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Abstract 

In a dynamic decision-making task simulating basic ship movements, participants attempted, through a series 
of actions, to elicit and identify which one of six other ships was exhibiting either of two hostile behaviors. A high-
performing, although imperfect, automated attention aid was introduced. It visually highlighted the ship categorized 
by an algorithm as the most likely to be hostile. Half of participants also received automation transparency in the form 
of a statement about why the hostile ship was highlighted. Results indicated that while the aid’s advice was often 
complied with and hence led to higher accuracy with a shorter response time, detection was still suboptimal. Addi-
tionally, transparency had limited impacts on all aspects of performance. Implications for detection of hostile inten-
tions and the challenges of supporting dynamic decision making are discussed.
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Significance statement
The current research investigates human–automation 
teaming and automation transparency in a dynamic deci-
sion context. Dynamic decision making (Gonzales et al., 
2017) is based upon real-world decisions that require evi-
dence accumulation and shorter decision cycles within 
a larger decision. This is often seen in medical and mili-
tary contexts, as well as when predictions are made about 
future states. These decisions are difficult for humans to 
make accurately, which creates a place to introduce auto-
mated aids. This research addresses this issue in the con-
text of a visual search and pattern recognition task that 
mimics Naval ship detection from a radar screen. The 
current findings suggest that while automated attentional 
aids are useful in dynamic decision-making contexts, 
transparency does not improve performance in these 

complex environments. This creates a foundation for 
application to real-world instances of dynamic decision 
making.

Introduction
Along with reducing human mental workload and the 
costs of operation, one of many generic functions of 
introducing automation or artificial intelligence to a 
human-centric environment is to improve the perfor-
mance of the human–automation team (HAT). Automa-
tion can be presented in many forms, but the focus of the 
current paper is on automation decision/diagnostic sup-
port and its integration into dynamic decision making.

Dynamic decision making
Dynamic decision making (DDM), as reviewed by Gon-
zales et al. (2017), see also Edwards (1962), is based upon 
the observations that decision tasks are not often static, 
simple decisions but, instead, they have dynamic com-
plexity that emerges from various choices made over 
time and their effects on subsequent choices. In many 
dynamic decision tasks, at each choice, a decision is made 
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whether to stop, or to continue analyzing or sampling 
each new option and/or acquire additional evidence. To 
decide whether they should continue analyzing or sam-
pling, a person looks for the point when the value of the 
current option either exceeds the value of a future option, 
or if it meets a certain threshold.

The unique features of DDM as opposed to static deci-
sion making are that the decider will encounter multiple 
packages of data over time, often making a temporary 
decision or situation assessment after each data point and 
then revising it in the face of new data. Such an evidence 
accumulation process would readily describe the decision 
process of a healthcare professional diagnosing a patient 
condition as symptoms are encountered over time. Often 
the actual decision made at time T1 will impose an action 
(for example a treatment administered to the patient), 
whose outcome then provides data for a decision or diag-
nosis revision at time T2. Heavy cognitive demands tend 
to be imposed by DDM, in comparison with the general 
situation with static decision making. In particular, work-
ing memory is involved in retaining information about 
previous states and when evaluating the outcome of 
present decisions and diagnoses (Herdener et al., 2019). 
Such working memory demands of evidence accumula-
tion provide an added source of cognitive load not pre-
sent in comparable static, one-shot decision making.

It is noteworthy, and relevant to the current research, 
that studies of DDM typically involve two levels of learn-
ing (Gonzales et al., 2017). On a lower level, as evidence 
is accumulated there is a form of short-term learning. 
At a higher level, learning can occur across trials or final 
decisions, such that it is closer to cognitive skill develop-
ment. We examine both forms here.

Pairing the process down into simple repeated deci-
sions within a laboratory setting allows exploration 
of decision making and how automation support may 
impact that process, and these types of dynamic decision 
tasks are common in the real world. Yet, to our knowl-
edge, only one previous study has investigated automa-
tion assistance in a dynamic decision-making context 
(Kleinmuntz & Thomas, 1987), and transparency in the 
DDM context has yet to be explored. This is not to say 
that human–automation teaming in real-world simu-
lations lacks exploration, as this area is abundant (e.g., 
Chen & Barnes, 2012; Chien et  al., 2018; Hutchinson 
et  al., 2022; O’Neill et  al., 2022; Sargent et  al., 2023; 
Strickland et  al., 2023) but rather, the interest here is 
on the impact of automation in evidence accumulation 
(i.e., dynamic decision making) settings. The intersec-
tion of three elements, automation support for dynamic 
decision making, and how both the process and prod-
uct of dynamic decision making may be influenced by 

automation transparency represents the unique contri-
bution of the current research.

Automation support
Decision-making performance can be improved through 
the use of a diagnostic support system; however, in such 
evaluations, human–automation team (HAT) perfor-
mance must be evaluated against two benchmarks: per-
formance of the human alone (unaided by automation) 
and performance of the automation alone. A general 
finding is that HAT performance typically lies some-
where in between the two benchmarks, and how close 
it falls to one or the other depends on an array of fac-
tors. For example, in a task that is difficult for an unaided 
human but has support from a highly reliable aid, the 
HAT performance would move closer to the automation’s 
performance level, but typically without actually reach-
ing that optimal level (Bartlett & McCarley, 2017, 2020; 
Boskemper et al, 2021).

Thus, a question that arises in this instance is that if the 
aid is superior, and humans wish to optimize HAT per-
formance, why do humans not entirely depend upon the 
aid, always following aid guidance? One answer may be 
the differences between humans’ intrinsic trust in the aid 
(Lee & See, 2004). In particular, humans themselves show 
a wide range of what is termed dispositional trust (Hoff 
& Bashir, 2015). This may lead to a general trend toward 
under-trust for some human users who then depend on 
automation less than is optimal. In contrast, other peo-
ple may demonstrate near total trust, and in some cases, 
poorly calibrated trust can lead to poorly calibrated 
dependence or compliance. When considering over-
dependence, this can lead to the automation bias of not 
paying any attention to the raw data, and hence remain-
ing totally out of the loop (Mosier et al., 1998; Parasura-
man & Manzey, 2010).

The automation bias can produce two consequences: 
First, poor performance on the infrequent occasions 
when imperfect automation is incorrect or unexpect-
edly fails, a shortcoming that can often be attributed to 
a loss of situation awareness (Endsley, 2017; Kaber & 
Endsley, 1997; Trapsilawati et al., 2021); second, failing to 
learn or forgetting how to do the task that is supported 
by automation, and hence doing poorly when it is with-
drawn. The latter is a phenomenon sometimes referred 
to as deskilling (Casner et al., 2014; see also Bainbridge, 
1983). While a case can be made that an operator using 
or depending upon automation excessively can lose this 
skill; an alternative case can be made that the reduced 
workload availed by automation when it is in use could 
allow the user to allocate more resources to learning 
and understanding the decision and diagnostic strate-
gies underlying task performance and hence be actually 
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better at the task following automation withdrawal (see 
Gutzwiller et  al., 2013). We examine these issues in the 
current study.

Transparency
A potential solution to reducing deskilling or increasing 
learning in a task is fostering better situation awareness 
when automation unexpectedly fails and fostering bet-
ter learning of the decision/diagnostic task. This may be 
supported by transparency. Automation transparency is 
a concept that has number of different operational defi-
nitions (e.g., Dzindolet et al., 2003; Hoff & Bashir, 2015; 
Schneiderman, 2022; Seong & Bisantz, 2008; van de 
Merwe et al., 2022), but at its broadest level, it is a prop-
erty of automation that enables the human user to under-
stand what the automation is doing and/or why it is doing 
it. Transparency types can be categorized in a number of 
ways; however, one widely accepted way is based on the 
information provided to the user about the automation. 
Bhaskara et al. (2020) lay out “low”, “medium” and “high” 
levels of transparency, corresponding to the type of infor-
mation the user sees (see Mercado et al., 2016 for exam-
ples of all three levels). Low transparency contains basic 
information about the system—its intent, a baseline plan, 
etc. The medium level of transparency provides an expla-
nation of the reasoning behind the automation decision 
advice—how the algorithm works, or why it arrived at the 
particular recommendation that it did. The high level of 
transparency provides an estimation of the confidence 
with which automation offers its advice (Kunze et  al., 
2019).

While transparency is not required to include reason-
ing or confidence, a review of the literature suggests that 
any lesser transparency manipulation (i.e., only the out-
line of a plan) does not generally increase performance 
metrics (Bhaskara et  al., 2020). Two recent reviews of 
the transparency literature (Bhaskara et al., 2020; van de 
Merwe et  al., 2022) and a meta-analysis (Sargent et  al., 
2023) indicate that with these reasoning manipulations, 
HAT performance typically increased, particularly for 
instances where the human was responding to automa-
tion suggestions for decision making. While the transpar-
ency literature reveals that its incorporation improves the 
performance of the HAT most of the time (e.g., Chen & 
Barnes, 2012; Seppelt & Lee, 2019), such improvement 
is not universally observed (e.g., Guznov et  al., 2020; 
Pharmer et al., 2021; Wright et al., 2016) and may occa-
sionally even inhibit it (Zhang et  al., 2022). Thus, the 
positive relationship between increased transparency and 
improved performance is not guaranteed.

One reason why transparency at any level may fail to 
benefit is because users simply do not attend to it. Expla-
nations may be complex, and if rendered in printed 

text, may be hard to read, thereby competing with the 
resources needed to both process the raw data and to 
learn the task (e.g., Kunze et  al., 2019). One might thus 
speculate that as decision tasks become increasingly dif-
ficult and therefore resource demanding, while automa-
tion itself can help, the added benefits of transparency for 
that automation may fail to emerge, as they are offset by 
the cost of divided attention (Tatasciore et al., 2023).

Trust in automation
One area in which transparency appears to clearly have 
a positive effect on the human–automation team is in 
helping a user calibrate their trust in an automated sys-
tem according to its degree of reliability (Hoff & Bashir, 
2015; Sargent et al., 2023; Vorm & Combs, 2022). It fol-
lows that transparency generally increases performance 
as well, because if trust is properly calibrated and the 
automated system is more accurate than the human, 
the two should be able to work together to produce bet-
ter accuracy. However, it is important to note that trust 
and dependence are not always directly related. People’s 
trust in automation may not predict their ability to detect 
automation failures (Merritt et al., 2013), and changes in 
accuracy or reliability of an automated aid may not result 
in a corresponding change in trust of or dependence on 
that aid (Korbelak et al., 2018; Hutchinson et al., 2022).

Trust in the automation is also thought to be influ-
enced by the task load (Chien et al., 2018; Zhang & Yang, 
2017). Specifically, there is evidence that trust increases 
with task difficulty (Sato et al., 2020). In a dynamic deci-
sion-making task, where the task load is high, it would be 
expected that trust also be high, but whether this leads 
to overreliance on the automation in these contexts 
is not yet known. This issue is examined in the current 
experiment.

Current study
One way in which all of this research on transparency, 
trust, and automation dependence is lacking in is in 
understanding the impacts of transparency on the deci-
sion-making process rather than the outcome. It is not 
clear how transparency impacts cognitive mechanisms 
in a way that leads to better performance. This may be, 
in part, because conclusions thus far tend to focus on 
situations in which a single decision is made from a set 
amount of evidence. Yet, there are environments and sit-
uations where evidence can accumulate over time, such 
as evaluating the changing threat of a spreading forest 
fire, a military adversary on the move, or the progres-
sion of a disease (Kleinmuntz & Thomas, 1987). These 
issues are addressed under the dynamic decision-making 
approach (Gonzales et al., 2017). This environment may 
allow transparency to be investigated in a different role, 
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influencing not just decision outcomes but also the pro-
cess by which dynamic decisions are made and unfold 
over time. To examine these issues, we focused on a 
dynamic decision task involving the identification of hos-
tile intent (Riviero et al., 2017). To examine this, we built 
upon our prior research in which participants sought to 
identify a hostile ship within a set of moving ships and 
diagnose which of two hostile behavior types was shown 
(Patton et  al., 2021a; 2021b, 2022). A shadowing ship 
stalked the participant’s ship through moves parallel to 
the own ship, and a hunting ship gradually approached 
the user ship. This environment captures prototypi-
cal features of Naval combat information center dis-
plays such as the Aegis (Smith et al., 2004) and the task 
also mimics, in some ways, a real Naval task of a ship’s 
intelligence officer monitoring radar tracks. Introduc-
ing variability into the ship movements can reflect nat-
ural variations of vessel movement due to tides, winds, 
or other mission-related maneuvers. Deviations from 
normal paths and close approaches are both real ship 
movements that can indicate hostility (Lane et al., 2010). 
While this is a simplified laboratory paradigm, the inten-
tion was that the cognitive and environmental variables 
adequately represent a prototypical real-world detection 
scenario.

In the current paradigm, the behavioral diagnosis is 
accomplished by maneuvering the ownship in a series 
of steps or “moves” in any of four cardinal directions 
the participant chooses, while observing the behavior of 
all the ships to see which is responsive to the ownship 
moves (identification of suspect ship) and the nature of 
that response (approaching, as in hunting, vs parallel, as 
in shadowing). The freedom to end a trial when the par-
ticipant feels they have accumulated enough evidence 
to accurately identify the hostile ship allows the num-
ber of moves that a participant uses to be a proxy for the 
meta-cognitive process of deciding when the threshold 
of necessary evidence has been met—a hallmark metric 
of dynamic decision making. By this cyclical process of 
decision (how to move) and observation (of movement 
of other ships), users accumulate evidence until they are 
confident of the diagnosis, respond with the identity of 
the suspected ship, and terminate the trial. Thus, there 
are heavy spatial working memory demands of keeping 
track of movement of all ships, in order to then discern 
which of these, over several consecutive moves, have 
consistently responded in a manner contingent upon the 
direction of the ownship’s movement (Patton et al., 2022). 
Previous research indicates the task is difficult for an 
unaided human, with accuracy around 50% (chance of 8% 
[6 ships × 2 behaviors]; Patton et al., 2021a; 2021b, 2022).

The current study introduced an attention cuing 
automated aid to attempt to achieve improvement on 

detection and diagnostic performance by gathering and 
integrating the movement from each ship to assess the 
extent to which that movement was consistent with one 
hostile behavior or the other. It then highlighted the most 
likely target. The goal of the current study was thus two-
fold. First, to understand the degree of assistance the 
imperfect automation decision aid could provide to the 
user in making the final diagnostic decision as to the hos-
tile element and the manner in which performance was 
supported. Previous literature would suggest that the 
imperfect aid would improve performance, as its overall 
accuracy is better than the unaided human (Bartlett & 
McCarley, 2017, 2020; Boskemper et  al., 2021), but the 
extent to which it benefits an evidence accumulation task 
is of interest. Second, whether this support could itself 
be improved further by introducing automation trans-
parency. The form of transparency that we employed 
here was a reasoning explanation for why the automated 
diagnostic aid recommended the ship that it did as hos-
tile, based on its recent history of contingent movements. 
This recommendation was placed on the screen, after 
each participant-initiated move.

Four hypotheses were put forth:

(1) Because the aid’s accuracy is so much higher than 
the unaided participant, it is predicted that, in line 
with previous literature (Boskamper et  al., 2021; 
Kleinmuntz & Thomas, 1987), participant accuracy 
on this dynamic decision-making task will improve 
with the aid.

(2) The availability of the automated aid should reduce 
the cognitive processing for each decision, in part 
by offloading working memory, and hence provide 
an opportunity for the participant to learn the effec-
tive strategies of performing the task. To the extent 
that this opportunity is used, this in turn should 
support better performance if the aid is removed, as 
occurs at the end of the current task.

(3) The transparency manipulation will improve per-
formance further because it is providing additional 
information (reasoning, i.e., Bhaskara et  al., 2020) 
that can be used by the participant to better cali-
brate their trust and use of the aid.

(4) Transparency will change the way users make deci-
sions. This may be seen in differences between 
the transparent and non-transparent conditions 
in number of steps used across trials, compliance 
rates, or differences in accuracy when the aid is 
taken away.
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Methods
Participants
The current research was approved by the Colorado 
State University Institutional Review Board. Data were 
collected from 128 people on Prolific, all of whom were 
located within the USA and gave informed consent prior 
to starting the experiment. Demographic information 
was not collected. Two participants were removed due 
to evidence of inattention, based on few moves per trial 
(less than 7 out of 35), and exceptionally poor perfor-
mance (lower than chance).

Task
The experiment featured a modified version of the task 
from Patton et  al. (2021a). Participants viewed a com-
puter screen (Fig. 1) containing a yellow cross indicating 
their ship’s position (which they could control), and six 
green circles with unique numbers which represented 
other ships and were controlled by a software application. 
An example of this task can be found here: https:// osf. io/ 
3hd9t/.

On each trial, the starting location of all ships was ran-
domly assigned, with the participant’s ship starting close 

to the middle of the screen. The participants could move 
their ship by clicking the arrow keys on the bottom of the 
screen; participants could click no faster than once per 
second. The user ship could move left, right, up, or down, 
and each time the user ship moved, the computer-con-
trolled ships also moved in a pre-programmed direction. 
Thus, all ships moved at the same time, with at least a one 
second delay between movements.

On each trial, one of the computer-controlled ship’s 
movements responded to the user’s movements in a 
“hostile” manner. The other five “distractor” ships moved 
independently of the user. The “hostile” ship would do 
one of two things—hunt or shadow. Hunting was con-
sidered movement designed to eventually catch the 
user ship. An algorithm computed which directional 
movement produced the greatest reduction in distance 
between the two and moved the ship in that direction 
as the user ship moved. Shadowing aimed to generally 
keep a consistent distance from the user ship through 
replication of their movements. For instance, if the user 
moved left, the shadowing ship also moved left. If the 
user ship moved toward the shadowing ship, the shadow-
ing ship would move away so the distance between the 

Fig. 1 Screen exhibiting the experimental paradigm

https://osf.io/3hd9t/
https://osf.io/3hd9t/
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ships stayed the same. These target movements occurred 
simultaneously with the user’s movement that triggered 
it.

The behaviors of the five distractor ships were assigned 
one of two possible movement patterns. Three of the 
ships had “targeting” behaviors, meaning they moved 
toward their own invisible target goal, coded as an invis-
ible point on the coordinate grid. The other two ships 
exhibited “patrol” behaviors, where they moved in a rec-
tangular course that circumnavigated the center of the 
screen. Patrolling ships were randomly assigned a patrol 
pattern, a starting position and direction of travel on 
each trial.

Three trials were given as practice. The practice trials 
involved one hunting behavior, one shadowing behavior, 
and a trial in which the aid was introduced. On the first 
two practice trials, the hostile ship was displayed with a 
different color than the distractor ships and the type of 
hostile behavior was announced before the trial started. 
This allowed participants to practice working through a 
scenario but also showed the difference between hostile 
behaviors. The third practice trial included the aid, which 
highlighted what it thought to be the likely hostile ship in 
yellow after five moves (detailed below).

The movements of both the hostile ship and the dis-
tractor ships included some uncertainty. On every move 
of every trial, based on a computer-generated random 
function, each ship would move according to its intended 
plan with a 75% probability. Approximately 25% of ships’ 
movements would be in some arbitrary direction other 
than the optimal direction for their goal. For example, a 
ship that was hunting would move closer to the user on 
approximately 3 out of every 4 moves, with the 4th move 
taking the ship in a randomly chosen vector direction. 
Similarly, the distractor ships were programmed to move 
in an orderly fashion unrelated to the movements of the 
user’s ship, but about 1 in 4 of their movements would be 
in a random direction.

The goal for the participant was to move their ship until 
they could identify the hostile ship, as well as identify the 
type of hostile behavior: shadowing or hunting. On each 
trial, the participant was required to make at least five 
moves, but no more than 35 moves, in whatever pattern 
they chose before determining which ship they believed 
was hostile. Once they had collected enough information 
to make their decision, they clicked on the “End Trial” 
button, which introduced a question across the top of the 
screen, asking the participant to select the number of the 
hostile ship and the type of hostile behavior. The instruc-
tions explained that there would always be a hostile ship 
on each trial. The default response was “None” for the 
hostile ship number and “Neither” for the type of hos-
tile behavior. This forced the participant to affirmatively 

select a response. After they selected their response, they 
then clicked “Submit” and were given feedback if their 
response was correct, but not the reasons for an incor-
rect response.

Decision aid
A decision aid was provided that highlighted one ship in 
yellow that was ranked as the most likely threat on each 
trial, starting at the sixth move. The decision aid did not 
appear until the sixth step because it needed to accumu-
late evidence on the first few steps to be accurate enough 
to be useful. This also encouraged participants to collect 
their own evidence of hostility rather than only relying on 
the aid. The ranking of ship hostility was determined by a 
simple algorithm that was dependent on the users’ move-
ments and the movements of the other ships. For hunt-
ing, the algorithm counted the number of times each ship 
moved in the same direction that a hunting ship would 
have moved. A similar measure was calculated for shad-
owing behavior such that the number of times each ship 
moved in the same direction a shadowing ship would 
have moved was counted.

Therefore, the reliability of the aid in detecting the hos-
tile ship further improved as the number of participant 
moves within a trial increased. Participants were told in 
the instructions that the aid became more accurate with 
more information from steps. After each move, the threat 
ranking was recalculated, and the appropriate ship was 
indicated by turning yellow. If there was a tie in the threat 
rankings, it was resolved by randomly highlighting one of 
the ships tied for most threatening.

Moreover, reliability of the threat signal was contin-
gent on the user’s moves. For example, if a user started to 
move in the same direction as a distractor ship that was 
patrolling, then the threat ranking algorithm might pro-
duce a false alarm for that distractor ship. For the user 
to achieve a high degree of accuracy of threat behavior 
assessment, they needed to be thoughtful in their choices 
of movements. Still, through simulations of a participant 
moving in three simple strategies (always in a straight 
line, in a circular path, and in a random path) the average 
accuracy of the simulated aid was found to improve con-
siderably with repeated moves and approached asymp-
totic accuracy of 94% after approximately 24 moves.

Half of the participants were randomly assigned to the 
transparency condition, where the highlighting remained 
the same but participants were provided a statement 
indicating the reasoning for the highlighting based on 
behavior such as, “Ship 2 has been shadowing your ship 
for 13 out of the last 15 moves.” The format of the mes-
sage remained the same but the ship number, ship behav-
ior, and count of moves could update with each step. 
This was provided in text below the area of the screen 
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with the moving ships (Fig. 1). The information was pre-
sented in this way so that it was easily available for the 
participant to see, as it was located near the buttons that 
moved the usership, but also did not create clutter on the 
screen near the ships. This transparency manipulation 
is classified as a “medium” level of transparency under 
the Bhaskara et  al. (2020) taxonomy. Providing partici-
pants with the reasoning of the aid is the basic form of 
transparency that has the most consistent benefit to 
performance.

Procedure
Each participant was presented with three blocks of tri-
als after a short three trial practice section. Block 1 had 
eight unaided trials, Block 2 had 16 aided trials, and 
Block 3 had two unaided trials. Block 1 was treated as 
baseline performance and a chance for participants to 
better understand the task of diagnosing hostile behav-
iors. Block 2, with the aid, had double the trials as Block 
1 because these data speak to the core research ques-
tions. Block 3 was implemented as a brief final check for 
practice effects, and to explore how unsupported perfor-
mance may have differed after the aid was taken away. 
Performance on the last trial of the Block 2 did differ 

from the first trial of last block: V = 1909.5, p < 0.001 and 
from the second trial of the last block (trial 26) V = 1470, 
p < 0.001. So, although the number of trials in Block 3 was 
low, there was enough power to detect differences from 
the automation trials that immediately preceded the last 
block. Participants were instructed that the aid would be 
withdrawn during these final two trials. Completing all 
26 trials took approximately 45 min.

On each trial, all starting positions, movement of com-
puter-controlled ships, and the identity of the hostile ship 
were pseudo-randomly chosen. In each block, there were 
equal numbers of trials having hunting or shadowing, 
although the order of hunting and shadowing trials was 
randomized in every block. Additionally, participants 
were randomly divided into two conditions; in one con-
dition they received the transparency manipulation that 
accompanied the aid within Block 2, making transpar-
ency a between-subjects variable.

Finally, after completing all three blocks, participants 
were asked a series of three survey questions. Partici-
pants could rank their answers on a Likert scale from 1 
(Not at all) to 7 (Completely). The first question stated, 
“Did you trust the aid;” the second question stated, “Did 
you comply with the aid,” and the third question stated, 

Fig. 2 Accuracy in detecting the correct ship across blocks. Error bars represent one standard error of the mean. The red horizontal line indicates 
the overall 87% mean accuracy of the aid
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“How confident are you in your own ability to do the 
task?”.

Results
Accuracy
Figure 2 presents the mean accuracy, operationalized as 
percentage of correct ship and behavior detection, across 
the three blocks of trials: without, then with, and then 
again without the aid. The data in the final block were not 
normal, as it only consisted of two trials, so a Kruskal–
Wallis test was run to determine whether there were dif-
ferences in accuracy across blocks. It showed that there 
were differences (H(2) = 196.67, p < 0.001), as can be seen 
in Fig. 2.

Follow-up paired comparisons of the block test were 
run to test the first hypothesis, that the decision aid 
would enhance performance in detection of hostile 
movements. A t-test was run between the first and sec-
ond blocks and revealed clear assistance offered by the 
aid (75% accuracy; (t(125) = − 11.05, p < 0.001, d = 1.03). 
However, the performance in the second block with 
the aid was lower than the aid’s own accuracy (87%; 
t(125) = − 9.70, p < 0.001, d = 0.91). The difference 
between the second and third blocks was also significant 
with a Wilcoxon signed-rank test (V = 6445, p < 0.001). 
Importantly, the decrease in performance from the ear-
lier to the later unaided block was significant (V = 3800.5, 
p = 0.01) ruling out the possibility that the improved per-
formance from the initial unaided trials (Block 1) to the 
aided trials (Block 2) was just an artifact of practice at the 
task. If it was, participants would have done better, not 
worse, on Block 3. Additionally, accuracy across the trials 
within the blocks remained relatively stable, if not with a 
slight increase, suggesting that the decrease in accuracy 
in Block 3 was not due to fatigue or vigilance decrements.

A separate t-test was run to investigate whether trans-
parency impacted performance in Block 2. There was 
no indication of a significant difference (t(124) = 0.75, 
p = 0.45, d = 0.13), indicating that while the aid improved 
performance, transparency did not have a differential 
impact on overall outcomes. The transparency manipu-
lation told participants information about a potentially 
hostile ship’s behavior, and so as a post hoc exploratory 
analysis, accuracy was investigated further through the 
decoupling of detecting which ship and which behavior 
was exhibited. Overall, when the correct ship was cho-
sen, the correct behavior was also chosen 93% of the 
time. This stayed true in both the transparency (93.5%) 
and no-transparency condition (92.9%), despite trans-
parency providing behavior information that could have 
improved accuracy.

Trust and compliance
Trust in the automation was subjectively rated on a scale 
of 1 (not at all) to 7 (completely). Overall, trust was rated 
at 5.26, with higher trust when there was a transparency 
explanation (5.49) than without an explanation (5.03; 
t(124) = − 2.08, p = 0.03, d = 0.37).

Compliance. Objective compliance was first measured 
by the proportion of trials in which the user agreed with 
the automation’s recommendation, regardless of accu-
racy. Overall the mean compliance rate was 87% (95% CI 
[86%, 89%]). However, when looking at compliance across 
all trials, it is difficult to know whether the participants 
were blindly agreeing with the aid (automation bias), 
rather than ignoring the aid and using unaided percep-
tual information to make the judgment with high accu-
racy. One insight may be obtained from examining the 
compliance rate on that specific subset of trials in which 
automation was wrong. This value was 71% (95% CI [65%, 
77%]), a value significantly less than the mean 87% reli-
ability of the aid (t(244) =  − 5.38, p < 0.001, d = 0.34), indi-
cating that participants were not always simply blindly or 
randomly agreeing with the aid, nor were they just prob-
ability matching with its reliability rate.

When looking at compliance rates on automation-
wrong trials between the two aided conditions, there was 
no effect of transparency. Compliance across all trials 
was very similar at 86% without transparency and 88% 
with transparency (t(124) =  − 1.02, p = 0.30, d = 0.18). On 
automation-wrong trials, compliance was 68% without 
transparency and 74% with transparency (t(100) = − 0.85, 
p = 0.39, d = 0.17). This suggests that, in contrast to the 
third hypothesis, transparency did not impact compli-
ance at all, nor was there an impact on automation bias.

Evidence accumulation
To examine the process of decision making, we exam-
ined the speed-accuracy trade-off. Across all trials, par-
ticipants who took more steps and hence more time 
increased their accuracy (r = 0.47, Fig. 3). This trend was 
true with (r = 0.37) and without automation (r = 0.33). 
Additionally, the average number of steps taken was 
significantly lower on trials with automation (15.85 
steps) than without automation (20.01; t(125) = − 11.09, 
p < 0.001, d = 0.59). This, combined with the higher accu-
racy seen on automation trials, indicates that the decision 
aid allowed users to make correct decisions more rapidly.

There was no difference in the number of steps 
taken with transparency (16.5) versus without (15.1; 
t(124) = 1.15, p = 0.24, d = 0.20). This indicates that the 
additional information from the aid in the transpar-
ency condition did not drastically change the informa-
tion acquisition process that users followed to choose 
the correct ship. The trend for increasing accuracy with 
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increasing number of steps was consistent in both aided 
conditions (r = 0.40 with transparency and r = 0.32 with-
out transparency).

Given that transparency affected neither process (steps 
taken) nor the product (accuracy of decision outcome), 
we wanted to assess whether the transparency informa-
tion was attended at all. To do so, we examined the dif-
ference in processing time between steps, between the 
transparency and the no-transparency condition. Pro-
cessing time was operationalized by the time spent 
between steps, after the participant moved their ship 
on one step and before they moved it on the next ship. 
Due to multiple comparisons, a Bonferroni correction 
was implemented, making the new alpha level = 0.01. In 
the no-transparency condition, there were no differences 
in time across any of the steps (all p > 0.04). In the trans-
parency group, the processing time on the trial when 
transparency was introduced (M = 2.3  s) was signifi-
cantly longer than the time on the step before (M = 1.7 s; 
t(283) = − 4.14, p < 0.001, d = 0.49), which can be assumed 
to relate to the time taken to read the information. Such 
a delay was not observed on the prior step in the no-
transparency condition (M = 2  s), before automation 
was introduced (t(143) = 2.19, p = 0.02, d = 0.23). Hence, 
although the initial presentation of transparency showed 

signs of additional processing of that information, the 
combined other analyses suggest this knowledge subse-
quently made little substantive impact on the decision 
processes themselves.

Removal of the aid
The final way in which the effect of transparency was 
investigated was to assess whether there were any dif-
ferences that may exist on the final two trials when the 
automation was removed. There was no difference in the 
number of steps used on the final two trials, with both 
groups using approximately 17 steps (t(250) = − 0.35, 
p = 0.72, d = 0.04). Accuracy on the last two trials for the 
transparency group was nominally higher (50%) than 
the no-transparency group (39%) although this differ-
ence was not significant with a Wilcox signed-rank test 
(W = 1683.5, p = 0.11).

Discussion
This study set out to examine how, in the context of 
dynamic decision making, an automated decision aid 
could assist the diagnostic performance of the human; 
furthermore, we examined how transparency of an auto-
mated aid impacts both the decision-making process 
and the final decision outcome. While transparency of 

Fig. 3 Speed-accuracy trade-off. Each data point represents the average accuracy of a participant across all trials. These data include participants 
from both conditions
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diagnostic aids has been frequently examined in static 
decision contexts (i.e., Kunze et  al., 2019; Odour & 
Wiebe, 2008; Mercado et al., 2016), it does not appear to 
have been examined in the context of evidence accumu-
lation for dynamic decision making. Therefore, the cur-
rent study explored whether transparency impacts the 
decision-making process and whether the trends seen in 
static decision making with automation remain the same 
in dynamic decision making. One possible source for dif-
ferences would be increased workload influencing the 
ability of human operators to process and use the trans-
parency information. Four main hypotheses were posed.

The first hypothesis was that the aid would improve 
performance, and it did by approximately 25%, thereby 
confirming the first hypothesis. This finding was con-
sistent with much of the prior research on human–
automation diagnosis teaming (e.g., de Visser & 
Parasuraman, 2011; Hutchinson et al., 2022; Wright et al., 
2018), although little has been performed in dynamic 
decision making (Kersthold & Raaijmakers, 1997). Fur-
thermore, improvements are found to be particularly 
large when there is a large disparity between the aid’s 
performance and that of the unaided human (Boskem-
per et al., 2021), as was the case here. Yet, given the aid’s 
high reliability (87%), the performance of the human–
automation team was considerably less than optimal, as 
shown in Fig.  2, and certainly did not demonstrate any 
synergy such that the team would perform better than 
either its human or automation component. These find-
ings are consistent with much prior research on human 
interaction with automated diagnostic systems in static 
decision-making contexts (Bartlett & McCarley, 2017; 
Goddard et al., 2014; Wiczorek & Meyer, 2014), although 
the current results uniquely demonstrate that this short-
fall applies to dynamic decision making as well. Indeed, 
the challenge implied for increasing calibrated compli-
ance with a decision aid may be even greater for dynamic 
decision-making situations, where the underlying work-
load leaves limited scope to obtain an appreciation for 
how the automation is functioning. We return to this 
issue below in the discussion of the outcomes of trans-
parency manipulations.

In the current results, the aid was found to increase 
performance in a way that was not totally accomplished 
by blind adherence to its advice (i.e., the automation 
bias). This conclusion reflected the fact that the compli-
ance rate on automation wrong trials was less than the 
overall automation reliability, indicating that several 
times the human overrode and contradicted the automa-
tion assessment. It is important to note that in a similar 
classification paradigm, using more formal modeling 
techniques, Strickland et  al. (2023) also observed what 

can be considered a mixture of the two strategies: blind 
adherence and more deliberative contradiction.

Of interest within the dynamic context was the extent 
to which the aid might have helped participants become 
better at the task when the aid was withdrawn (Hypoth-
esis 2). Specifically, with the aid generally being more 
accurate than the human early on in each trial, this would 
allow participants to watch one ship for a period of time 
and learn to better identify the hostile behavior, which 
may have transferred once the aid was removed. Had 
this been the case, there would have been improvement 
on Block 3 when the aid was withdrawn, relative to Block 
1. This was not the case, and instead there was a signifi-
cant worsening of performance, a phenomenon similar 
to the “automation gone” effect observed by Wickens 
et  al. (2015). Thus, it would appear that even when the 
aid was present and used, the working memory demands 
of the task were sufficiently high that participants did 
not allocate resources to improve their skill at diagnosis. 
In the parlance of cognitive load theory (Sweller, 1994), 
we would argue here that the intrinsic load of this task 
was sufficiently high so as to prevent cognitive load from 
being reallocated to the germane load demands of skill 
acquisition.

The third hypothesis stated that transparency would 
improve performance, specifically because the addi-
tional information provided participants with informa-
tion on the behavior of the hostile ship. This was not 
supported, with no difference between the transpar-
ency and no-transparency conditions. This was unex-
pected because although the literature has indicated that 
sometimes transparency does not improve performance 
(Göritzlehner et al., 2014; Loft et al., 2021; Zhang et al., 
2022), typically reasoning-transparency (used here) does 
improve performance (Bhaskara et  al., 2020; Pharmer 
et  al., 2022; van de Merwe et  al., 2022). We also antici-
pated that transparency would increase trust in the aid. 
This was confirmed, but it was apparent that such a trust 
increase did not produce any increase in reliance toward 
the more calibrated level of 87% (the aid reliability) in a 
way that would benefit performance. As observed else-
where (e.g., Hutchinson et al., 2022; Pharmer et al., 2021, 
2022; Strickland et  al., 2023) and proposed by Lee and 
See (2004), trust and reliance or dependence are far from 
closely coupled.

While the latency analysis revealed that the transpar-
ency information was at least processed, the lack of 
improvement in accuracy with transparency may be 
because the accuracy of the identifying the hostile ship 
and diagnosing the hostile behavior are closely coupled. 
Post hoc analyses showed that when the correct ship was 
indicated, the correct behavior was also chosen 93% of 
the time. Perhaps transparency, in this case, was not any 
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more helpful than automation alone because participants 
were able to identify the behavior quite accurately once 
attention was directed to a candidate entity. More specifi-
cally, if humans could identify a single ship’s behavior at 
the same level or more accurately than the automation, 
then the additional information about a ship’s behav-
ior would not improve performance. One potential rea-
son in this case is that the movements selected by the 
human did not provide adequate diagnostic value to the 
algorithm underlying the automation. Another possible 
explanation is that the high working memory demands 
of dynamic decision making (keeping track of past 
moves as evidence is accumulated) competed for cogni-
tive resources with the task of reading, using, and inter-
preting the reasoning information that constituted the 
transparency manipulation. Such a cognitive load expla-
nation has been offered by Zhang et al (2022) to account 
for their failure to observe a benefit for transparency in a 
decision aid.

Fourth, it was hypothesized that transparency would 
change the way users made decisions. While a direc-
tional hypothesis was not specifically posed, differences 
in compliance rates, steps used, and accuracy when the 
aid was removed were expected. However, none of these 
dependent variables revealed significant differences when 
transparency was added. Accuracy on the final two tri-
als, when the aid was removed, showed a trend toward 
increased accuracy in the transparency condition, but it 
was not significant (p = 0.11). However, differences did 
appear in the time between steps in the transparency 
condition at the first onset of the decision aid informa-
tion, with no difference in the no-transparency condition. 
This suggests that participants did see the information 
provided and some likely considered it in their reasoning. 
Combined with the null results in other aspects and the 
post hoc finding of the close coupling of correct ship and 
behavior detection, our findings suggest that the lack of a 
benefit of transparency here was not due to ignoring the 
information. This would suggest that the human opera-
tors either found the information provided was not the 
most useful in this context, or were unable to integrate 
into their decision-making cycles because of the high 
working memory load of the task. These findings sup-
port the conclusions found in Skraanging and Jamieson 
(2021), who suggested that transparency manipulations 
must be specialized to the context in a way that provides 
necessary information.

While transparency was not beneficial in this context, 
conclusions can still be inferred about its impact on the 
decision-making process. It is likely that to provide a 
benefit, transparency must provide information that is 
used in the process of making a final decision, whether 
that be through augmentation of the raw data or the 

processing of the automation. Here, post hoc analyses 
indicated that information about a ship’s behavior may 
not have been beneficial to the users in their accuracy, 
but it also did not improve their ability to use the auto-
mation at an appropriate level. This suggests that it is not 
just that the close coupling of behavior and ship identifi-
cation is responsible for the lack of a benefit. Instead, the 
benefit to performance came only from the automation 
highlighting a single ship, even though previous literature 
suggested that decreasing set size improved performance 
less than the automation did here (Patton et  al., 2022). 
This seems to suggest that something about the automa-
tion itself changed the way users completed this task.

Overall, these findings suggest that the load from the 
underlying task itself in a dynamic decision-making con-
text can have significant impacts on interactions with 
automated decision support. Ultimately, the deleterious 
effects of that cognitive load may require a greater level 
of exposure both for learning to use and integrate the 
automation into the decision cycle and for developing an 
appreciation of its capabilities and limitations.

Limitations
The limitations of the transparency manipulation are 
important to consider. First, the transparency text was 
located in such a place that required some effort to 
access. While speculative, the effort required to repeat-
edly access the information may have been deemed 
not worth the value of the information by partici-
pants and therefore was largely ignored after the initial 
presentation.

Additionally, although the current paradigm served to 
investigate automation in a dynamic decision-making 
context and not a way to investigate exact questions of 
maritime intent detection, the simplicity lends itself to 
a few other limitations. Although the paradigm mim-
ics real Naval displays and tasks, participants were naïve 
adults without Naval experience. This may limit the gen-
eralizability of the results. The use of only two behaviors, 
one of which was always present, also leaves open ques-
tions about generalizability to other types of suspicious 
movement behaviors and less certain situations.

Conclusions
The current study set out to investigate how transparency 
and an automated aid impact human–automation team 
performance in a dynamic decision environment. Con-
sistent with much of the prior research in static decision-
making tasks, the presence of the automation improved 
performance relative to the human-only level, but perfor-
mance of the human–automation team was lower than 
the automation-only performance level. Then, when the 
aid was abruptly withdrawn, participants showed little 
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evidence that they had learned how to do the task manu-
ally, by availing their residual attention during the trials 
when the aid was present. This, in conjunction with the 
accuracy levels and compliance rates, suggests that the 
improvement to performance seen on trials with the aid 
is largely a result of the aid’s accuracy and not the human 
working in conjunction with the aid in order to improve 
their own judgment skills.

Transparency made no significant impact on any met-
ric of performance in this study. This is a novel finding 
because this paradigm was set in a dynamic decision-
making environment, which is in contrast to most auto-
mation and transparency research that is set in a static 
decision environment. These results suggest that trans-
parency may not be as useful in a dynamic environ-
ment, particularly with high cognitive demands. At least 
in the current context, and potentially more generally 
for dynamic decision making, the current findings sug-
gest that the general prescription from Bhaskara et  al. 
(2020)—that providing reasoning from the automated 
system can be beneficial because it serves to increase 
transparency—did not hold. Although more research is 
needed to replicate this finding and investigate explana-
tions, it may be that when human operators are collecting 
evidence themselves in conjunction with an automated 
aid, the additional information from transparency is not 
as useful as in static decision making, where the human 
may not have insight into how the aid has made its 
decision.
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