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Abstract 

In a range of settings, human operators make decisions with the assistance of automation, the reliability of which can 
vary depending upon context. Currently, the processes by which humans track the level of reliability of automation 
are unclear. In the current study, we test cognitive models of learning that could potentially explain how humans 
track automation reliability. We fitted several alternative cognitive models to a series of participants’ judgements 
of automation reliability observed in a maritime classification task in which participants were provided with auto-
mated advice. We examined three experiments including eight between-subjects conditions and 240 participants 
in total. Our results favoured a two-kernel delta-rule model of learning, which specifies that humans learn by predic-
tion error, and respond according to a learning rate that is sensitive to environmental volatility. However, we found 
substantial heterogeneity in learning processes across participants. These outcomes speak to the learning processes 
underlying how humans estimate automation reliability and thus have implications for practice. 
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Introduction
In many human-automation teaming (HAT) contexts, 
a human operator supervises, verifies, or enacts advice 
from an automated system. For example, in the context of 
maritime surveillance, automation may monitor vessels 
for suspicious behaviour, and alert an operator to poten-
tial hostile targets. Automated systems are not perfectly 
reliable, and therefore a key variable determining HAT 
outcomes is the operator’s judgement of the reliability of 
the automation (i.e., of the probability that automation is 
correct). Operators are more likely to accept automated 
advice that they judge to be more reliable (e.g., Madhavan 
& Wiegmann, 2007; Rovira et al., 2007; Strickland et al., 
2023), and to offload cognitive work to the advice (Wick-
ens & Dixon, 2007). 

Research has shown that humans adjust their judge-
ments of automation reliability based on task experi-
ence (e.g., Barg-Walkow & Rogers, 2016; Pop et al., 2015; 
Wiegmann et al., 2001). However, unsurprisingly, human 
judgements of automation reliability do not immediately 
adapt to match the “true” reliability (Hutchinson et  al., 
2022a, 2022b). It can be challenging to accurately infer 
the “true” level of reliability from operational experiences 
with the automation, particularly given the level of relia-
bility may change (e.g., due to shifts in context). Changes 
in automation reliability can arise in field settings due to 
a range of factors including changes in environmental 
context, sensor noise, and adversarial attacks (e.g., cyber). 
For example, changing weather conditions can affect the 
reliability of air traffic control conflict resolution systems 
(Wang et  al., 2022a, 2022b). Thus, learning about auto-
mation reliability embodies a general problem: learning 
from experience about a dynamic latent variable that is 
subject to shifts in its true state (Ez-zizi et al., 2023). 

The cognitive science literature contains multiple alter-
native models of learning that may provide insights into 
how humans learn about automation reliability. Broadly 
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speaking, these models make predictions about precisely 
how learning unfolds after each experience. For the pur-
poses of learning automation reliability, each experience 
involves observing whether an automation decision was 
correct. In addition to being theoretically informative, 
such models could potentially inform tools that predict 
other workplace phenomena (in addition to judgments of 
automation reliability), including the level of trust in and 
reliance on automation, variations in operator workload 
related to automation-use, and automation misuse/disuse 
rates (Lee & See, 2004; National Academies of Sciences & 
Medicine, 2022; Parasuraman & Manzey, 2010). Increas-
ingly, formal models are being applied to the learning of 
automation reliability or related constructs (e.g., Chong 
et  al., 2022; Hu et  al., 2019; Wang et  al., 2018). How-
ever, a limited number of learning processes have been 
explored, and there is little information about the rela-
tive performance of different models. Thus, the literature 
could benefit from a systematic evaluation of the viability 
of alternative models of the learning of automation relia-
bility. To address this, the current study compares the rel-
ative performance of a set of alternative cognitive models 
of learning, using data from three previous experiments 
that measured judgements of automation reliability after 
each experience with automation (Hutchinson et  al., 
2022a, 2022b). 

How might automation reliability be learned?
Much of the HAT literature focuses on trust in automa-
tion, the underlying cognitive state or attitude deter-
mining an individual’s willingness to rely on automation 
when uncertain (Hoff & Bashir, 2015; Lee & See, 2004). 
Trust in automation is a broad construct. Literature 
reviews and meta-analyses (Hoff & Bashir, 2015; Schaefer 
et  al., 2016) have identified multiple factors contribut-
ing toward HAT trust, including dispositional factors 
(e.g., personality, expertise, age), situational factors (e.g., 
workload, competing demands, decision risk), and most 
crucially automation factors (reliability, transparency, 
anthropomorphism). Judgements of automation reli-
ability, that is underlying beliefs of automation accuracy, 
are considered a particularly important subcomponent 
of trust (e.g., Schaefer et al., 2016). The more reliable the 
automation is judged to be, the more it makes sense to 
trust the automation. This paper focuses on identifying 
the mechanisms by which judgements of automation reli-
ability are adapted based on task experience. 

Recently, Hutchinson et  al. (2022a, 2022b) examined 
how judgements of automation reliability changed on 
an experience-by-experience basis (i.e., after observing 
each automation decision and whether it was correct). 
They reported a series of experiments in which partici-
pants provided reliability estimates after each automation 

experience. The participants experienced shifts in the 
automation’s reliability, but they were not informed when 
such shifts occur and hence could only infer them from 
experience. Hutchinson et  al. (2022a, 2022b) found that 
on average, judgements of automation reliability did 
track towards true automation reliability, but lagged true 
reliability and did not fully “converge” over the course of 
experience using automation. Importantly, and consist-
ent with a range of previous cognitive science literature, 
they found a “recency effect” (Jones & Sieck, 2003; Lud-
wig et al., 2012; Speekenbrink & Shanks, 2010), whereby 
the most recent performance of the automation had a 
large effect on judgements of reliability. The Hutchinson 
et al. (2022a, 2022b) studies were sensitive to this effect 
because judgements of reliability were measured after 
each experience with automation, rather than after blocks 
of multiple automation experiences as had been the case 
with most previous studies. Although Hutchinson et  al. 
(2022a, 2022b) provided a more fine-grained analysis of 
judgements of automation reliability than previous work, 
they applied mixed-effects models to understand the 
effects of factors in the experiment, rather than models 
that speak directly to underlying cognitive processes. 

Computational cognitive models are powerful tools for 
understanding workplace performance (Boag et al., 2022; 
Byrne & Pew, 2009; Wu & Liu, 2021) that can provide 
insights into human adaptations to automation reliability. 
Crucially, cognitive models allow researchers to specify 
and test how cognitive processes describe the data of 
individuals. This is important when examining learning, 
where conclusions based on averaged models can be mis-
leading when learning processes differ across individuals 
(e.g., Heathcote et al., 2000). 

Wang et  al. (2018) provided a model of how judge-
ments of automation reliability and trust in automa-
tion evolve on an experience-by-experience basis. They 
applied a Bayesian model that assumed a single “true” 
latent reliability level, and that individuals learned a belief 
distribution of that reliability according to a beta-bino-
mial model, with the reliability determined by the mean 
of that distribution. More recent work has demonstrated 
the potential of this approach to predict operator trust 
in automation in “real time” (Guo et al., 2020). Such real 
time predictions could potentially inform adaptive auto-
mation (e.g., that determines and signals when operator 
trust may be too high or too low; Feigh et al., 2012; Grif-
fiths et al., 2023). However, although Wang et al. (2018) 
found that their Bayesian model provided a reasonable 
account of some participants’ reliability judgements, 
other participants’ judgements were not well accounted 
for due to faster shifts in learning than predicted. Nota-
bly, because the model assumes that all previous expe-
riences with automation are exchangeable (i.e., more 
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recent experiences are weighted equally to less recent 
experiences), it cannot account for recency effects. This 
model assumption conflicts with the strong and consist-
ent recency effects on judgements of automation reliabil-
ity observed by Hutchinson et al. (2022a, 2022b). 

A range of cognitive models of learning, particularly 
probability learning, might offer alternative accounts of 
how human operators learn about automation reliability. 
In probability learning people must learn about the prob-
ability of a response being correct or being rewarded, 
and a major interest has been in how people track fluc-
tuations or switches in that probability over time. By 
considering learning about automation reliability as a 
probability learning challenge, we can consider how 
probability learning models apply to automation reliabil-
ity, and the results of Hutchinson et  al. (2022a, 2022b) 
in particular. The influential “delta rule” model assumes 
that participants learn according to prediction error after 
every experience (Lee et al., 2020). Under this model, the 
current estimate of automation reliability can be thought 
of as a recency-weighted average of previous automation 
experiences (Sutton & Barto, 2018). The delta rule’s appli-
cability to learning of probabilities has been criticized 
because it does not capture the stepwise way that par-
ticipant probability judgements can shift in some experi-
ments (e.g., Gallistel et al., 2014). However, some recent 
research suggests that stepwise shifts in probability 
judgements may be an artefact of design choices in pre-
vious studies, such as asymmetry in the effort required 
for participants to update versus not update probability 
judgements (Forsgren et  al., 2023), rather than a reflec-
tion of the true functional form of latent probability 
estimates. 

In some settings, it is important to adjust learning 
rates based upon environmental volatility (McGuire 
et al., 2014; Nassar et al., 2010). When the environment 
has recently shifted, old observations are less relevant to 
the current probability estimate, and hence their influ-
ence should be diminished with a high learning rate. 
Although variable learning rate delta-rule models can 
be demanding to estimate, one tractable approach is to 
apply a “two-kernel” delta rule that runs two concur-
rent delta-rule learning processes—one fast learner and 
one slow learner—and use the estimates from the slower 
learner by default but switch to estimates from the faster 
learner when prediction error is sufficiently high (Fors-
gren et al., 2023; Gallistel et al., 2014). Indeed, it appears 
that a two-kernel delta rule provides a better account of 
probability estimates than a standard delta rule (Forsgren 
et al., 2023). 

Previous work suggests promise for delta-rule 
approaches in describing HAT outcomes. Hu et  al. 
(2019) tested a model of trust dynamics that included 

a delta-rule learning component as well as additional 
updating terms based on cumulative experience, bias, 
and relative weightings for different types of automation 
failures. This model was shown to describe an accurate 
account of trust in automation, where trust was opera-
tionalized as the (group-averaged) probability of choos-
ing to trust (from a binary trust/distrust response). 
Further, Chong et  al. (2022) found the same model to 
provide an accurate account of grouped trust in automa-
tion ratings, and extended the approach to account for 
how self-confidence (i.e., trust in one’s own judgements) 
changes with experience. The Hu et al. model is a model 
of grouped data that learns from error rates and reported 
trust aggregated across participants on each trial. We 
focus on simpler delta-rule models that directly model 
how people learn from individual trial events, and can be 
fit to individual data. 

An alternative to delta-rule models that may be appli-
cable to automation reliability is Gallistel et  al.’s (2014) 
model of perceived probability. This model, which was 
designed in part to account for stepwise shifts in prob-
ability judgements, predicts that judgements of probabil-
ity are only adapted occasionally when participants’ belief 
that they are incorrect reaches a threshold. In that event, 
a sudden and potentially large shift in probability judge-
ments can occur. Gallistel et al.’s model behaves this way 
by implementing a hypothesis test, in which participants 
test whether their current judgement of probability is 
“broken” before deciding whether to adjust it. It embod-
ies the principle that “if it ain’t broke, don’t fix it” (Gallis-
tel et al., 2014), and thus, we refer to it henceforth as the 
“if it ain’t broke” (IIAB) model. 

Learning of automation reliability could also be 
described by memory sampling models. Memory sam-
pling can take various forms. For example, recency-based 
memory sampling could sample previous experiences 
with probabilities proportionate to delta-rule weights 
(Bornstein et  al., 2017). This model would make similar 
predictions to the delta-rule model if many memory sam-
ples were concurrently recalled and averaged to form a 
judgement. However, if only a small number of previous 
experiences are sampled (e.g., one previous experience) 
predictions can be quite different to the delta-rule model 
(Bornstein et al., 2017). Alternatively, memory sampling 
could take a variety of other forms. For example, partici-
pants might probabilistically either remember their most 
recent experience, or rely on a process that approximates 
the average of all previous experiences. 

A final mechanism considered here is the “contingent 
sampling” discussed by Hochman and Erev (2013). In 
their model, previous experiences only inform the cur-
rent estimate if they were preceded by sequences match-
ing small samples of recent experience. For example, if 
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a participant’s last two experiences involved automa-
tion being correct (two decisions back) and then incor-
rect (one back), then the reliability of automation for 
the current decision could be estimated using previous 
occasions which were preceded by the same sequence 
of automation accuracies (correct and then incorrect). If 
after previous instances of this sequence (correct, incor-
rect) the automation was subsequently correct, then 
the participant would estimate a high reliability when 
encountering the sequence again. 

The current study
We aimed to formally compare cognitive models of how 
learning affects judgements of automation reliability over 
time. We did so by re-evaluating the Hutchinson et  al. 
(2022a, 2022b) judgements of automation reliability data 
using alternative cognitive models of learning, with each 
fitted to the time series of automation reliability judge-
ments of each individual participant. In these studies, 
participants performed a maritime vessel classifica-
tion task with the assistance of an automated decision 
aid. This task is broadly representative of modern work 
domains in which individuals must monitor displays to 
classify or make other decisions about representations 
of real-world objects. After each automation experience, 
participants were asked about their judgement of the 
automation’s future reliability. The true reliability of the 
automation varied across the three experiments (repre-
senting eight between-subjects conditions). Furthermore, 
there were points at which automation reliability shifted 
within each condition, with the nature and timing of the 
shifts differing across conditions. Participants were not 
warned of these shifts in reliability, and thus could only 
learn about them from experience. Applying learning 
models to a range of different experimental conditions 
provides an opportunity to test the generality of their 
assumptions.

Previous studies examining learning of automation reli-
ability/trust have largely focused on the viability of a sin-
gle approach to modelling learning (e.g., Hu et al., 2019; 
Wang et al., 2018). In contrast, our aim is to compare the 
relative utility of a range of cognitive models to explain 
the learning of automation reliability in individuals. To 
do so, we compare a set of models using the Hutchinson 
et al. (2022a, 2022b) judgements of automation reliability 
data. This includes a Bayesian model similar to that spec-
ified by Wang et al. (2018); the delta-rule learning model; 
a two-kernel variant of the delta-rule model; three mem-
ory sampling models; and the IIAB model. We apply a 
formal model comparison approach (Myung & Pitt, 1997) 
to test, at both the group level and the level of individual 
participants, which learning processes best explained 
participant judgements of automation reliability.

Hutchinson et al. (2022a, 2022b) experiments
Participants
As reported by Hutchinson et al. (2022a, 2022b), par-
ticipants were 260 undergraduate students from the 
University of Western Australia who received course 
credit. Twenty participants were excluded because we 
suspected they were not engaged with the reliability 
judgement task: either because visual inspection of the 
time series of judgements revealed runs of many 0%, 
50%, or 100% judgements (as originally identified by 
Hutchinson et al., 2022a, 2022b), or because they made 
the default response of 50% reliability more than half 
the time overall. All studies received approval from 
the University of Western Australia’s Human Research 
Ethics Office. 

Maritime vessel classification task
Detailed descriptions of the task are available in Hutch-
inson et  al. (2022a, 2022b). Contacts were represented 
by small white circles appearing within the blue areas of 
a bathymetric display (Fig.  1). At the start of each trial, 
a specific contact was highlighted and participants were 
required to classify it using six possible classifications 
(e.g., cargo vessel). The classification was based on sev-
eral rules provided in Fig. 1. After classification, partici-
pants were asked to provide a judgement of their choice’s 
reliability (their confidence). Subsequently, participants 
were presented with a classification recommendation 
from the automated advice and given an opportunity to 
accept or reject it. Finally, they were provided feedback 
on the correct decision, their own decision, and the 
automated advice. On the same screen, they were asked 
to judge the automation’s future reliability with a slider. 
Specifically, they were asked: “what is the probability that 
the automation’s next classification will be correct?”. They 
submitted this judgement on a percentage scale ranging 
from 0 to 100 (the default response was 50). This process 
was repeated for each contact required to be classified.

Experiment designs
Each experiment included the same vessel classifica-
tion task, but the experiments differed in numbers of 
contacts and the levels of automation reliability pre-
sented throughout. Experiment 1 included 15 trials, 
with eight contacts to classify in each trial. There were 
two between-subjects conditions. In the “high reliabil-
ity” condition, in the first five trials (40 contact classifi-
cations) the automation was 90% accurate. Specifically, 
in one trial the automation was correct 8/8 times and 
in the four other trials it was correct 7/8 times. In the 
“low reliability” condition, the automation was 60% 
accurate for the first five trials. Specifically, in one trial 
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automation was correct 4/8 times, and in the four other 
trials it was correct 5/8 times. From trials 6–15 (deci-
sions 41–120), automation reliability in both conditions 

was 75%, correct 6/8 times for each trial. Participants 
were not informed about the change in automation 
reliability.

Fig. 1 Screenshots of the maritime vessel classification task. Figure adapted from Hutchinson et al. (2022a). Note The top panel is a screenshot 
of the task presented on the participants’ primary (left) monitor, and the bottom panel of the display on their secondary (right) monitor
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Experiments 2 and 3, which examined the effect of 
more frequent and large changes in reliability, included 
16 trials each, with 10 contacts on each trial. In Experi-
ment 2, there were three conditions. In the simplest con-
dition, the “Constant Reliability” condition, automation 
reliability was 75% throughout. Specifically, automation 
was correct 7/10 times for half the trials, and 8/10 times 
for the other half. In the other two conditions, reliability 
could be classified according to four sets of 4-trial (40 
contact classification) long phases. In the “Start-High” 
condition, the automation was 95% reliable for the first 
phase. Specifically, automation was correct for 10/10 
times for half the trials, and 9/10 times for the other half. 
In the “Start-Low” condition, the automation was 55% 
reliable in the first phase. Specifically, automation was 
correct for 5/10 times for half the trials, and 6/10 times 
for the other half. At the end of each 4-trial phase, the 
reliabilities then switched across the Start-high and Start-
low conditions. For example, in the second phase, reli-
ability was 55% for the Start-High condition and 95% for 
the start-low condition. 

In Experiment 3, there were three conditions, each 
with 16 total trials that contained 10 contacts each. In 
each condition, automation reliability was initially 90% 
for the first 4 trials and returned to 90% for the last 8 tri-
als. Specifically, automation was correct 9/10 times on 
each trial. However, there was a “drop” in reliability for 
trials 5–8, and the size of this drop depended upon the 
condition. In the “large drop” condition, automation reli-
ability dropped down to 30% (automation correct 3/10 
times per trial), 50% (automation correct 5/10 times per 
trial) in the “Medium Drop” condition, and in the “Small 
Drop” condition automation reliability dropped to 70% 
(automation correct 7/10 times per trial). 

Participants were not instructed about the level of 
automation reliability, except in Experiment 3. In that 
study, they were initially instructed that the historical 
performance of the automation indicated 90% reliabil-
ity. A visualization of switches in reliabilities across each 
experimental condition is shown in Fig. 2. 

Cognitive modelling
All analyses and simulations were conducted using the 
R programming language (R Core Team, 2022). We cre-
ated a binary variable indexing whether the automation 
was correct—1 for correct and 0 for incorrect—and the 
time series of this variable was the input to each learn-
ing model. To match the scale of automation correct-
ness (0–1), reliability judgements were divided by 100. 
To define model likelihoods, we assumed that observed 
judgements of automation reliability were drawn from 
a truncated normal distribution (implemented in the 
’truncnorm’ package; Mersmann et  al., 2018), bounded 

between 0 and 1. The latent mean of this distribution 
was determined by the learning process, and a standard 
deviation parameter, σ, was estimated for each model. 
Thus, the latent mean in the model represents the belief 
according to the learning process, and the σ parameter 
represents noise independent of the learning process. 
All model parameters were estimated for each individual 
participant using a maximum likelihood approach. We 
describe model-fitting details in Additional file 1.

In the following, we first introduce the implemented 
cognitive models of learning, and then compare relative 
(group-level) model performance for each experimental 
condition. Subsequently, we examine the absolute perfor-
mance (fit) of the most favoured model, the two-kernel 
delta rule, and report its estimated parameters. We con-
clude by exploring individual differences (heterogeneity 
in learning processes). 

Learning processes
Static‑environment Bayesian model
Following Wang et al. (2018), we fit a Bayesian model that 
assumed there was an unchanging single “true” state of 
automation reliability. Belief about automation reliability 
was characterized by a beta distribution:

NAC and NAI indicate the number of total times automa-
tion was correct and incorrect. The parameters p and q 
determine the participants’ prior belief about automation 
reliability. The posterior mean of rt determined the latent 
mean reliability judgement.1

Delta‑rule models
We implemented a typical delta-rule learning model (Lee 
et  al., 2020), in which participants updated reliability 
perceptions based upon prediction error from the most 
recent automation experience:

where AC stands for automation correctness (1 for auto-
mated advice was correct, 0 for incorrect). This learning 
process introduces two parameters: the initial estimate of 
automation reliability r0 , and the learning rate α , which 
controls the rate at which learning occurs. The delta rule 
can also be considered a recency-based weighted average 

(1)rt ∼ Beta(p+ NAC, q + NAI).

(2)rt = rt−1 + α(ACt − rt−1)

1  This value was assumed to be the latent mean of a truncated normal dis-
tribution, as with the other learning models. We also considered an alterna-
tive Bayesian response model which sampled the posterior distribution of 
belief to determine reliability judgements. However, this response model 
performed poorly, as discussed in the supplementary materials. It also 
required a minor transformation of the data, which complicates compara-
bility across approaches, so it is not discussed further in text.
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of previous experiences with automation (Sutton & 
Barto, 2018), of the form:

People may track or adapt to sharp changes in states, 
such as those implemented in our studies, with vari-
able learning rates (McGuire et al., 2014). To test such a 

(3)rt = (1− α)t r0 +

t−1

i=0

α(1− α)iACt−i.

mechanism in a tractable way, we implemented a “two-
kernel” delta rule (Forsgren et  al., 2022; Gallistel et  al., 
2014). This learning model assumes that participants 
simultaneously track two estimates using delta-rule 
learning as formalised in Eq.  2, with each delta learner 
sharing the same start point but having separate learn-
ing rates. When estimates from the slower delta learner 
are substantially different to estimates from the faster 
delta learner (as determined by a threshold parameter), 

Fig. 2 Visualization of the true reliability of automation in each experiment of Hutchinson et al. (2022a, 2022b). Note Rows correspond 
to experiments and panels experimental conditions. Lines follow a stairstep pattern, shifting exactly for the blocks where true reliability differed 
from immediately preceding blocks. For example, in the low reliability group, true reliability changed to 75% at the beginning of block 6, and thus 
the stairstep moves vertically up from 60 to 75% in block 6
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this signals environmental volatility. In such cases, the 
estimate from the faster delta learner is used to provide 
a response. When the difference between fast and slower 
delta learners is smaller than the threshold, the estimate 
from the slower learner is used. The two-kernel delta rule 
incorporates four parameters: the initial reliability esti-
mate r0 , the slower learning rate αslow, the faster learning 
rate αfast, and the threshold (T) determining use of the 
estimate from the fast learner.

Memory sampling models
Three memory sampling models were tested. In the first 
memory sampling model (Bornstein et  al., 2017), either 
one previous automation experience or the initial belief 
(prior to any experience) about automation reliability is 
sampled from memory for each judgement, and the sam-
pled memory determines the reliability estimate. Sam-
pling probabilities are determined by the same recency 
form as weights are in the delta rule (Eq. 2), controlled by 
a parameter αsampling analogous to the learning rate. There 
was also an initial state parameter r0sampling_recency, with 
similar considerations to r0 from the delta-rule model. 

The second memory sampling model assumed that 
either the most recent experience was sampled (with 
probability determined by a parameter  probt), or the 
average of all previous automation experiences (with 
probability 1 −  probt). Whichever is sampled determines 
the reliability estimate. This sampling model also has 
two additional parameters determining the initial (pre-
experimental) perception of automation reliability (r0sam-

pling_first_average) and the weight controlling its contribution 
to the aforementioned average of previous automation 
experiences  (weightr0). 

The third memory sampling model relied on contin-
gent sampling (Hochman & Erev, 2013). The premise of 
this model is that participants track some small sample 
(determined by a discrete parameter m) of recent events 
(e.g., two events: automation was correct for the last con-
tact, and incorrect for the contact before), remember 
previous instances with identical recent event histories, 
and use the outcomes that previously followed those 
identical histories to predict what will happen for the 
current sequence. Predicted reliability was based upon 
previous memory samples that matched the most recent 
m automation experiences. For example, for m = 2, for a 
situation where automation had been correct about the 
previous last two contacts, then the current estimate of 
reliability would be determined by the average reliability 
following previous instances where the automation had 
been correct for the two contacts prior. Following this 
example, imagine that automation had been correct on 
the previous two contacts. If there had been two previous 

such sequences, one followed by correct automated 
advice, and the other followed by incorrect automated 
advice, then the current reliability estimate would be 50%. 
In cases where no previous contact histories matched the 
most recent contacts, a mismatching contact history of 
length m was randomly sampled from the histories that 
had been observed. For the initial judgements where less 
than m previous contacts had been observed, the reliabil-
ity estimate was given by a parameter r0sampling_contingent. 

IIAB model
We implemented the IIAB model of Gallistel et al. (2014). 
In this model, participants track shifts in probability dis-
cretely based on the observations since perceived “change 
points”. The initial belief about automation reliability is 
characterized by (the mean of ) a beta distribution with 
prior parameters p and q. At specific change points the 
information preceding the change point is effectively 
ignored, and information since the last change point is 
used to estimate the current probability. This leaves the 
challenge of deciding that a change has occurred.

To detect changes, judgements begin with a test of 
whether evidence against the null hypothesis (i.e., the 
hypothesis that the estimate is not “broken”) exceeds 
some threshold level (T1). If so, the model enters a second 
stage which tests whether to modify the record of tracked 
change points. A Bayesian test is performed to determine 
whether there is sufficient evidence in favour of adding 
an additional change point (greater than some threshold 
parameter T2), and if so, a change point is added. If not, 
the model has a “second thought” about the last change 
point it added. Another Bayesian test is conducted, 
this time in favour of removing the last change point. If 
the evidence in favour of dropping the change point is 
greater than parameter T2, the change point is dropped. 
Reliability estimates are based on observations since 
the last change point. Specifically, a beta distribution is 
updated using the number of times the automation was 
correct versus incorrect since the last change point. The 
mean of this distribution is the reliability estimate. Simi-
larly, a beta distribution reflecting the perceived proba-
bility of change points, with prior parameters pchange point 
and qchange point , is updated according to the number of 
contacts for which there were change points versus con-
tacts for which there were not change points during the 
experiment.

No updating (baseline) model
Finally, we considered a simple “no updating” model, 
where latent mean reliability estimates were simply 
given by an intercept parameter r0 . Although this model 
is unlikely to account for participants who are engaged 
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in both learning automation reliability and reporting 
their judgements thereof, it is useful as a baseline. Spe-
cifically, any model that successfully describes how par-
ticipants learned about automation reliability should fit 
better than this model.

Table  1 contains a list of each cognitive model con-
sidered, a brief description, and parameters for each 
model. Additional file  1 includes plots visualizing the 
predictions of each alternative learning model. 

Model comparison
We calculated the Bayesian information criterion (BIC) to 
evaluate model performance for each participant (Myung 
& Pitt, 1997). Differences in BIC can be used to compare 
the relative predictive performance of models, taking 
consideration of both their fit and parsimony (number 
of parameters). A larger BIC indicates less support for 
a model (due to poorer fit, more model complexity, or 
both). To evaluate overall results for each experimental 

Table 1 A list of the learning models fitted to judgments of automation reliability, and associated learning parameters

See text for more in-depth descriptions. Note that fitting each model also involved estimating a latent standard deviation parameter, σ, indexing noise in responding 
that is independent of the learning process

Model Description Learning parameters

Bayesian Bayesian learning of automation reliability assuming a single true state p, q

Delta Judgements of automation reliability are updated based upon the prediction error (delta) 
between the previous reliability estimate and the current automation accuracy

r0 , α

Two-Kernel Delta Two simultaneous delta-rule learners track automation reliability. Estimates are taken 
from the slower learner unless the difference between the two processes is above a 
threshold, signalling a shift in the environment, in which case the fast delta learner is used

r0 , αfast, αslow, T

Sampling (proportional 
to delta weights)

A single previous memory is sampled to inform the current estimate of automation reli-
ability. Previous experiences are sampled proportionately to their weights under a delta-
rule updating process

r0sampling_recency, αsampling

Sampling (last/average) Samples either the most recent experience with automation, or the average reliability 
of all previous experiences

r0sampling_last_average,  weightr0,  probt

Contingent Sampling Automation reliability is assumed to be sensitive to the history of automation accuracy 
over the recent m contacts. Thus, the reliability estimate is based on previous cases 
where the history of automation accuracy m contacts back matches the history m con-
tacts back in the current instance

r0sampling_contingent, m

IIAB Estimates of automation reliability are updated in a stepwise manner when a “change 
point” is identified. Sometimes, the model has “second thoughts” and expunges 
or updates a previous change point

T1, T2, p, q, pchange point, qchange point

No updating No learning process r0

Table 2 Group BIC values for each model for each experimental condition

We report BIC values after subtracting the BIC for the most supported model for each experiment condition (Hence, the most supported model for each experimental 
condition has a value of 0). We report BIC in this manner because it is the differences between BICs that matter for the purposes of model comparison (Kass & Raftery, 
1995) and it is easier to see which model is best fitting for each condition, and the relative performance of other models to that best fitting model

Model One Two Three

High Low Start-high Start-low Constant Large drop Medium drop Small drop

Experiment

Two-kernel Delta 0 0 0 515 0 0 0 0

Delta 342 226 449 728 387 335 375 87

Sampling (proportional 
to delta weights)

990 1147 2171 0 219 1549 1950 97

Sampling (last/average) 679 728 1790 931 318 1542 1548 171

IIAB 1267 982 346 1436 1416 809 1013 502

Bayesian 1016 873 2089 1956 1122 2645 1764 376

Contingent Sampling 4034 5249 3695 3942 4648 3527 4218 3175

No updating 1214 1124 2276 2023 981 2978 2100 274
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condition, we summed BICs across participants. Results 
are summarized in Table 2. Overall, our findings favour 
the two-kernel delta-rule model, with it being the most 
supported model by summed BIC for seven of eight 
Hutchinson et  al. (2022a, 2022b) experimental condi-
tions, and second most supported in the remaining 
condition. The delta-rule model also performed quite 
well, being the second most supported model by BIC in 
five conditions, the third most supported in two condi-
tions and the fourth most supported in one condition. 
Interestingly, the memory sampling model that sampled 
proportionately to delta weights was most supported 
by summed BIC in Experiment 2’s start-low condition, 
and second-most supported in the Constant condition. 
However, follow-up analysis of the start-low condition 
(Additional file 1) revealed that this summed BIC prefer-
ence was strongly influenced by a single participant who 
responded in an idiosyncratic way. Excluding that partici-
pant resulted in the two-kernel delta rule being favoured 
for the start-low condition.

Model fit
Although our results indicate that the two-kernel delta 
rule was overall the best fitting of the models consid-
ered, a remaining question is whether it was a rea-
sonable description of the data in absolute terms. 
To evaluate this, we plot average model fit across the 
experiments in Figs. 3 and 4. To summarize long-run-
ning effects, we examine model fit across “trials” (i.e., 
small blocks of decisions about contacts). Given the 
importance of the effect of the most recent automation 
advice (Hutchinson et al., 2022a, 2022b), we separately 
average and plot judgements after participants had just 
received accurate automation advice, and judgements 
after participants had just received inaccurate advice. 

Overall, these figures demonstrate that the two-kernel 
delta-rule model provided a reasonable “absolute” fit to 
patterns in judgements of automation reliability across 
all three experiments. The model also provided a rea-
sonable fit to intra-trial variability in reliability judge-
ments, as well as the discrepancy between participant 
reliability judgements and the empirically observed 
reliabilities within each trial, both of which are plotted 
in Additional file 1. Plots of fit for the alternative mod-
els can also be found in Additional file 1.

In Additional file  1, we detail why the two-kernel 
delta-rule model provided superior fits to the simpler, 
standard one-process delta-rule model. Our findings 
indicated that although fits of the single-process delta 
rule were reasonably good, it struggled to simultane-
ously capture both the effects of the most recent auto-
mation accuracy and the longer-running effects of true 
automation reliability (i.e., effects of the true automa-
tion reliability state on series of reliability judgements 
across trials). Specifically, we found the estimated sin-
gle-process delta rule model underpredicted the effects 
of the most recent automation accuracy on judgements, 
and that forcing the learning rate to be more in line 
with the observed effect of the most recent automa-
tion accuracy resulted in misfit of longer-term learn-
ing associated with the true automation reliability state. 
In contrast, the two-kernel delta rule was able to pro-
duce strong effects of recent automation experience by 
sometimes switching to the “fast” learning process for 
some judgements, but with the flexibility to switch back 
to the “slow” learning process for other judgements, 
allowing better fit to long-running learning effects. This 
nuanced distinction between model predictions would 
have been difficult to discern in the absence of formal 
modelling. 

Fig. 3 Averaged predictions of the two-kernel delta-rule model for experiment 1 (Hutchinson et al., 2022a). Note The data correspond to the white 
circles, the model mean predictions to the black dots. The error bars display the data means plus or minus the standard error. 
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Model parameters
The estimated parameters of the two-kernel delta-rule 
model are in Table 3. Parameters of the other alterna-
tive models are available in Additional file 1. We tested 
differences in model parameters across conditions in 

each experiment (see Additional file  1 for tests). Gen-
erally, parameters did not vary substantially across 
conditions, but there were two exceptions. First, in 
Experiment 1 the r0 parameter was higher in the high 
reliability condition than the low reliability condition. 

Fig. 4 Averaged predictions of the two kernel delta-rule model for experiment 2 and 3 (Hutchinson et al., 2022b). Note The data correspond 
to the white circles, the model mean predictions to the black dots. The error bars display the data means plus or minus the standard error

Table 3 Estimated parameter values of the two kernel delta-rule model, presented as M (SE)

Experiment Condition r0 αslow αfast T σ

One Low reliability 0.58 (0.05) 0.03 (0.01) 0.38 (0.05) 0.35 (0.05) 0.14 (0.01)

High reliability 0.78 (0.05) 0.03 (0.01) 0.35 (0.06) 0.31 (0.05) 0.14 (0.01)

Two Start-high 0.74 (0.06) 0.03 (0.01) 0.35 (0.06) 0.30 (0.05) 0.14 (0.01)

Start-low 0.67 (0.05) 0.01 (0.004) 0.44 (0.07) 0.34 (0.06) 0.21 (0.03)

Constant 0.69 (0.05) 0.01 (0.01) 0.44 (0.07) 0.31 (0.04) 0.16 (0.02)

Three Large drop 0.84 (0.04) 0.04 (0.01) 0.31 (0.06) 0.29 (0.05) 0.14 (0.01)

Medium drop 0.80 (0.04) 0.02 (0.01) 0.11 (0.04) 0.15 (0.04) 0.10 (0.01)

Small drop 0.77 (0.06) 0.01 (0.01) 0.21 (0.06) 0.33 (0.07) 0.11 (0.01)



Page 12 of 20Strickland et al. Cognitive Research: Principles and Implications             (2024) 9:8 

Plotting the model fits to judgements after each indi-
vidual contact (Fig.  5) suggested this was associated 
with the model slightly over-estimating differences in 
group-averaged reliability perceptions on the very first 
contact. Second, in Experiment Three the σ param-
eter was larger in the large drop condition than in the 
Medium Drop condition, which was similar to σ in the 
Small Drop Condition. This suggests that the large drop 
condition may have induced extra variability in percep-
tions that was not fully accounted for by the two-kernel 
delta-rule learning model.

Individual differences
To explore heterogeneity in learning processes across 
participants, we focused on participants whose data con-
clusively supported one model above all competitors. 

To evaluate this, we converted differences in BICs to an 
approximate Bayes Factor (Kass & Raftery, 1995). For 
participants where the Bayes Factor comparing the most 
supported model to the next best competitor was < 3.2, 
we categorized the result as inconclusive based on Jef-
freys’ scale of evidence (Jeffreys, 1961). Overall, one of 
the tested models was conclusively favoured for 83% of 
participants. Table 4 presents the percentage breakdown 
of these participants, categorized by specific favoured 
model, for each condition and experiment.

There was substantial heterogeneity in the learn-
ing models favoured. Unsurprisingly (given the group 
results), the two-kernel delta rule and the delta rule were 
substantially represented across participants, with one of 
the two models being favoured for 26–61% of participants 
with unambiguous results, depending on condition. The 

Fig. 5 Model fits of the two-kernel delta rule broken down by individual contacts, for the first 40 contacts. Note The data correspond to the white 
circles, the model mean predictions to the black dots. The error bars display the data means plus or minus the standard error. Shapes indicate 
the experimental condition (reliability group; RG)

Table 4 The proportion of participants for whom BIC conclusively favoured each model for each experimental condition

Presented as a percentage of the 83% of participants for which one model was conclusively favoured

Model One Two Three

High (%) Low (%) Start-high (%) Start-low (%) Constant (%) Large drop (%) Medium 
drop (%)

Small drop (%)

Experiment

Two-kernel delta 42 37 37 22 26 17 48 21

Delta 15 15 11 17 9 22 13 5

Sampling (proportional 
to delta weights)

6 0 0 26 26 9 0 11

Sampling (last/average) 3 0 7 4 17 17 4 5

IIAB 9 19 37 13 4 17 9 11

Bayesian 3 0 0 0 4 9 0 0

Contingent Sampling 0 0 0 0 0 4 0 0

No updating 21 30 7 17 13 4 26 47
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recency-based memory sampling models were also rep-
resented across participants, being favoured for 0–43% 
of participants, depending upon condition. The IIAB 
model was also represented, best accounting for 9–37% 
of unambiguous participants, depending on condition. 
Notably, the no-learning model was favoured for 7–47% 
of unambiguous participants, suggesting that a propor-
tion of participants in the study were best accounted for 
by a model without a learning process, particularly in 
the “Small Drop” condition in Experiment 3 where there 
was a relatively minor and transient reliability change. 
The Bayesian model accounted for only a small number 
of participants, 0–9%, depending on experimental condi-
tion; and the Contingent Sampling model was only the 
best model of 4% of unambiguous participants in the 
“large drop” condition, and none in other conditions.

Exploring individual differences: stratified fits
Due to the heterogeneity in learning models supported 
across participants, we explored the data patterns to 
which different models provided the best fit. To do so, 
we examined fits of models for groups of participants, 
stratified by the model that was supported for that group 
of participants. For the sake of brevity, we focused on 
Experiment 2 and examined models that were supported 
for at least 20% of participants within the relevant con-
dition. This cut-off was applied to avoid plotting noisy 
results, with the specific choice of 20% being somewhat 
arbitrary. We chose Experiment 2 because it included a 
baseline constant true reliability condition, and multiple 
switches in the true reliability of the other two conditions, 
which are both helpful features to illustrate the behaviour 
of alternative models. Further, it was the only experiment 
with a condition in which the two-kernel delta-rule model 
was not the most supported by summed BIC, and overall 
indicated more heterogeneity in the modelling results.

Figure  6 depicts stratified model fits to Experiment 
2’s reliability judgements across participants, stratified 
by fits from the model that the BIC supported for their 
data. Participants best fitted by the two-kernel delta-rule 
model generally demonstrated a strong effect of the most 
recent automation experience on reliability judgements, 
and weaker but non-trivial long-running effects of true 
automation reliability on judgements. Participants best 
fitted by the memory sampling model (proportional to 
delta-rule weights) demonstrated a strong recency effect, 
but other patterns in their data were less clear. Nota-
bly, model fits to participants supported by the recency 
sampling model were not very visually compelling, sug-
gesting there were trends in these participants’ data that 
the model did not entirely explain, despite it being the 
“best” model of their data in terms of BIC relative to the 
other models. Participants best fitted by the IIAB model 

displayed little effect of the most recent automation expe-
rience, but moderate long-running learning effects.

Exploring bias in probability estimation
The only source of bias considered in the presented mod-
els is that existing at the start of the experiment, and 
which is downweighted as learning progresses. However, 
there may be systematic and ongoing biases in the pro-
duction of automation reliability judgements, consist-
ent with findings that humans over- and under-estimate 
probabilities in other contexts such as decisions under 
risk (e.g., Tversky & Kahneman, 1992; Zhang & Maloney, 
2012). Although we cannot be certain about the form of 
specific biases in this context, a broad class of the biases 
evident in human probability estimation can be cap-
tured by the “linear in log odds” (LLO) model (Zhang 
& Maloney, 2012).2 In this model, the log odds of the 
human probability estimate are linearly related to the 
log odds of the “true” probability. This model can pro-
duce a wide range of S- and inverted S-shaped functions 
describing biases in the production/estimates of prob-
abilities. It includes two parameters controlling the shape 
of the probability bias function.

To test the robustness of our conclusions to potential 
distortions in estimated automation reliability, we aug-
mented the models reported above in text to allow an LLO 
transformation of automation reliabilities. This analysis is 
described in detail in Additional file  1. Our key findings 
with this augmented model were largely consistent with 
those provided in text. Specifically, we found support for 
the two-kernel delta-rule model, with the delta-rule model 
the second most supported. If anything, the new analysis 
was more favourable to both delta-rule models than that 
reported in text. In our individual-difference analysis, the 
delta rule and two-kernel delta rule models best fitted 
larger proportions of participants than reported in text, 
although substantial heterogeneity remained.

Some caution is warranted in interpreting our addi-
tional LLO model analysis. First, as explained in Addi-
tional file 1, two of the candidate learning models could 
not be meaningfully augmented—the model that samples 
memories (single experiences) according to delta-rule 
weights and the no updating model. Second, the addi-
tional LLO parameters posed some challenges to model 
fitting when combined with learning parameters, with 
potentially pathological results in some instances (see 
Additional file  1). Thus, although our supplementary 
analysis was reassuring in converging on our major con-
clusions, we focus primarily on our original analyses in 
drawing conclusions.

2  We thank one of our anonymous reviewers for this suggestion.
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Fig. 6 Experiment 2, model fits stratified by participants for the winning model. Note Panels for models/conditions are only included for conditions 
where more than 20% of participants within that condition were supported by the model. The data correspond to the white circles, the model 
mean predictions to the black dots. The error bars display the data means plus or minus the standard error. Note that in some cases, there were little 
data per participant and thus error bars could be large. Further, in some cases there were only data for one participant, in which case error bars are 
omitted
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Discussion
We found that learning of automation reliability was gen-
erally best described by a two-kernel delta-rule model. 
The delta rule accurately describes human learning in a 
range of domains (Lee et  al., 2020). Thus, our findings 
connect the learning of automation reliability with learn-
ing in the broader cognitive science literature. Varying 
learning rates, modelled in our study by a two-kernel 
delta learner, can be required when there are rapid shifts 
in latent states (e.g., McGuire et al., 2014), as there were 
in the modelled Hutchinson et al. (2022a, 2022b) studies, 
and thus our findings in favour of variability in learning 
rates are also consistent with broader cognitive science 
literature. 

Although there is robust evidence for delta-rule like 
learning in many cognitive paradigms, its role has been 
recently debated in the context of probability perceptions, 
and this has implications for judgements of automation 
reliability. Gallistel et al. (2014) suggested that probabil-
ity learning was best captured by an IIAB process rather 
than delta-rule learning. Although we found support for 
the IIAB model for subsets of participants, our findings 
favoured the two-kernel delta rule above the IIAB model 
overall. One difference between our study and Gallistel 
et  al. is the default response. In their study, the default 
response (starting position of probability slider) was the 
judgement the participant had most recently submitted 
(i.e., the last judgement). This design feature has been 
argued to have discouraged participants from submitting 
smaller updates to judgements of probability, in favour of 
occasional step-changes (Forsgren et  al., 2023). Further, 
a recent revaluation of Gallistel et al. indicated that per-
ceptions of probability could be best accounted for with 
delta (or two-kernel delta) rule learning when this task 
feature was properly accounted for Forsgren et al. (2023). 
In Hutchinson et al. (2022a, 2022b), the default reliabil-
ity judgement (starting position of the slider) was reset to 
50% before each new judgement. This was implemented 
to encourage participants to always respond with their 
most recent reliability judgement, which may explain our 
findings in favour of (two-kernel) delta-rule learning. 

Interestingly, the two-kernel delta-rule model out-
performed all memory sampling models across most of 
Hutchinson et  al.’s (2022a, 2022b) experimental condi-
tions. Two of the memory sampling models we tested 
could conceivably have explained the recency effects 
observed in the Hutchinson et al. data, and hence seemed 
at least qualitatively viable. This included the memory 
sampling model in which a single previous automation 
experience was sampled for each judgement with prob-
abilities taking the same form as the weights in the delta 
rule, and the memory sampling model where either the 

most recent automation performance or the average 
automation performance was sampled. 

As recency-weighted memory sampling has outper-
formed the delta rule in previous studies where they 
were compared (e.g., Bornstein et al., 2017), support for 
delta rule versus memory sampling models appears to 
depend on specificities of task paradigms. For example, 
Bornstein et  al. focused on a paradigm where rewards 
changed according to a random walk, and it has been 
argued this is particularly conducive to memory sampling 
(Ez-zizi et  al., 2023). The similarities between recency-
based memory sampling and delta rule (i.e., memory 
averaging) models may be more important than their dif-
ferences. The key distinction is that memory sampling 
models assume small numbers of previous experiences 
are sampled for any given judgement. This implies vari-
ability in the effects of previous experiences on behav-
iour: the previous experiences that do happen to be 
sampled have large effects on the judgement, and experi-
ences that are not sampled have no influence (Bornstein 
et al., 2017). However, both types of models imply similar 
average effects of past experiences on the current judge-
ment. Indeed, the memory sampling model with sam-
ple probabilities that match delta rule weights becomes 
asymptotically equivalent to the delta-rule model if many 
memories are sampled and then averaged to form each 
judgement (Bornstein et al., 2017). 

The contingent sampling model provided a very poor 
fit to judgements of future automation reliability. A key 
reason for this was the model’s inability to fit the strong 
positive effect of the most recent observed automation 
accuracy on the subsequent reliability judgement (Hutch-
inson et al., 2022a, 2022b). The reason that the contingent 
sampling model could not fit the recency effect in partici-
pant reliability judgements is that automation’s true reli-
ability was not positively associated with the accuracy of 
the most recent automation judgement. In fact, because 
there was a pre-set number of automation-correct con-
tacts per trial, there was coincidentally a negative cor-
relation between the automation’s performance on the 
previous contact and on the subsequent contact. In the 
contingent sampling model, participants remember recent 
events (e.g., the automation was recently correct) and pre-
dict reliability based on what followed identical sequences 
of events in the past (e.g., automation performance for 
the contact after automation was just correct). Because 
sequences of events in participants’ past automation expe-
riences were not consistent with a recency effect in terms 
of true automation reliability, and the contingent sampling 
model uses these sequences to predict automation reli-
ability, it could not simulate the recency effect observed in 
participants’ automation reliability judgements. 
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A Bayesian model that assumed automation reliabil-
ity was unchanging and attempted to learn the single 
“true” reliability (Wang et al., 2018) also provided a poor 
account of judgements of automation reliability, being 
generally low ranking in terms of group model compari-
son and providing the best model of only a small number 
of participants’ data. This model cannot fit substantial 
recency effects—in which recent automation accuracy 
has a larger influence on reliability judgements than auto-
mation accuracy from further in the past—as it assumes 
that the value of all previous experiences are equally 
weighted. Such recency effects, which we observed 
strongly in the Hutchinson et  al. (2022a, 2022b) data, 
would be adaptive in a wide range of dynamic task envi-
ronments where recent automation accuracy is more rel-
evant to future automation accuracy than events further 
in the past (i.e., positive autocorrelation). For example, in 
the case of an adversarial attack on an automated deci-
sion aid system, after which reliability was poor, a strong 
recency bias would allow an operator to quickly adapt 
to the new automation reliability even if they had exten-
sive experience with it performing reliably. In contrast, a 
“static” Bayesian model would indicate operators would 
adapt very slowly if they had extensive positive experi-
ence with automation, and thus would signal an inherent 
work system vulnerability in dynamic environments.

There was heterogeneity across participants in learn-
ing. Although the two-kernel delta-rule model was sup-
ported for the most participants of any model overall, 
we found non-trivial proportions of participants whose 
judgements were most consistent with the one-process 
delta-rule model, the two recency-based memory sam-
pling models, the IIAB model, and the no-learning 
model. Relatively few participants submitted a series 
of judgements of automation reliability consistent with 
the Bayesian learning model or the contingent sampling 
model. Support for the no-learning model is perhaps the 
least interesting aspect of our individual differences, as 
it could be explained by some participants not attempt-
ing to learn about the automation reliability. In contrast, 
the observed heterogeneity across different learning pro-
cesses is informative, because it implies that participants 
can adopt a range of strategies to learn about automa-
tion reliability. An important future direction will be 
to model the underlying causes of the heterogeneity 
in learning processes. For example, variation in learn-
ing processes might be framed in terms of dual-process 
frameworks of learning, in which people can switch 
between flexibly adapting, more explicit and resource-
intensive learning processes, and more slowly adapting, 
implicit and less resource-intensive learning processes, 
as a function of factors such as available cognitive 
resources, task demands/complexity, and learning goals 

(e.g., Daw et  al., 2011; Dienes et  al., 1999; Reber, 1993; 
Sun et al., 2005).

The computational modelling approach that we have 
tested in this study provides a framework which could 
be applied to understand how specific task characteris-
tics elucidate greater heterogeneity in learning processes. 
For example, our task included relatively few automation 
experiences (at maximum, 160 per participant), whereas 
studies that have supported the IIAB model tend to 
include thousands of experiences per participant (e.g., 
Gallistel et  al., 2014). After extensive experience using 
automation for a certain task, expert operators likely 
become more confident about their predictions of auto-
mation reliability (Carter et  al., 2024). In this case, they 
would have less reason to access finite cognitive capac-
ity (Navon & Gopher, 1979), or to pay the costs of infor-
mation access (Gray & Fu, 2004), in order to update 
judgements of automation reliability unless there was 
a notable event or evidence of a serious problem. This 
might involve switching to a learning process that fol-
lows the (stepwise) IIAB model more closely. Our model 
framework could also help to understand the underlying 
cognitive mechanisms by which a range of known fac-
tors affect the learning of automation reliability (Endsley, 
2017; National Academies of Sciences & Medicine, 2022). 
For example, learning models could be applied to under-
stand the effects of automation transparency (Bhaskara 
et al., 2020; Tatasciore & Loft, 2024; van de Merwe et al., 
2022), or of the difficulty of the trials that automation is 
observed to succeed and fail on (Madhavan et al., 2006), 
both of which have also been shown to influence trust in 
automation (Hoff & Bashir, 2015).

One important consideration regarding implications 
is that we focused on a single-task environment. In this 
study, participants’ only task was vessel classification, 
but in safety-critical field settings operators often need 
to divide attention across multiple concurrent tasks 
(Loft et  al., 2023; Remington & Loft, 2015; Wickens 
et  al., 2022), some tasks aided by automation and some 
not, which can result in higher workload. This is a key 
feature and underlying cause of automation use error 
in many workplace environments (e.g., Bailey & Scerbo, 
2007; Karpinsky et al., 2018; Tatasciore et al., 2023). Dif-
ferences in perceived cognitive capacity as a function of 
task demands could affect learning processes. For exam-
ple, operators may be less likely to track automation per-
formance and instead rely on previous judgements of 
reliability during periods of higher workload, essentially 
pausing learning by adaptively trading-off information 
access costs against information utility (Gray & Fu, 2004), 
a known strategy to manage time pressure (Boag et  al., 
2019; Hendy et al., 1997). Similarly, it is conceivable that 
human operators could satisfice (Simon, 1956; Todd & 
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Gigerenzer, 2007) with respect to learning of automation 
reliability, either sampling automation reliability less and/
or extracting less quality evidence from the task environ-
ment (Boag et al., 2019) in situations where they perceive 
the automation’s reliability to be of relatively low impor-
tance to operational success. Farrell and Lewandowsky 
(2000) modelled automation use in multiple tasks using 
a connectionist learning model, and argued that effects 
relating to automation complacency could be explained 
by operators learning not to respond in the presence of 
automation, and learning having to be shared across 
multiple tasks in more complex settings. Future work 
extending our model framework could specify and test 
mechanisms by which workload and motivational factors 
modulate learning processes.

As reviewed earlier, in Hutchinson et al. (2022a, 2022b) 
the default reliability judgement was reset to 50% before 
each new judgement. One potential drawback to this 
response method is the possibility of anchoring, in which 
decision makers are biased towards an initially presented 
value (Furnham & Boo, 2011; Tversky & Kahneman, 
1974). Anchoring might dilute learning effects on reli-
ability judgements. Future research might systematically 
evaluate the effects of response method, and system-
atic biases in response production. Encouragingly, our 
conclusions were confirmed by supplementary analysis 
allowing for possible learning-independent bias in reli-
ability judgements (i.e., with an LLO transformation).

One important application of understanding evolving 
judgements of automation reliability is the implications 
for HAT decision making. In this study, we focused on 
reliability judgements, rather than resulting automation 
reliance/HAT performance. Examining HAT perfor-
mance is more difficult, because it requires a computa-
tional model not only of the learning process, but also of 
the processes governing human decision making and 
its interaction with automated advice. Hutchinson et  al. 
(2022a, 2022b) examined automated-advice acceptance 
rates (reliance) with mixed-effects models, and their 
findings pointed to some interesting similarities and dif-
ferences between patterns in automation reliance and 
judgements of reliability. However, they did not specify 
a process model of how learning automation reliability 
affects automation reliance.

Future research should strive to unify models of learn-
ing of automation reliability with models of automation 
acceptance, and understand the relationship between 
the two. One precedent is in Wang et al. (2022a, 2022b), 
who modelled automation acceptance decisions with 
two components, utility evaluation and action selection. 
They considered a range of alternative models of how 
humans, having been given reliability information, esti-
mate the utility associated with accepting or rejecting 

automated advice. They also considered alternative mod-
els of action selection, the subsequent, utility-informed, 
stochastic process of accepting or rejecting automation. 
In Wang et  al.’s study, participants were provided infor-
mation about automation reliability, rather than required 
to estimate it. A natural extension could be to incorpo-
rate an initial model of how humans estimate automa-
tion reliability from experience (e.g., with the two-kernel 
delta rule), rather than providing participants with reli-
ability information (i.e., from description). The effects of 
learning automation reliability from experience may dif-
fer from the effects of descriptive reliability estimates, 
consistent with the “description-experience gap” (Wulff 
et  al., 2018) observed for other types of probability 
information.

Another approach to integrating models of learning 
and automation acceptance could be to build learning 
processes into the decision model of HAT presented by 
Strickland and colleagues (Strickland et al., 2021, 2023). 
They proposed an evidence accumulation model of how 
humans combine their own processing of task inputs with 
decision-aid inputs, which accurately describes the accu-
racy of human decisions and response times when they 
use automation. The models in this paper could inform 
a “front end” to the evidence accumulation process (e.g., 
with learning higher reliability increasing evidence accu-
mulation in favour of agreeing with automation).

In this study, we focused on situations where automa-
tion accuracy did not depend on task features (i.e., it 
was random with respect to the features of the vessels 
that automation correctly or incorrectly classified). This 
emulates situations where the human has little insight 
into the inputs that the automation uses, or the way in 
which the inputs are used. However, in many circum-
stances, humans may rely on a mental model of how reli-
ably automation performs with respect to task features 
or other context. For example, a doctor may be aware 
that an algorithmic recommendation performs poorly 
for patients with particular symptoms. Recent work by 
Bansal et  al. (2019) examined human mental models of 
automation in terms of “error boundaries”, that is com-
binations of task features for which automation is pre-
dicted to err. Error boundaries were defined in terms of 
two dimensions: parsimony (i.e., how simple vs complex 
are the rules governing error conditions) and stochas-
ticity (e.g., under failure conditions, does automation 
err every time or only sometimes). Both factors affected 
HAT performance, as did overall task dimensionality (the 
number of features the underlying task depended on). It 
may be fruitful for future work to unify our approaches. 
Although Bansal et  al. examined the progression of 
human learning of error boundaries (e.g., relative to 
optimality), they were not focused on testing cognitive 
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models of the underlying learning processes. The prob-
ability learning processes we consider here may have 
implications for learning of stochastic boundaries, where 
automation errs probabilistically.

Conclusions
We compared a range of alternative models describing 
how humans learn about the reliability of automation. 
Across three experiments and 240 participants, we found 
that time series of automation reliability judgements 
were most consistent with a two-kernel delta rule, in 
which participants learned according to prediction error, 
with a rate that could potentially change in response to 
rapid changes in state. This finding is consistent with the 
broader success of delta rules in describing human learn-
ing. However, we also found evidence of heterogeneity 
in learning processes across participants, the causes of 
which await further investigation.

Abbreviation
HAT  Human-automation teaming
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