Vaziri-
Pashkam, 2021).

Invariance in aerial viewpoints
Our rotational invariance analyses echo Loschky et  al.’s 
(2015), finding that the information aiding rapid aerial 
scene categorization was rotation-invariant. With the 
task of aerial image memorization, however, image rota-
tion led to a decline in accuracy for both experts and 
non-experts (Šikl et  al., 2019). This contrast between 
the two tasks’ results suggests that, while categoriza-
tion benefits from information that remains consistent 
across aerial viewpoints, memory recall is susceptible to 
the alterations introduced by image rotation. Whether 
image rotation has an impact on eye movement patterns 
for aerial tasks remains unknown. When a task requires 
processing viewpoint-sensitive information, there might 
be different eye movement patterns across image orienta-
tions. Further investigation into these potential rotation-
induced variations in eye movements in various aerial 
tasks could probe deeper into the complex interrelation 
between perception, cognition, and the interpretation of 
aerial images.

The relative rotational invariance of aerial scene cate-
gorization may be a disadvantage when it comes to visual 
search (see Sanocki, 2003). In terrestrial imagery, a target 
like a building might be more likely to appear in the lower 
half of the image (depending on viewpoints). This can aid 
search. In aerial images, such regularities do not occur. 
Some spatial relationships will remain useful in overhead 
imagery. For example, search is can be guided by “anchor 
objects”. The toothbrush is likely to be near its anchor, 
the sink (Boettcher et al., 2018). An aerial context, search 
cars, is more profitably anchored to roads than to riv-
ers. However, the direction from anchor to target object 
is likely less constrained in an aerial image than in a ter-
restrial one, where, for instance, the computer monitor is 
likely to be not just near, but reliably above the surface of 
the desk.
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Limitations
This study has certain limitations. Regression analyses 
at the scene category level likely suffered from a lack of 
statistical power. Unlike terrestrial images, aerial images 
typically offer a broader field of view in a single frame. 
In this work, we presented aerial scene stimuli in isola-
tion, following the approach of previous studies. To 
explore how different scenes or categories interact and 
affect the perception of these images, it might be benefi-
cial to use stimuli that feature multiple scene categories 
or multiple instances of one category in the frame of one 
image. In addition, it is possible that our eye movement 
statistics are “contaminated” by task-irrelevant eye move-
ments. We fixed the viewing time as 3-s for each image. 
If observers conclusively categorized a scene after a frac-
tion of a second, they might have been doing some com-
pletely different task (or no task at all) for the remaining 
time. In the future work, it might be useful to allow 
observers to freely control the pace of trials, ending a 
trial as soon as the response was generated. The resulting 
response time measure could also shed new insight on 
human viewing of aerial images. For example, Lloyd et al. 
(2002) found that larger aerial photographs were associ-
ated with more accurate and confident categorization but 
not faster responses. Moreover, a self-paced viewing par-
adigm would better mimic real-life viewing conditions 
and behaviors.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s41235- 024- 00541-1.

Additional file 1. Supplementary Tables and Figures.

Acknowledgements
Special thanks are due to Dr. Aoqi Li and Dr. Yaosi Hu for their valuable sugges-
tions. We are grateful for the editor’s and reviewers’ help on the manuscript.

Significance Statement
Aerial images, captured from aircraft, drones, or satellites, have the merits of 
being quickly accessible and covering a large landscape. These images serve 
as practical tools in daily activities and government decisions, such as disaster 
response and management. Human’s ability to categorize aerial scenes has 
been well documented. However, how humans view aerial images, the factors 
that influence the viewing process, and the information that contributes to 
the determination of scene category are underexplored. In an eye movement 
study, we found an obvious viewing center bias and category-level difference 
in the eye movements for aerial scene categorization. More exploratory view-
ing patterns were associated with aerial images that had more heterogeneous 
textures, and/or lacked diagnostic objects. At the scene category level, dif-
ferences in eye movement patterns were associated with differences in both 
critical object saliency and image statistics calculated on higher-level VGG-16 
features. The VGG-16 features probably represented scene category informa-
tion. The hypothesis, previously suggested by Loschky et al. (2015), that aerial 
scenes are primarily categorized by individual parts and objects finds some 
support in our results. Given that observers’ visual attention patterns varied 
across aerial scene categories, we suggested that scene categories, as a 
resource of high-level cognitive knowledge, could be taken into considera-
tion in the processing of aerial images to further boost the performance of 
automatic models in related tasks.

Author contributions
Chenxi Jiang was involved in conceptualization, methodology, software, 
data collection & analysis, writing—original draft, writing—review & editing. 
Zhenzhong Chen helped in conceptualization, methodology, data analysis, 
funding acquisition, writing—review & editing. Jeremy M. Wolfe contributed 
to methodology, data analysis, funding acquisition, writing—review & editing.

Funding
This work was supported by the National Natural Science Foundation of China 
(NSFC, Grant No. 62036005) and the Special Fund of Hubei Luojia Laboratory 
to Zhenzhong Chen, by the National Institutes of Health-Nation Eye Institute 
(NIH-NEI) Grant EY017001, the National Institutes of Health-Nation Cancer 
Institute (NIH-NCI) Grant CA207490, and the National Science Foundation 
(NSF) Grant 2146617 to Jeremy M. Wolfe.

Availability of data and materials
Data, analysis scripts, and stimuli are available at https:// osf. io/ 4n3rc/.

Declarations

Ethics approval and consent to participate
This work was approved by the Natural Science Ethics Committee of Wuhan 
University. All participants provided informed consent to participate in the 
study, with the knowledge that their anonymized data may be openly shared 
with others.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 12 September 2023   Accepted: 7 March 2024

References
Agudo, U., Liberal, K. G., Arrese, M., & Matute, H. (2024). The impact of AI 

errors in a human-in-the-loop process. Cognitive Research: Principles 
and Implications, 9(1), 1.

Aleissaee, A. A., Kumar, A., Anwer, R. M., Khan, S., Cholakkal, H., Xia, G. S., & 
Khan, F. S. (2023). Transformers in remote sensing: A survey. Remote 
Sensing, 15(7), 1860.

Alvarenga, A. V., Pereira, W. C., Infantosi, A. F. C., & Azevedo, C. M. (2007). 
Complexity curve and grey level co-occurrence matrix in the texture 
evaluation of breast tumor on ultrasound images. Medical Physics, 
34(2), 379–387.

Bao, P., She, L., McGill, M., & Tsao, D. Y. (2020). A map of object space in 
primate inferotemporal cortex. Nature, 583(7814), 103–108.

Barata, C., Rotemberg, V., Codella, N. C., Tschandl, P., Rinner, C., Akay, B. N., 
Apalla, Z., Argenziano, G., Halpern, A., Lallas, A., Longo, C., Malvehy, J., 
Puig, S., Rosendahl, C., Soyer, H. P., Zalaudek, I., Kittler, H., & Kittler, H. 
(2023). A reinforcement learning model for AI-based decision support 
in skin cancer. Nature Medicine, 29(8), 1941–1946.

Belsley, D. A., Kuh, E., & Welsch, R. E. (2005). Regression diagnostics: Identifying 
influential data and sources of collinearity. Wiley.

Boettcher, S. E. P., Draschkow, D., Dienhart, E., & Võ, M. L. H. (2018). Anchoring 
visual search in scenes: Assessing the role of anchor objects on eye 
movements during visual search. Journal of Vision, 18(13), 11–11.

Borji, A., Sihite, D. N., & Itti, L. (2013). What stands out in a scene? A study of 
human explicit saliency judgment. Vision Research, 91, 62–77.

Castelhano, M. S., Mack, M. L., & Henderson, J. M. (2009). Viewing task influ-
ences eye movement control during active scene perception. Journal 
of Vision, 9(3), 6–6.

Cosgrove, D., & Fox, W. L. (2010). Photography and flight. Reaktion Books.

https://doi.org/10.1186/s41235-024-00541-1
https://doi.org/10.1186/s41235-024-00541-1
https://osf.io/4n3rc/


Page 16 of 17Jiang et al. Cognitive Research: Principles and Implications            (2024) 9:17 

Cronin, D. A., Hall, E. H., Goold, J. E., Hayes, T. R., & Henderson, J. M. (2020). Eye 
movements in real-world scene photographs: General characteristics and 
effects of viewing task. Frontiers in Psychology, 10, 2915.

Damiano, C., Wilder, J., & Walther, D. B. (2019). Mid-level feature contributions 
to category-specific gaze guidance. Attention, Perception, & Psychophysics, 
81, 35–46.

Deepak, S., & Ameer, P. M. (2021). Automated categorization of brain tumor 
from mri using cnn features and svm. Journal of Ambient Intelligence and 
Humanized Computing, 12, 8357–8369.

Dehghani, M., Djolonga, J., Mustafa, B., Padlewski, P., Heek, J., Gilmer, J., ... & 
Houlsby, N. (2023, July). Scaling vision transformers to 22 billion param-
eters. In International conference on machine learning (pp. 7480–7512). 
PMLR.

Dimitrovski, I., Kitanovski, I., Kocev, D., & Simidjievski, N. (2023). Current trends 
in deep learning for Earth Observation: An open-source benchmark 
arena for image classification. ISPRS Journal of Photogrammetry and 
Remote Sensing, 197, 18–35.

Dumoulin, S. O., & Wandell, B. A. (2008). Population receptive field estimates in 
human visual cortex. NeuroImage, 39, 647–660.

Ehinger, K. A., & Wolfe, J. M. (2016). When is it time to move to the next map? 
Optimal foraging in guided visual search. Attention, Perception, & Psycho-
physics, 78, 2135–2151.

Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible sta-
tistical power analysis program for the social, behavioral, and biomedical 
sciences. Behavior Research Methods, 39(2), 175–191.

Fei-Fei, L., Iyer, A., Koch, C., & Perona, P. (2007). What do we perceive in a glance 
of a real-world scene? Journal of Vision, 7(1), 10–10.

Freiwald, W. A., & Tsao, D. Y. (2010). Functional compartmentalization and view-
point generalization within the macaque face-processing system. Science, 
330(6005), 845–851. https:// doi. org/ 10. 1126/ scien ce. 11949 08

Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F. A., & Brendel, W. 
(2018). ImageNet-trained CNNs are biased towards texture; increasing 
shape bias improves accuracy and robustness. arXiv preprint arXiv: 1811. 
12231.

Groen, I. I., Silson, E. H., & Baker, C. I. (2017). Contributions of low-and high-
level properties to neural processing of visual scenes in the human 
brain. Philosophical Transactions of the Royal Society b: Biological Sciences, 
372(1714), 20160102.

Harris, J. A., Wu, C. T., & Woldorff, M. G. (2011). Sandwich masking eliminates 
both visual awareness of faces and face-specific brain activity through 
a feedforward mechanism. Journal of Vision, 11(7), 3. https:// doi. org/ 10. 
1167/ 11.7.3

He, D. C., & Wang, L. (1990). Texture unit, texture spectrum, and texture analysis. 
IEEE Transactions on Geoscience and Remote Sensing, 28(4), 509–512.

Henderson, J. M., & Hollingworth, A. (1999). High-level scene perception. 
Annual Review of Psychology, 50(1), 243–271.

Henderson, J. M., Nuthmann, A., & Luke, S. G. (2013). Eye movement control 
during scene viewing: Immediate effects of scene luminance on fixation 
durations. Journal of Experimental Psychology: Human Perception and 
Performance, 39(2), 318.

Henderson, M. M., Tarr, M. J., & Wehbe, L. (2023). Low-level tuning biases in 
higher visual cortex reflect the semantic informativeness of visual fea-
tures. Journal of Vision, 23(4), 8. https:// doi. org/ 10. 1167/ jov. 23.4.8

Irwin, D. E., & Zelinsky, G. J. (2002). Eye movements and scene perception: 
Memory for things observed. Perception & Psychophysics, 64(6), 882–895.

Jiang, X., Yang, T., Liu, D., Zheng, Y., Chen, Y., & Li, F. (2022). An Automatic 
Identification Method of Crested Ibis (Nipponia nippon) Habitat Based on 
Spatiotemporal Density Detection. Animals: An Open Access Journal from 
MDPI, 12(17), 2220.

Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and 
recent developments. Philosophical Transactions of the Royal Society a: 
Mathematical, Physical and Engineering Sciences, 374(2065), 20150202.

Kaspar, K., Hloucal, T. M., Kriz, J., Canzler, S., Gameiro, R. R., Krapp, V., & König, P. 
(2013). Emotions’ impact on viewing behavior under natural conditions. 
PLoS ONE, 8(1), e52737.

Kay, K. N., Naselaris, T., Prenger, R. J., & Gallant, J. L. (2008). Identifying natural 
images from human brain activity. Nature, 452, 352–355.

Kotaridis, I., & Lazaridou, M. (2021). Remote sensing image segmentation 
advances: A meta-analysis. ISPRS Journal of Photogrammetry and Remote 
Sensing, 173, 309–322.

Lane, C. R., Liu, H., Autrey, B. C., Anenkhonov, O. A., Chepinoga, V. V., & Wu, Q. 
(2014). Improved wetland classification using eight-band high resolu-
tion satellite imagery and a hybrid approach. Remote Sensing, 6(12), 
12187–12216.

Lansdale, M., Underwood, G., & Davies, C. (2010). Something overlooked? How 
experts in change detection use visual saliency. Applied Cognitive Psychol-
ogy: THe Official Journal of the Society for Applied Research in Memory and 
Cognition, 24(2), 213–225.

Le Meur, O., Le Callet, P., Barba, D., & Thoreau, D. (2006). A coherent computa-
tional approach to model bottom-up visual attention. IEEE Transactions 
on Pattern Analysis and Machine Intelligence, 28(5), 802–817.

Lescroart, M. D., & Gallant, J. L. (2019). Human scene-selective areas represent 
3D configurations of surfaces. Neuron, 101(1), 178–192.

Liu, J., Zhang, H., Yu, T., Ni, D., Ren, L., Yang, Q., ... & Xue, G. (2020). Stable 
maintenance of multiple representational formats in human visual short-
term memory. Proceedings of the National Academy of Sciences, 117(51), 
32329–32339.

Lloyd, R., & Hodgson, M. E. (2002). Visual search for land use objects in aerial 
photographs. Cartography and Geographic Information Science, 29(1), 
3–15.

Lloyd, R., Hodgson, M. E., & Stokes, A. (2002). Visual categorization with aerial 
photographs. Annals of the Association of American Geographers, 92(2), 
241–266.

Long, B., Yu, C. P., & Konkle, T. (2018). Mid-level visual features underlie the high-
level categorical organization of the ventral stream. Proceedings of the 
National Academy of Sciences, 115(38), E9015–E9024.

Loschky, L. C., & Larson, A. M. (2008). Localized information is necessary for 
scene categorization, including the natural/man-made distinction. 
Journal of Vision, 8(1), 4–4.

Loschky, L. C., Ringer, R. V., Ellis, K., & Hanson, B. C. (2015). Comparing rapid 
scene categorization of aerial and terrestrial views: A new perspective on 
scene gist. Journal of Vision, 15(6), 11.

Mehlhorn, K., Newell, B. R., Todd, P. M., Lee, M. D., Morgan, K., Braithwaite, V. A., ... 
& Gonzalez, C. (2015). Unpacking the exploration–exploitation tradeoff: A 
synthesis of human and animal literatures. Decision, 2(3), 191.

Navarro, D. J., Newell, B. R., & Schulze, C. (2016). Learning and choosing in an 
uncertain world: An investigation of the explore–exploit dilemma in 
static and dynamic environments. Cognitive Psychology, 85, 43–77.

O’Brien, R. M. (2007). A caution regarding rules of thumb for variance inflation 
factors. Quality & Quantity, 41, 673–690.

Oaten, A. (1977). Optimal foraging in patches: A case for stochasticity. Theoreti-
cal Population Biology, 12, 263–285.

Oehlschlaeger, S., & Võ, M. L. H. (2020). Development of scene knowledge: 
Evidence from explicit and implicit scene knowledge measures. Journal 
of Experimental Child Psychology, 194, 104782.

Oliva, A. (2005). Gist of the scene. In Neurobiology of attention (pp. 251–256). 
Academic Press.

Oliva, A., & Torralba, A. (2001). Modeling the shape of the scene: A holistic 
representation of the spatial envelope. International Journal of Computer 
Vision, 42, 145–175.

Ozturk, I., & Ullah, S. (2022). Does digital financial inclusion matter for eco-
nomic growth and environmental sustainability in OBRI economies? An 
empirical analysis. Resources Conservation and Recycling, 185, 106489.

Oliva, A., & Torralba, A. (2006). Building the gist of a scene: The role of global 
image features in recognition. Progress in Brain Research, 155, 23–36.

Pannasch, S., Helmert, J. R., Hansen, B. C., Larson, A. M., & Loschky, L. C. (2014). 
Commonalities and differences in eye movement behavior when explor-
ing aerial and terrestrial scenes. In Cartography from Pole to Pole: Selected 
Contributions to the XXVIth International Conference of the ICA, Dresden 
2013 (pp. 421–430). Springer.

Pritschet, L., Powell, D., & Horne, Z. (2016). Marginally significant effects as evi-
dence for hypotheses: Changing attitudes over four decades. Psychologi-
cal Science, 27(7), 1036–1042.

Pusch, R., Clark, W., Rose, J., & Güntürkün, O. (2023). Visual categories and con-
cepts in the avian brain. Animal Cognition, 26(1), 153–173.

Rayner, K., Smith, T. J., Malcolm, G. L., & Henderson, J. M. (2009). Eye movements 
and visual encoding during scene perception. Psychological Science, 20(1), 
6–10.

Rhodes, R. E., Cowley, H. P., Huang, J. G., Gray-Roncal, W., Wester, B. A., & Dren-
kow, N. (2021). Benchmarking human performance for visual search of 
aerial images. Frontiers in Psychology, 12, 733021.

https://doi.org/10.1126/science.1194908
http://arxiv.org/abs/1811.12231
http://arxiv.org/abs/1811.12231
https://doi.org/10.1167/11.7.3
https://doi.org/10.1167/11.7.3
https://doi.org/10.1167/jov.23.4.8


Page 17 of 17Jiang et al. Cognitive Research: Principles and Implications            (2024) 9:17  

Riesenhuber, M., & Poggio, T. (2000). Models of object recognition. Nature 
Neuroscience, 3(11), 1199–1204.

Rummukainen, O., Radun, J., Virtanen, T., & Pulkki, V. (2014). Categorization of 
natural dynamic audiovisual scenes. PLoS ONE, 9(5), e95848.

Sanocki, T. (2003). Representation and perception of scenic layout. Cognitive 
Psychology, 47(1), 43–86.

Schyns, P. G., & Oliva, A. (1994). From blobs to boundary edges: Evidence for 
time- and spatial-scale-dependent scene recognition. Psychological Sci-
ence, 5(4), 195–200.

Shiferaw, B., Downey, L., & Crewther, D. (2019). A review of gaze entropy as 
a measure of visual scanning efficiency. Neuroscience & Biobehavioral 
Reviews, 96, 353–366.

Šikl, R., Svatoňová, H., Děchtěrenko, F., & Urbánek, T. (2019). Visual recognition 
memory for scenes in aerial photographs: Exploring the role of expertise. 
Acta Psychologica, 197, 23–31.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for 
large-scale image recognition. arXiv preprint arXiv: 1409. 1556.

Stevens, S. S. (1975). Psychophysics: Introduction to its perceptual neural and 
social prospects. Wiley.

Tatler, B. W. (2007). The central fixation bias in scene viewing: Selecting an opti-
mal viewing position independently of motor biases and image feature 
distributions. Journal of Vision, 7(14), 4–4.

Tseng, P. H., Carmi, R., Cameron, I. G., Munoz, D. P., & Itti, L. (2009). Quantify-
ing center bias of observers in free viewing of dynamic natural scenes. 
Journal of Vision, 9(7), 4. https:// doi. org/ 10. 1167/9. 7.4

Vinken, K., van den Bergh, G., Vermaercke, B., Beeck, H. P., & op de,. (2016). 
Neural representations of natural and scrambled movies progres-
sively change from rat striate to temporal cortex. Cerebral Cortex, 26(7), 
3310–3322.

Vogel, J., Schwaninger, A., Wallraven, C., & Bülthoff, H. H. (2007). Categoriza-
tion of natural scenes: Local versus global information and the role of 
color. ACM Transactions on Applied Perception (TAP), 4(3), 19-es.

Wiesmann, S. L., & Võ, M. L. H. (2022). What makes a scene? Fast scene catego-
rization as a function of global scene information at different resolutions. 
Journal of Experimental Psychology: Human Perception and Performance, 
48(8), 871.

Wilder, J., Dickinson, S., Jepson, A., & Walther, D. B. (2018). Spatial relationships 
between contours impact rapid scene classification. Journal of Vision, 
18(8), 1–1.

Xia, G. S., Hu, J., Hu, F., Shi, B., Bai, X., Zhong, Y., Zhang, L., & Lu, X. (2017). AID: 
A benchmark data set for performance evaluation of aerial scene clas-
sification. IEEE Transactions on Geoscience and Remote Sensing, 55(7), 
3965–3981.

Xiang, S., Liang, Q., & Tang, P. (2023). Task-Oriented Compression Framework for 
Remote Sensing Satellite Data Transmission. IEEE Transactions on Industrial 
Informatics.

Xu, Y., & Vaziri-Pashkam, M. (2021). Limits to visual representational correspond-
ence between convolutional neural networks and the human brain. 
Nature Communications, 12(1), 2065.

Yarbus, A. L. (1967). Eye movements and vision. Plenum Press.
Zalocusky, K. A., Najm, R., Taubes, A. L., Hao, Y., Yoon, S. Y., Koutsodendris, N., ... & 

Huang, Y. (2021). Neuronal ApoE upregulates MHC-I expression to drive 
selective neurodegeneration in Alzheimer’s disease. Nature neurosci-
ence, 24(6), 786–798.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., & Wang, O. (2018). The unreason-
able effectiveness of deep features as a perceptual metric. In Proceedings 
of the IEEE conference on computer vision and pattern recognition (pp. 
586–595).

Zhao, J., Ding, F., Wang, Z., Ren, J., Zhao, J., Wang, Y., Tang, X., Wang, Y., Yao, J., & 
Li, Q. (2018). A rapid public health needs assessment framework for after 
major earthquakes using high-resolution satellite imagery. International 
Journal of Environmental Research and Public Health, 15(6), 1111.

Zhong, Y., Ma, A., Soon Ong, Y., Zhu, Z., & Zhang, L. (2018). Computational 
intelligence in optical remote sensing image processing. Applied Soft 
Computing, 64, 75–93.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/1409.1556
https://doi.org/10.1167/9.7.4

	Toward viewing behavior for aerial scene categorization
	Abstract 
	Introduction
	The current study

	Methods
	Participants
	Stimuli and apparatus
	Procedure
	Data screening
	Eye movement variables
	Image features and statistics
	Implementations of regression and rotational invariance tests

	Results
	General eye movement patterns
	Image statistics predict eye movements
	Multicollinearity and non-exhaustive image statistics
	Rotational invariance of image statistics

	Conclusions from results
	General discussion
	Why objects are emphasized in aerial scenes
	Categorical guidance and implications for automation
	Invariance in aerial viewpoints
	Limitations

	Acknowledgements
	References


