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How do drivers mitigate the effects 
of naturalistic visual complexity?
On attentional strategies and their implications under a change blindness protocol

Vasiliki Kondyli1*  , Mehul Bhatt1, Daniel Levin2 and Jakob Suchan3 

Abstract 

How do the limits of high-level visual processing affect human performance in naturalistic, dynamic settings of (multi-
modal) interaction where observers can draw on experience to strategically adapt attention to familiar forms of com-
plexity? In this backdrop, we investigate change detection in a driving context to study attentional allocation aimed 
at overcoming environmental complexity and temporal load. Results indicate that visuospatial complexity substan-
tially increases change blindness but also that participants effectively respond to this load by increasing their focus 
on safety-relevant events, by adjusting their driving, and by avoiding non-productive forms of attentional elaboration, 
thereby also controlling “looked-but-failed-to-see” errors. Furthermore, analyses of gaze patterns reveal that drivers 
occasionally, but effectively, limit attentional monitoring and lingering for irrelevant changes. Overall, the experimen-
tal outcomes reveal how drivers exhibit effective attentional compensation in highly complex situations. Our findings 
uncover implications for driving education and development of driving skill-testing methods, as well as for human-
factors guided development of AI-based driving assistance systems.

Keywords Visual perception, Change blindness, Visuospatial complexity, Attentional strategies, Naturalistic 
observation, Everyday driving

Significance
Previous research has demonstrated that people fre-
quently fail to detect changes as they interact with the 
environment and with other people. However, in many 
cases people manage to maintain situation awareness and 
effectively cope with complex everyday activities such as 
driving in visually complex environments. In this work 
we use an embodied simulated driving task to document 
how drivers can adapt their visual attention by selec-
tively focusing on safety-critical events over less critical 
events. We suggest that this knowledge can support the 

development of attentional diagnostics for effective driv-
ing instruction and that it is crucial for the development 
of human-centred technologies and autonomous systems 
that are capable of anticipating the behaviour of drivers 
and other road users.

Introduction
Visuospatial attention is critical in many everyday activi-
ties, especially those involving embodied multimodal 
interactions, both between humans and with the sur-
rounding environment. One of the most important of 
these activities is driving which includes a number of 
required tasks, such as maintaining visual awareness 
of the surrounding environment, planning the driving 
trajectory, and executing control actions such as steer-
ing and braking. These and other tasks impose a range 
of visual-cognitive processing demands on the driver 
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(Underwood, 2007; Vallières et  al., 2015). For exam-
ple, drivers tend to steer in the direction of their gaze 
(Robertshaw & Wilkie, 2008) and fixations are clustered 
near the focus of expansion when driving in a straight 
trajectory (Mourant & Rockwell, 1970). These percep-
tual challenges are combined with complex higher-level 
tasks such as active search guided by the semantic con-
tent of the environment (e.g. intersections, signs, traffic 
lights, Shinoda et al. (2001), Findlay and Gilchrist (2003)). 
In situations where continuous visual awareness is criti-
cal, these attentional demands can exceed the available 
resources, causing performance to deteriorate, limiting 
the effectiveness of visual search for potential hazards 
(Norman & Bobrow, 1975; Wickens, 2008; Brookhuis & 
de Waard, 2010; Fuller, 2005; Palmiero et al., 2019).

In this paper, we assess the attentional demands on 
drivers using a change detection task (Simons & Levin, 
1998). Performance in attentionally demanding tasks 
such as change detection is affected by several internal 
and external factors. Internal factors pertain to age, phys-
ical visual and cognitive limitations, e.g. visual neglect, 
stroke, cognitive decline (Ball et al., 1993; Plummer et al., 
2020), task-related experience (Beck et al., 2012; Maturi 
& Sheridan, 2020), and familiarity (Charlton & Starkey, 
2013). A number of external factors also affect visual pro-
cessing and ultimately the task performance. Depending 
on the type of stimuli investigated (e.g. static or dynamic, 
2D or 3D, visual or auditory), external factors comprise 
specific properties of the targets or the background, such 
as size, or clutter (Beck et  al., 2010; Park et  al., 2015; 
Beanland et al., 2017). In the experiment reported here, 
we asked participants to detect visual changes during a 
naturalistic simulated driving task. There were two main 
objectives: first, to assess the degree to which partici-
pants effectively controlled their attention in response to 
external factors including environmental complexity and 
the temporal relationships between changes; and sec-
ond, to analyse participants’ eye movements in order to 
reveal the attentional strategies they used to meet these 
demands.

Visuospatial complexity in the driving scene
We refer to the variability and abundance of visual and 
spatial information encountered in dynamic three-
dimensional environments as visuospatial complexity. 
Visuospatial complexity is an extension of visual com-
plexity and it has been conceptualised using different 
levels of analysis ranging from pixel and shapes, to visual 
semantics of naturalistic images, and, most recently, by 
assessing three-dimensional natural and virtual environ-
ments (Foulsham et al., 2014; Li et al., 2016; Mital et al., 
2011; Prpic et  al., 2019; Kristjánsson, 2015). A range of 

metrics and tools have been developed to compute spe-
cific aspects of visuospatial complexity. These commonly 
rely on analyses of clutter (Moacdieh & Sarter, 2015; 
Rosenholtz et  al., 2007), edge density (Machado et  al., 
2015), and symmetry (Suchan et al., 2016, 2018) among 
other variables, and they have been validated by assessing 
how effectively they predict human perceived complexity 
(Heaps & Handel, 1999; Da Silva et al., 2011).

The effect of visual complexity on human performance 
has been studied from various perspectives, including 
cognitive science (Harper et  al., 2009), marketing (Piet-
ers et al., 2010), psychology (Heaps & Handel, 1999; Cas-
sarino & Setti, 2016), human-computer interaction (Tuch 
et al., 2009), and aesthetics (Braun et al., 2013). By most 
accounts, visuospatial complexity interferes with task 
performance. Many studies have demonstrated that a 
quantitative increase in basic perceptual aspects of visu-
ospatial complexity negatively influences detection and 
search performance. For instance, increased visual clut-
ter measured by the number of elements and crowding, 
leads to slower, less accurate visual search performance 
(Rosenholtz et  al., 2007; Beck et  al., 2010). Structural 
aspects of the scene such as the spatial layout of fea-
tures (Beck & Trafton, 2007), and the shape of the virtual 
crowd, object occlusion and background (Bravo & Farid, 
2004; Wolfe et  al., 2002), also affect visual attention. 
Moreover, dynamic aspects of the environment, such as 
the trajectory of search target (Matsuno & Tomonaga, 
2006; Rosenholtz et  al., 2007), or the number of targets 
people need to track in time and space have been shown 
to negatively affect performance (Pylyshyn & Storm, 
1988). Eye-tracking studies have shown that gaze behav-
iour can reveal the impact of environmental complexity 
on attentional patterns (Henderson et  al., 2009; Ogn-
janovic et al., 2019; Perez & Bertola, 2011). For instance, 
an increase in clutter is correlated with an increase in fix-
ation’s duration and the number of fixations (Beck et al., 
2010, 2012).

Although a number of studies suggest that visuospa-
tial complexity impairs perception, there are cases where 
complexity might also improve perception (Ellis & Turk-
Browne, 2019). This is particularly true in cases where 
visuospatial complexity can be organised by higher-level 
scene semantics (Walshe & Nuthmann, 2014; Wang et al., 
2010). For instance, in the context of architecture design, 
complexity can be a metric of richness and stimulation, 
and it is also related to more coherent and easier-to-nav-
igate environments (Kaplan et al., 1989). This is because 
complexity provides scaffolding or structure (e.g. sche-
matic or hierarchical structures) that constrains and 
supports sensory processing. Perceptual load theory sug-
gests that complex stimuli (e.g. more distractors, greater 
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similarity between targets and distractors) drain surplus 
perceptual resources and thus reduce task-irrelevant pro-
cessing (Lavie & De Fockert, 2003). However, in this case, 
complexity does not necessarily improve overall perfor-
mance but limits the effect of distractors on perceptual 
load (Murphy et  al., 2016). It is, therefore, possible that 
visuospatial complexity is related to perceptual function 
via an inverted-U-function, suggesting that moderate 
levels of complexity can serve to ground and facilitate 
perception and memory (Kidd et al., 2012; Ellis & Turk-
Browne, 2019).

Perceptual limitations and strategies
Perceptual limitations are crucial for everyday tasks, 
such as driving, where change detection and visual 
search performance are tightly connected to traffic 
safety. Domain-specific investigations such as in traffic 
safety vis-a-vis driver’s (in)attention have explored phe-
nomena linked to limitations of visual processing such 
as “attentive blank stares” or “looked-but-failed-to-see” 
(LBFTS) errors denoting failures to notice changes in a 
visual scene despite looking at the area of change (Hills, 
1980; Caplovitz et  al., 2008; Wolfe, 2021; Fudali-Czyc 
et  al., 2014). Even though visuospatial complexity is 
one of the external aspects that can limit performance, 
humans can often compensate for these limitations. 
This may explain why ambient environmental complex-
ity or a secondary task sometimes causes minimal dis-
ruption of a primary task such as driving (Stinchcombe 
& Gagnon, 2010; McCarley et  al., 2004). Empirical 
studies examining how humans solve apparent resource 
conflicts suggest that people can, in many cases, com-
pensate for their perceptual limitations either by 
changing attentional strategies or by prioritising atten-
tion based on the significance of the task (Jovancevic-
Misic, 2008). For example, pedestrians may compensate 
for a secondary task during walking by reducing gait 
speed (Yogev-Seligmann et  al., 2010). Similarly, atten-
tional overload during driving can be compensated for 
slowing down the car to avoid increased accident risk 
(Brookhuis & de Waard, 2010; Fuller, 2005; Palmiero 
et  al., 2019). Consequently, altering cognitive engage-
ment and allocating more attention to difficult and 
risky tasks (Janssen & Brumby, 2015) indicates human 
abilities for strategic attentional compensation and 
emphasises the use of attention for dealing with com-
plexity with selective allocating processing resources 
(Kimura et  al., 2022). Extensive literature on stimuli 
relevance specifically for the case of driving behaviour 
suggests that hazards receive more attention than other 
street objects such as street signs, and that attention is 
easier distracted away from these objects rather than 

hazardous events (Garrison, 2011; Regan et  al., 2013). 
However, the interaction between visuospatial aspects 
and areas of relevance during driving is not sufficiently 
explored.

As external complexity can positively or negatively 
affect human perception and trigger different cognitive 
mechanisms, investigating complexity requires setting 
the appropriate context with respect to environmental 
and task constraints. In this research, we consider the 
case of driving in urban environments as an example 
context for empirical investigation. A driver’s ability to 
quickly detect important targets, such as traffic signs, 
road markings, and pedestrian crossings, while ignoring 
irrelevant distractors (e.g. advertisements) is a key com-
ponent for safe driving (Borowsky et  al., 2008). Con-
sider the case of a driver navigating a busy street, and a 
pedestrian on the sidewalk talking on the phone, when 
suddenly the pedestrian steps onto the street. Detecting 
the change in the behaviour of the pedestrian is crucial 
for the driver in this scenario. However, the driver may 
fail to detect the change if multiple people are walk-
ing close to the street, or if the driver is monitoring a 
motorcyclist overtaking the car at the same timeframe. 
Change detection tasks are an embedded part of eve-
ryday driving, and they require successful allocation of 
attention in specific areas of interest (AOIs) (Simons, 
2000; Richard et al., 2002), or in some cases monitoring 
attention in these areas (Lochner & Trick, 2014; Pyly-
shyn & Storm, 1988).

Failure in change detection is more likely to arise when 
attention is diverted or overloaded (Hyman et al., 2010). 
Errors can also occur due to the repetitive nature of 
driving, when the environmental circumstances allow it 
(for example in environments with very low visuospatial 
complexity), making drivers more susceptible to errors 
caused by inattention and distractions (Duncan et  al., 
1991; Shinar et  al., 1998; Wickens, 2002). A number of 
studies on drivers’ behaviour examined additional aspects 
of external complexity that add to the workload, such as 
visuospatial complexity aspects in combination with the 
congruency of the targets, or specific events occurring in 
the streetscape (e.g. crossing an intersection, overtaking). 
The behaviour analysis in these circumstances showed 
that gaze and driving performance can effectively adjust 
to the needs of the task in many occasions (Pammer & 
Blink, 2013; Stinchcombe & Gagnon, 2010; Ericson et al., 
2017) (Fig. 1).

Temporal proximity and event perception
Failure in detecting changes in the surrounding envi-
ronment can also be attributed to temporal proximity 
between events. A growing body of research suggests 



Page 4 of 30Kondyli et al. Cognitive Research: Principles and Implications            (2023) 8:54 

that fine-grained event perception can be insensitive to 
brief temporal disturbances, meaning that events occur-
ring with temporal delays of milliseconds up to a few 
seconds might be treated by many parts of the visual-
cognitive systems as equivalent and so rapid succes-
sion of events leads to an almost universal degradation 
of detection performance. Specifically, according to 
research on dual-task interference in sensory consolida-
tion and response selection (e.g. the psychological refrac-
tory period, Pashler (1994); Raymond et al. (1992)), when 
two targets are presented in a time window of less than 
100 ms, humans fail to encode the stimuli as two sepa-
rate events (Shallice, 1964; VanRullen & Koch, 2003). 
Similarly, at a temporal proximity of 100–500 ms, observ-
ers failed to report which stimulus was the first or sec-
ond to appear, an effect known as the attentional blink 
(Sheppard et al., 2002; Raymond et al., 1992). While this 
work focuses on short perceptual integration windows, 
research on event perception assess the impact of distur-
bances in larger event-integration windows that might 
extend for several seconds. According to event segmenta-
tion theory (Zacks et al., 2007) and the longstanding idea 
of a “psychological present”, temporal sequence between 
short events in a several-seconds window may be rep-
resented by default and can be immediately perceived 
(James, 1982). As confirmed by Pöppel (2009) and Fairh-
all et al. (2014), conscious activities are integrated within 
2–3 s windows, however, the task is getting more difficult 
in longer time windows. The effect of time proximity on 

event perception along the time window of a few seconds 
has not been thoroughly tested, leaving open questions 
on event perception, working memory capabilities, and 
the role of attentional blink as a cognitive strategy rather 
than a resource limitation (Wyble et al., 2009).

The present study
Although visuospatial complexity of the environment can 
interfere with visual processing tasks, it remains unclear 
under which circumstances precisely (e.g. pertaining to 
the nature of the visual target, task difficulty, temporal 
load) humans do exhibit their limitations in visual pro-
cessing performance, and how do they overcome the 
effects of visuospatial complexity during an attention 
regulation task. Using the change detection paradigm 
(Simons & Levin, 1998; Martens, 2011), this research 
examines the effects of visuospatial complexity in a 
change detection task designed and embedded within a 
naturalistic everyday driving experience (implemented 
in virtual reality). Considering the nature of the everyday 
driving experience, we take the diversity of typical driv-
ing events into consideration and provide a number of 
interactive scenarios in the change detection task (Fig. 2). 
The empirical study is developed to investigate two main 
hypotheses (Hypotheses A–B): 

Hypothesis A: Compensation strategies
We hypothesise that visuospatial complexity negatively 
affects the change detection performance and alters the 

Fig. 1 The variety of environments and incidents developed in the study are based on our systematic analysis of real-world dynamic scenes 
from around the world (Kondyli et al., 2020; Kondyli and Bhatt, 2020). The analysis and modelling of the multimodal interactions and the visuospatial 
complexity of the streetscape was the basis for the replicated scenes in VR
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driving behaviour. We expect that the effect of visuospa-
tial complexity will also depend on the relevance of the 
change to the driving task. We systematically manipu-
late the types of changes and the levels of visuospatial 
complexity (based on a cognitive model, Kondyli et  al. 
(2020)). We investigate the interaction between these two 
variables and we further explore how people adjust their 
performance accordingly.

Hypothesis B: Attentional engagement and temporal 
proximity
We hypothesise that visuospatial complexity and tem-
poral proximity between changes lead to adjustments 
in gaze behaviour along the course of events. We inves-
tigate how the gaze behaviour (e.g. fixations, gaze on 
AOIs, LBFTS errors) adjusts in different conditions and 
if people develop anticipatory or monitoring attention 
for the different types of changes. We manipulate the 
types of changes involving different agents (e.g. pedes-
trians, cyclists, kids, teenagers, older adults, people in 
wheelchairs) and street objects (e.g. parked cars, bus 

stops, trees). We also systematically manipulate the time 
proximity between the changes to test the effect of time 
proximity on change detection performance. We expect 
that a shorter time gap between changes results in worse 
detection performance for the second change and that 
the change type guides this attentional engagement.

Method
We develop a naturalistic experiment implemented 
within fully immersive virtual reality (VR) consisting of 
simulated driving together with immersive eye-tracking 
and other data collections (Fig.  3; and Table  1). Within 
the VR experiment, we systematically employ three vari-
ables capturing the visuospatial and interactional com-
plexity of everyday real-world driving situations:

The first variable concerns the levels of environmental 
complexity defined based on a combination of visual and 
spatial characteristics, and guided by a cognitive model 
of visuospatial complexity (details in “Appendix A”). The 
second variable concerns the type of changes that partici-
pants were asked to detect during the driving experience, 

before change after change

VR headset + eye-tracking

steering wheel

detection buttons

pedals

gear box

Fig. 2 The driving simulator is equipped with VR headset and eye-tracking. The screenshots from the VR environment show an example 
of a behaviour change
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classified as behaviour-relevant, behaviour-irrelevant, or 
property change. The third variable concerns the tempo-
ral proximity between the changes ranging from 0 to 8 s.

We combine detection performance analysis, as meas-
ured via button presses on the steering wheel (Fig.  3), 
with gaze behaviour analysis (as measured via eye-track-
ing) to investigate the attentional strategies employed by 
participants towards mitigating the impacts of visuospa-
tial complexity. A summary of the variables and metrics 
employed is included in Table 1.

Participants
85 participants completed the simulation driving study; 
data from five participants was excluded from the analy-
sis for technical issues, incompleteness, etc. Therefore, 
the analysis involves 80 participants (59 male, 21 female), 
between 17- and 45-year-old ( M = 25 , SD = 6.25) mem-
bers of the local community or university students who 
voluntarily participated in the study (and were unfamil-
iar with the specific context of this study, or even with 

behavioural research in perception in general). All partic-
ipants had normal or corrected-to-normal vision. 87% of 
the participants were licensed drivers. 47% of the partici-
pants were experienced frequent drivers (driving every 
day, or at least a few days per week), 38% driving a few 
times per month, and the rest 15% did not drive regularly 
(a few times per year or less).

Stimulus and task
While performing the simulated driving task, par-
ticipants successively encountered three levels of visu-
ospatial complexity within the virtual environment, 
characterised as low, medium, and high complexity 
environments (Fig.  3). The definition of the levels was 
based on the previously defined visuospatial complex-
ity model, presented in Kondyli et  al. (2020, 2021), that 
incorporates visual and spatial aspects of the dynamic 
driving environment such as the size of the street, clut-
ter, motion, structural characteristics as well as auditory 
cues (details in “Appendix A”). The participants were 

Fig. 3 A matrix of driving environments illustrating the range of scenes created based on the visuospatial complexity model viewed 
from the driver’s perspective. The three chosen levels of complexity used in the developed VR environment are annotated with a red rectangular. 
The relationship between each aspect with the overall complexity level has been examined in previous work, referred to as the visuospatial 
complexity model
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organised into three groups based on the order in which 
they encountered the environments in their path: Group 
A (medium–high–low), Group B (high–low–medium), 
and Group C (low–medium–high) (Appendix-Fig.  12). 
To mitigate learning effects, we designed iterations of 
the changes occurring in the three complexity levels with 
slight differences in the interactions of the virtual agents, 
the objects, and other characteristics of the objects. The 
different iterations of the events also involved balancing 
between the right and left side of the street, female and 
male agents, variation of colours in clothing, etc. (details 
are included in Appendix-Tables 4, 5, 6).

The change detection task is organised vis-a-vis the 
types of changes encountered as follows: participants 
encountered 72 changes distributed along the driv-
ing route; of these, 36 changes were behaviour changes, 

and the rest were property changes (Appendix-Table  3). 
Behaviour changes pertain to sudden changes in the 
behaviour of a street user, whereas Property changes are 
defined as changes in the properties of an object located 
in the surrounding environment, essentially as sud-
den unrealistic changes of the environment that do not 
interfere with the driving task (e.g. a tree on the sidewalk 
changed size, or a parked car changed colour).1

Behaviour changes are further categorised into behav-
iour-relevant changes and behaviour-irrelevant changes. 
Behaviour-relevant changes are defined as changes in 
the behaviour of a road user in a manner that interferes 
with the diving task and may involve overt latent haz-
ards (e.g. a pedestrian walks on the sidewalk along the 

Table 1 Parameters recorded for multimodal behaviour analysis and the selected ones used for the current statistical analysis. Further 
analysis of driving behaviour will be reported separately, and it is considered out of the scope of this publication

1 Changes in objects that could be related to the driving task were not con-
sidered in this category, as for example the traffic light turned from green 
to red.
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Fig. 4 Structure of the experimental session: The horizontal line represents the timeline of the experiment for Group A (details on the order 
of the changes for all groups presented in Appendix, Fig. 12). Each vertical line represents one change occurring at a designated time point 
along the timeline. Two pairs of changes are illustrated in detail before and after the change occurs, including female agents for the behaviour 
changes and statics objects for the property changes
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participant’s car when suddenly changes direction and 
walks towards the street). Behaviour-irrelevant changes 
are defined as changes in which a road user (e.g. pedes-
trians, cyclists) changes behaviour in a manner that does 
not interfere with the core driving task (e.g. a pedestrian 
walks on the sidewalk parallel to the participant’s car 
and then falls to the ground). The two groups of changes 
are designed to not differ significantly before the change 
occurs. In both groups of changes the agents perform 
similar activities (siting, talking, standing) before the 
change, they are positioned close to the road, and they 
are facing different directions (e.g. towards the road, 
opposite to the road, towards another agent, Fig. 4). The 
selection of behaviour changes was based on the analy-
sis of real-world scenarios (Kondyli & Bhatt, 2020) and 
safety-critical situations extracted from safety reports 
of the German and the European transportation coun-
cil’s assessment for failures in interactions between the 
different road users (e.g. pedestrians, cyclist, drivers, 
motorcyclists) (BMVI, 2018; GDV, 2017). In this study, 
safety-critical incidents refer to actions performed by the 
roadside agents of the behaviour-relevant changes who 
perform actions or behaviours that can potentially risk 
the safety of the driver or themselves. In the instances 
that we developed virtual experience, we make sure that 
it is difficult for an accident to happen, as the events take 
place at a safe distance from the driver; however, braking 
is mostly required from the driver.

All changes encountered by participants were trig-
gered at the same geographical point along the path to 
ensure that all participants would experience the events 
at a similar time, depth of view, and perspective. The 72 
changes were equally distributed in 36 pairs, divided into 
12 pairs per complexity level (Appendix-Table  3). Every 
pair involved one behaviour change, either behaviour-rel-
evant or behaviour-irrelevant, and one property change. 
The changes of each pair were triggered at the same point 
in the path, with the behaviour change always occur-
ring first and the property change following (Fig. 4). This 
organisation of changes in pairs was designed to system-
atically study how the behaviour changes interfere with 
the detection of property changes that chronologically 
follow. We systematically manipulate the temporal prox-
imity between the changes of each pair, by dividing the 
pairs into groups and assigning a time gap of 0, 1, 2, 4, 
6, or 8 s between the changes. The selection of time gaps 
between the changes was based on previous studies on 
attentional blink, perceived duration, and event bounda-
ries, suggesting that people need approximately 180–240 
ms to detect visual stimuli and perceive duration (Jain 
et al., 2015; Efron, 1970), more than 500 ms to distinguish 
between stimulus (Sheppard et al., 2002; Raymond et al., 
1992), 2–3 s to integrate an activity or even a few more 

seconds to encode meaningful events (the duration can 
be even longer depending on the nature task or other 
individual differences) (Zacks & Tversky, 2001; Swallow 
et  al., 2018; Fairhall et  al., 2014). As the literature pro-
vides different perspectives on the time gaps that affect 
perception, we combine the different perspectives and we 
define accordingly the test levels between a minimum at 
0 s, and a maximum at 8 s. Therefore, this range of time 
gaps makes it possible to test the previous theories on the 
amount of time needed to register and detect high-level 
events.

The independent and dependent variables of the study 
are presented in Table  1. To facilitate the analysis of 
the pairs of changes we made sure that the time period 
between the pairs was at a minimum of 10 s, and more 
regularly between 10 s and 2 min (depending on the driv-
ing speed and behaviour of the driver, as well as the traf-
fic lights).

Apparatus
Simulated driving in the virtual environment is practi-
cally realised with a physical vehicle controller consisting 
of full steering and braking controls; the virtual driving 
environment and on-road interactions are presented 
through an HTC Vive headset equipped with an add-
on eye-tracking device (by Pupil Labs). The VR headset 
provides a field of view of approximately 112◦ horizon-
tally and 116◦ vertically, an image refresh rate of 60–90 
Hz that reduces simulator sickness (Fig. 2) and presents 
a 1080× 1200 pixel image to the display of each eye, with 
partial stereo overlap. The headset makes use of 360◦ 
manoeuvring capability in conjunction with eye move-
ment tracking at 120 Hz.

We recorded the gaze and driving behaviour of the par-
ticipant, the detection performance, the egocentric view 
of the dynamic virtual scene, as well as a birds-eye view 
of the dynamic movement of the car in the urban envi-
ronment (Table 1). Participants were seated in a car seat 
in order to maintain the same settings for all participants 
considering the position and distance of steering wheel 
and the mirrors. The setup allowed measurement of the 
participant’s speed, braking response, and steering angle 
while driving through the virtual environment, as well as 
the head movements (rotation and translation) based on 
the headset tracking. Two buttons located on the sides 
of the steering wheel were used for the responses of the 
change detection task. A speed limit of 30 km/h was 
enforced for the simulated vehicle to control the overall 
experience between participants and maintain consist-
ency for the time proximity variable among the changes.
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Procedure
Before the test, participants were given a brief standard-
ised explanation of the test protocol and completed a 
consent form according to the guidelines of the Swedish 
Ethical Review Authority. Participants were instructed to 
drive as they do everyday, respect traffic rules, and follow 
automated speech instructions from the GPS to their des-
tination while they were also asked to perform the change 
detection task. Participants were informed about the dis-
tinction between the different types of changes through 
a video with examples, and they were then instructed to 
press one of two distinct buttons, on the right and left side 
of the steering wheel, to record a successful detection of 
a new change (using the right button to mark behaviour 
changes and the left to mark property changes). These 
two distinct buttons are used as a systematic approach 
to reassure that participants respond to the correspond-
ing changes (even for changes with close time proximity) 
without interrupting the task with oral verification. The 
participants then proceeded to execute a familiarisation 
trial session of embodied driving in a VR driving simula-
tor through a virtual test environment. Participants drove 
freely in the test environment to become accustomed to 
virtual driving and to practice some change detection tri-
als. The test commenced when the participants reported 
they were comfortable driving in the virtual environ-
ment. Familiarisation sessions for each participant lasted 
approximately 5 min. Then, an eight-point calibration of 
the eye-tracking device was performed, and after that, 
participants started the test. Participants drove along a 
route following the instructions from the oral GPS, which 
guided them to the destination by providing information 
concerning the approaching turning points. The start, as 
well as the destination, was indicated with a sign and a 
verification by the GPS. Although there was no explicit 
time limit, participants completed the task in 20–30 min 
on average. A questionnaire followed the test session that 
included demographic questions concerning gender, age, 
driving experience, and gaming experience. The ques-
tionnaire also included an evaluation of motion sickness, 
perceived performance, and fatigue based on the NASA 
Task Load Index (TLX) (NASA, 1980). The entire study 
lasted approximately 45–50 min for each participant.

Data coding and interpretation
Button presses (in response to a positive change detec-
tion) are counted as successful detections if conditions 
(C1–C2) are met: (C1) the participant pressed the right-
sided button after a behaviour change, or the left-sided 
button after a property change; and (C2) either of the 
button presses occur before the next change occurs. To 
ensure the robustness of the findings, we exclude cases 
of misjudgement from participants using the concept 

of a time window, motivated by previous change detec-
tion studies (Levin et  al., 2019; Berger & Kiefer, 2021). 
Here, the time window is the legitimate interval of time 
between the occurrence of a change and a Reaction Time 
(RT) cut-off time point determined based on the mean 
RT plus three standard deviations calculated across all 
subjects for all conditions. This way, the time window 
of 4.1 s is derived. Use of this time window implies that 
misses were accounted for when participants did not 
press the button in response to a change within the legiti-
mate cut-off time window, or when participants press 
the button outside of the cut-off time window. To verify 
this approach, we compare the number of button presses 
inside and outside the legitimate response time window. 
We observe that 91.8% of the all button presses (both 
left, and right) occur within the legitimate time window 
of 4.1 s. The rest 8.2% of button presses occur outside 
of this time window, and they are not considered in our 
analysis. Based on this cut-off time window, we calculate 
that the overall detection performance was 55.9% across 
conditions.2

The afore-stated method of utilising a legitimate time 
interval is necessary since oral verification of the change 
detection was not requested, and the think-aloud method 
during driving was not encouraged in order to control for 
attentional distraction from the driving task, as per the 
experimental design described in similar studies (Rosen-
bloom & Perlman, 2016; Carney et  al., 2018). Further-
more, we designed the placement of objects and agents 
in the scene in such a manner that no other aspect can be 
misjudged or misinterpreted as a change for the specific 
time point when the change occurs. These design deci-
sions were made to keep the task as naturalistic as pos-
sible while at the same time to facilitate the analysis by 
making sure that participants’ responses correspond to 
actual changes.

Results
All 80 participants completed the task in 45–50 min, with 
no extreme cases of very high or very low overall perfor-
mance on the change detection task. The analysis of the 
questionnaires assessing self-reported task load showed 
that the 76.6% of participants rated the task as medium-
to-high in mental demand. Moreover, 65.9% of par-
ticipants were moderately confident in their responses 

2 The total legitimate button presses correspond to 91.8% of all button 
presses; here, there may even be multiple presses for each detected change. 
To calculate the detection performance and the reaction time for each 
change per participant, we only consider the first (legitimate) button press 
recorded for every change. The number of such first-recorded instances of 
legitimate button presses corresponds to 55.9% of the total (legitimate) but-
ton presses across all conditions.
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concerning their performance. The dataset consisted 
of 45.5% frequent divers, 39.8% occasional drivers, and 
14.7% new drivers. As the factor of driving experience 
was unbalanced, we did not include this analysis in the 
results.

Strategies to mitigate visuospatial complexity
Driving performance. We assessed the driving perfor-
mance per complexity level based on the average speed, 
the average time of completion, and the number of times 
drivers used the brakes. Because the task was interac-
tive, the time of task completion is related to participants 
preferences and driving behaviour. Considering that the 
route distance for all complexity levels was equal, the 
analysis of the average time of completion per complex-
ity level showed that participants spent on average 5.56 
min to navigate the low complex environment, 5.57 
min for the medium, and 6.87 min for the high complex 
scene (we exclude the time for navigation between tran-
sitional spaces among the complexity levels). ANOVA 
analysis showed a significant effect of visuospatial com-
plexity on the average duration of crossing the scenes 
F(2, 237) = 13.631, p < .001, η2p = .103 . Post-hoc com-
parisons using the Tukey HSD test indicated that the 
mean time of completion for low and medium complexity 
level had no significant difference ( p = .963 ), while the 
mean duration in high complexity level was significantly 
longer than in medium and low complexity ( p < .001).

Moreover, the driving task took place in an urban envi-
ronment where, by regulation, the speed limit was 30 

km/h. As a result, there was not much diversity between 
the average driving speed recorded by participants 
among the different environments (26 km/h for low com-
plex, 25 km/h for medium complex, and 18 km/h for high 
complex). Concerning the rate at which the brakes were 
used by participants, ANOVA analysis showed a signifi-
cant effect of visuospatial complexity on the number of 
brake hits recorded (referring to the times a participant 
pressed the brake pedal along the route), with more brake 
hits recorded in the lower visuospatial complexity envi-
ronment, F(2, 237) = 30.161, p < .001, η2p = .489 . On 
average 632 brake hits were recorded in the low complex-
ity level, 536 in the medium, and 358 in the high com-
plexity. Post-hoc comparisons using the Tukey HSD test 
indicated that the average number of brake hits in low 
complexity ( M = 632 , SD = 141) was significantly higher 
( p = .009 ) than in medium complexity ( M = 536 , SD = 
104), and similarly in medium complexity the number 
of break hits was significantly higher ( p < .001 ) than in 
high complexity ( M = 358 , SD = 106). These results sug-
gest that an increase in visuospatial complexity leads to 
a decrease on the average number of brake hits recorded 
by participants.

Change detection. We analysed the detection perfor-
mance based on two types of button presses: left button 
for property changes, and right button for behaviour 
changes (both relevant and irrelevant). Participants on 
average missed 44.1% of the changes across all condi-
tions. Participants detected fewer changes as the level of 

Fig. 5 Analysis of detection rate among visuospatial complexity levels (all error bars are standard errors). a Overall detection rate per visuospatial 
complexity level, b detection rate among change types and complexity levels.
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visuospatial complexity increased (Fig.  5a). Participants 
also detected overall fewer property changes than behav-
iour changes. This outcome was expected as property 
changes always follow a behaviour change and they are 
less relevant to the driving task (Fig. 5b). A 3× 3 ANOVA 
between visuospatial complexity levels (low, medium, 
high) and change type (behaviour-relevant, behaviour-
irrelevant, property) was conducted with the percentage 
of successful detections as the dependent variable. The 
results suggest a significant overall effect of visuospatial 
complexity, F(2, 711) = 45.922, p < .001, η2p = .114 , but 
not of change type, F(2, 711) = 2.692, p = .068, η2p = .008 . 
The interaction between the visuospatial com-
plexity and the change types was also significant, 
F(4, 711) = 4.443, p = .001, η2p = .024.

While the detection rate generally decreased as the 
level of visuospatial complexity increased, this reduction 
was mitigated for the behaviour-relevant changes in com-
parison to the other types of changes (Fig.  5b). Specifi-
cally, we calculated the rate of change for the detection 
performance as complexity increases.3 For the behav-
iour-relevant changes, the slope or the rate of change 
(ROC) between low and medium complexity level is 
−3.9% , while between medium and high is −9.02% . For 
the behaviour-irrelevant changes, ROC between low 
and medium is −4.8% and between medium and high 
is −22.7% . Finally, for property changes the rate is −7% 
between low and medium, and −15% between medium 
and high. This analysis shows that the performance rate 
declines more radically for behaviour-irrelevant and 
property changes as complexity increases, especially 
between medium and high complexity levels (aver-
age decrease −19.2% ), while this rate appears smaller 
and more stable for the behaviour-relevant changes 
among all complexity levels (average decrease −6.4% ). 
Based on this observation, we performed paired t-tests 
focusing on the comparison of detection performance 
between behaviour-relevant and behaviour-irrelevant 
changes for low, medium and high complexity lev-
els. The results suggest that the detection performance 
was significantly better for behaviour-relevant changes 
than for behaviour-irrelevant changes in high complex-
ity environments, t(79) = 7.206, p < .001, d = .8 , while 
performance was very similar between these types of 
changes for the low and the medium complexity environ-
ments (low: t(79) = 1.299, p = .198, d = .14 , medium: 
t(79) = .366, p = .715, d = .04 ). This outcome indicates 

that the detection rate was decreasing with a different 
rate between the medium and high complexity for these 
two types of changes, with behaviour-irrelevant changes 
recording a sharper decline.4

The overall analysis of driving behaviour and detec-
tion performance indicates that participants altered their 
driving and gaze behaviour as a result of a change in visu-
ospatial complexity. Specifically, as the level of visuos-
patial complexity increased, participants moved slower, 
make fewer brake hits, and detected less changes espe-
cially for behaviour-irrelevant and property changes.

Gaze behaviour adjustments
An overall analysis of gaze behaviour along the timeline 
of the changes, in combination with the change detection 
performance, indicates that gazing at an AOI of a target 
before and after a change is indicative for detection, but it 
does not necessarily lead to successful detection. Moreo-
ver, different gaze patterns are observed in the different 
change types and complexity levels before and after a 
change occurs (Fig. 7). Fixations were extracted based on 
guidelines of the eye-tracking device (Pupil Labs), with 
fixation duration between 100–500 ms and dispersion 
between 0.7◦–1.3◦ . Fixations on AOIs are defined as fixa-
tions landed in the 3D environment around the agent or 
the object (saccades over this AOI were excluded from 
this analysis).

Analysis of fixations. ANOVA analysis on the effect 
of visuospatial complexity on the number of fixa-
tions per minute showed a significant effect of visu-
ospatial complexity on the number of fixations 
F(2, 228) = 6.633, p = .002, η2p = .56 , with the low-
est average number recorded in the medium complex-
ity environment ( M = 176 ), while the highest average 
number of fixations per minutes was recorded in the 
low complexity environment ( M = 214 , high complex-
ity environment recorded M = 191 ). A post-hoc com-
parison using the Bonferroni test (Bonferroni, 1936) 
shows significant differences between low and medium 
complexity ( p = .001 ) but not between low and high 
( p = .091 ), or medium and high ( p = .456 ). The aver-
age duration that participants spent in every complex-
ity level was also affected by the visuospatial complexity 
level. As described in “Driving Performance” paragraph, 
participants spent significantly more time in high com-
plexity than the other two environments (on average 
5.56 min in the low, 5.57 min in the medium, and 6.87 
min in the high complex environment). This outcome 
shows that participants were slower in the high complex 
environment, and they recorded a moderate number of 
fixations per minute. Nevertheless, the average amount 
of fixations recorded during the time they spent in the 

3 The rate of change (ROC) is calculated and presented as a percentage 
based on the formula ROC=previous value/current value.
4 Detection performance between behaviour and property changes was not 
further analysed because these are not directly comparable cases as a result 
of the experimental design.



Page 13 of 30Kondyli et al. Cognitive Research: Principles and Implications            (2023) 8:54  

high complexity environment was higher than the other 
environments. Specifically, the analysis of the average 
number of fixations recorded showed the highest num-
ber of fixations in the high complexity environment 
(729 fixations in low, 584 in medium, and 884 in high, 
F(2, 228) = 21.082, p = .002, η2p < .001, η2p = .16 ), sug-
gesting that participants slowed down to be able to per-
form more overall fixations (Fig. 6a).

Concerning the average fixation duration in the three 
complexity levels, one-way ANOVA showed an over-
all significant effect of complexity on the average dura-
tion of fixations F(2, 237) = 9.905, p < .001, η2p = .083 
(Fig. 6b). Moreover, a post-hoc pairwise analysis showed 
a significant difference between low and high complex-
ity levels p = .001 , as well as between the medium and 
high p < .001 , but not between low and medium p = .43 . 
These results indicate that with increasing complexity the 
overall number of fixations increased, while the average 
duration of fixations decreased.

Looked-but-failed-to-see (LBFTS) errors. Overall, 
55.9% of all changes have been detected by participants 
based on the button presses metric. Nevertheless, 60.2% 
of all changes received direct fixation (for more than 
100 ms) on the relevant AOIs. This result suggests that 
fixations on AOI do not correspond directly to suc-
cessful detections, showing that saccades and periph-
eral vision can also contribute to successful detection 
(Table 2a, Fig. 7c). While at the same time gazing at the 
relevant AOI does not necessarily mean that participants 
detect the change (Fig. 7a, b, d). We further analyse the 

cases where we record fixation on the relevant AOI but 
no button presses were recorded. These cases were clas-
sified as LBFTS errors based on two criteria: “did the par-
ticipant look at the AOI of a change before and after the 
change happened?” (yes or no), and “did the participant 
respond to the change?” (yes or no). A case was classi-
fied as an LBFTS error when participants failed to detect 
a change despite having gazed at the corresponding AOI 
for more than 100 ms during both the time window of 4 
s before and the time window 4 s after the trigger time 
of a change (White & Caird, 2010). In this time window, 
all targets were visible to the participant for all the trials. 
Further analysis with a time window of 2 s before and 4 
s after the change did not substantially alter the results.5

On average, participants recorded 31.2% LBFTS in 
all conditions, however the property changes recorded 
fewer changes than the rest of change types and higher 
visuospatial complexity also recorded reduced rate of 
LBFTS errors (Table 2b). A 2-way visuospatial complex-
ity (low, medium, high) x change type (behaviour-rele-
vant, behaviour-irrelevant, property) ANOVA with the 
rate of LBFTS errors as the dependant measure showed 
significant difference across the three visuospatial com-
plexity levels, F(2, 711) = 4.768, p < .001, η2p = .013 , and 

Fig. 6 Analysis of fixations among visuospatial complexity levels (all error bars are standard errors). a Average number of overall fixations, b average 
duration of fixations

5 For a window of 2s before and 4s after the change we observed a small 
increase in the average of recorded LBFTS errors to the rate of 0.3–1% over-
all, and specifically a 4.53% error rate for the behaviour-relevant changes, 
2.76% for behaviour-irrelevant changes, and 13.24% for property changes. 
Consequently, no statistical difference between the recorded results 
between the two-time windows was observed.



Page 14 of 30Kondyli et al. Cognitive Research: Principles and Implications            (2023) 8:54 

the change types F(2, 711) = 31.281, p < .001, η2p = .081 . 
The behaviour-irrelevant and property changes pro-
duced similar patterns of LBFTS errors across visu-
ospatial complexity levels, while the rate of LBFTS 
errors for behaviour-relevant changes did not vary 

significantly across complexity levels (one-way ANOVA: 
F(2, 239) = 0.12, p = .988 ; Fig. 8).

Attentional lingering and monitoring attention. Anal-
ysis of fixations on AOI along the time window of 4 s 
before a change until 4 s after a change show that gaze 

Fig. 7 Detection of changes (%) in relation to the corresponding gaze behaviour (fixations on AOI of the change) for the change type 
and visuospatial complexity level. a Fixations on AOI only before the change, b fixations on AOI only after the change, c no fixations on AOI 
of the change, d fixations on AOI before & after the change
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patterns effectively differentiate detected versus missed 
changes (Fig.  9). The gaze analysis also suggested that 
participants developed different gaze patterns for differ-
ent types of changes. ANOVA analysis between 8-time 
windows (4 before and 4 after the change) x 3 (change 
types) x 2 (detected or missed) showed that partici-
pants gazed at the AOIs of detected changes significantly 
longer ( M = 30.9 ms) than the AOIs of missed changes 
( M = 25. 4 ms); F(1, 2844) = 8.87; p = .003, η2p = .003 ). 
Moreover, there were more fixations during the first 
second after the change for detected changes relative to 
missed changes. ANOVA analysis also confirms that fixa-
tions on AOIs differ significantly along the timeline of the 
change ( F(7, 2844) = 209.8, p < .001, η2p = .269 ). These 
results show that gaze behaviour is likely to influence the 
detection performance and that changes or events that 
involve other humans attract attention independently of 
the outcome of the detection task (Fig. 10).

A closer comparison of change types for the time 
window just before the change, specifically the time 

window −1 to 0 s, indicates that participants employed 
pre-change monitoring attention for behaviour-rel-
evant changes which was not the case for the other 
change types (Fig.  10). Moreover, ANOVA analysis 
showed a significantly greater number of fixations on 
AOIs for behaviour-relevant changes ( M = 26.344 ms) 
than for behaviour-irrelevant changes ( M = 12.2 ms) 
independently of the detection or miss of the change, 
F(1, 316) = 22.353, p < .001, η2p = .066 . These results 
suggest that many times people gaze at the AOI of a 
change before the change occurs. This behaviour known 
as “anticipatory gaze” was exhibited in cases where (vul-
nerable) street users were involved and that participants 
judged as safety-critical and they differ significantly from 
the rest of safe interactions with street users (Fig. 9a, b). 
Additionally, we observed a lingering effect for property 
changes, where participants produced increased gaz-
ing at AOIs even 3 s after the change; that was not the 
case for behaviour changes (Fig.  9c). We hypothesise 
that this effect might have been caused by the fact that 
behaviour changes were often followed quickly by a 
property change, so participants learned to move on 
after a behaviour change (see organisation of changes 
in Appendix-Fig.  12). Analysis of the learning effect 
based on two metrics—detection rate and fixations on 
AOIs—confirms an effect only for property changes 
and only for the metric of detection rate (Fig.  11). Spe-
cifically, the comparison between the first and the last 
session of the study shows no significant difference in 
detection rate, F(1, 3057) = 4.474, p = .034, η2p = .001 , 
or in the number of fixations on AOIs, 
F(1, 4436) = .969, p = .325, η2p = .000 . However, the 
analysis of property changes separately shows a sig-
nificant learning effect in the metric of detection rate, 
F(1, 2236) = 10.861, p = .001, η2p = .005 , but not for fixa-
tions on AOIs F(1, 2236) = .975, p = .325, η2p = .000.

Temporal load and detection performance. As a 
reminder, the change detection task was organised 
based on pairs of changes, where the participant first 
encountered a behaviour change followed by a property 

Table 2 Gaze behaviour with respect to successful fixations at AOIs

Fig. 8 Average number of LBFTS errors for number of successful gaze 
on AOI, analysed based on change types and visuospatial complexity 
levels (all error bars are standard errors)
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Fig. 9 Average number of ms with fixations on AOI along the timeline of a change. The time window analysed is 4 s before to 4 s after a change. 
We report on fixations in cases of detected and non-detected changes for all change types (all error bars are standard errors). a Fixations on AOIs 
of behaviour-relevant changes before and after the change, b fixations on AOIs of behaviour-irrelevant changes before and after the change, c 
fixations on AOIs of property changes before and after the change.
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change (Fig.  4). We examined the detection rate and 
the RT for the successfully detected property changes 
in relation to the time proximity from the behaviour 
changes. Here, time proximity serves as an independent 
variable (predictor) with six levels, where the time gap 
between the changes is one of 0, 1, 2, 4, 6, 8 s. A one-
way between-participants ANOVA reveals a significant 
effect of time proximity on the change detection for all 
levels, F(5, 474) = 14.286, p < .001 , with participants 
performing significantly worse when two changes hap-
pened simultaneously. Post-hoc comparisons using the 
Bonferroni test show that the detection score for the 0 

s level ( M = 24.8% , SD = 21.3%) was significantly lower 
than the rest of the levels (e.g. the level 2 s recorded 
M = 43.8% , SD = 27.6%, or 6 s with M = 38.5% , SD = 
24.3%). Between the rest of the groups (1–8 s), no sig-
nificant difference was found with respect to the detec-
tion rate (ANOVA: F(4, 399) = 1.72, p = .163 ) (details in 
“Appendix C”).

Discussion: results and applied implications
The study examines attentional performance in the con-
text of everyday driving under diverse, systematically 
manipulated visuospatial complexity conditions. The key 

Fig. 10 Fixations on AOI for detected changes in relation to time window close to the change and the change type

Fig. 11 Analysis of learning effect per type of change calculated based on two metrics (all error bars are standard errors). a Learning effect per type 
of change calculated based on fixations on AOIs, b learning effect per type of change calculated based on detection rate.
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direct results of the study reveal two key findings pertain-
ing to attentional compensation as a result of visuospatial 
complexity changes, and adaptation of gaze behaviour 
patterns in relation to the change types encountered 
in the task. Furthermore, these basic results are also 
interpretable from an application viewpoint given 
their implications in settings such as driving education 
and development of driving skill-testing methods and 
human-factors guided development of AI-based driving 
assistance systems.

Key behavioural results
Result A: Attentional compensation in response to 
visuospatial complexity

An increase in visuospatial complexity of the per-
ceived stimuli (i.e. the urban driving environment) affects 
gaze behaviour, the driving behaviour, as well as change 
detection performance. High visuospatial complexity 
environments result in more fixations with shorter dura-
tion, indicating a more exploratory gaze behaviour, while 
lower detection rate of changes accrue when the com-
plexity increases. Moreover, the driving performance is 
affected too, with lower speed and less frequently brak-
ing in high complexity environments, possibly to provide 
the necessary time for the driver to explore the scene 
with more fixations. These results are in line with previ-
ous studies (e.g. by Hulleman et al. (2020); Beanland et al. 
(2017)), suggesting that an increase in complexity can 
increase the difficulty of an attentional task, thereby lead-
ing to changes in behaviour, and limitations in attentional 
performance.

Specifically for driving, even though drivers’ perfor-
mance and change detection performance is gener-
ally worse in urban than rural environments (Beck and 
Levin, 2003; Beck & Trafton, 2007; Wright et  al., 2000), 
some conflicted results have also been recorded, sug-
gesting that better performance in urban environments 
is a result of legible layouts and signalling that assist in 
the change expectations (Koustanaä et  al., 2012). In 
this study we analyse the streetscape further than the 
semantic characterisation of urban, suburban and rural, 
providing a comprehensive and systematic exploration 
of visual, spatial and interactive aspects of the dynamic 
driving environment. The outcome shows that while an 
incremental increase in the level of visuospatial complex-
ity leads to a decline in change detection performance, 
the relevance of the changes to the driving task is also 
significant. In particular, participants are more success-
ful at detecting changes that involve other road users, 
especially when the road users are part of a potentially 
hazardous event or are interrupting the driving experi-
ence (e.g. by crossing the street, overtaking, or riding a 

bike in front of the driver). The gaze behaviour analysis 
also suggests that participants gaze at other road users 
closely before and after the changes independent of the 
detection performance. These results confirm previous 
research suggesting that people can better detect tar-
gets related to the current activity (e.g. for driving this 
can be traffic lights) as well as targets plausible to change 
(e.g. cars, motorcyclists, pedestrians) rather than other 
more nominally stable objects (e.g. signs, trees) in the 
scene (Beanland et al., 2017; Lee et al., 2007; Beck et al., 
2004). The results also suggest that participants are able 
to distinguish between elaborate and detailed variations 
in the behaviour of other road users and prioritise their 
attention accordingly, resulting in better performance 
in changes involving road users in safety-critical situa-
tions (e.g. behaviour-relevant changes are better detected 
than behaviour-irrelevant changes even if both types of 
changes involve road users).

Moreover, the visuospatial complexity of the environ-
ment affects participants’ gaze behaviour with respect 
to the number and duration of fixations, the fixations on 
relevant AOIs, as well as the rate of LBFTS errors. Par-
ticipants’ deployment of attentional strategies to miti-
gate the effects of complexity is dependent on the change 
type: anticipatory gaze behaviour is crucial for behaviour-
relevant changes but not for property changes and behav-
iour-irrelevant changes. On the contrary, mitigation 
strategies for the effects of high complexity on LBFTS 
errors are effectively deployed for property changes and 
behaviour-irrelevant changes, but behaviour-relevant 
changes are not affected.

Specifically, the analysis of fixations shows that gaze 
is more exploratory as complexity increases resulting 
in more overall fixations, shorter durations, and less 
fixations finding their target (as denoted by fixations on 
AOIs). This observation shows that detecting a relevant 
target is harder when visuospatial complexity is high. 
Moreover, the rate of LBFTS errors reduces in high com-
plexity for behaviour-irrelevant and property changes, 
suggesting that gaze behaviour was more efficient when 
complexity increased, as participants succeeded in 
detecting the changes that they gazed at (even though 
the average fixations on AOIs are overall lower in high 
complexity environments). Nevertheless, LBFTS errors 
for behaviour-relevant changes are not affected by the 
visuospatial complexity levels—a stable LBFTS error rate 
is recorded for all levels of complexity (approximately 
26%)—indicating that behaviour-relevant changes attract 
participant’s attention in a more consistent way, even if 
the change is not detected, as they involve other road 
users and they are more relevant to the driving task.
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Result B: Anticipatory gaze and attentional 
disengagement

A detailed gaze analysis along the time window of the 
changes shows that behaviour changes attract atten-
tion even if the change is not detected, which is not the 
case for property changes. These results are in line with 
our previous observation concerning differences in gaze 
patterns with respect to fixations on AOIs and LBFTS 
errors among the change types. Specifically, gaze behav-
iour analysis pertaining to behaviour-relevant changes 
shows that anticipatory gaze is crucial for detection. A 
significant increase in gaze hits on AOI is recorded 1 or 
2 s before a behaviour change, which predicts successful 
detection. However, independent of whether successful 
detections are triggered, participants exhibit a signifi-
cant number of fixations on behaviour changes. This gaze 
behaviour is considered monitoring attention of drivers 
towards other road users in order to assess potential haz-
ards. In comparison, property changes do not result in a 
significant increase of fixations on AOIs in cases where 
changes are not detected. For property changes, it is clear 
that allocating attention to AOIs happens mostly during 
the second after the change occurs and only when the 
change is detected. Further analysis, both quantitative 
and qualitative, of participants’ gaze behaviour in rela-
tion to fine-grained differences in interactions patterns 
and analysis of effects of event duration on attention are 
themes that need to be addressed in future studies.6

Analyses of anticipatory gaze and attentional dis-
engagement demonstrate the ability of participants 
to evaluate situational hazards and allocate attention 
accordingly, with behaviour-irrelevant and property 
changes not receiving anticipatory or monitoring atten-
tion before the changes as the behaviour-relevant changes 
do. Our expectation was to register more LBFTS errors 
for changes irrelevant to the driving task—both behav-
iour-irrelevant and property changes—in comparison 
with behaviour-relevant changes. However, LBFTS errors 
were also observed for behaviour-relevant changes. This 
observation, we believe, is related to a delay in gazing 
at the AOIs, resulting in not considering the event as a 
change but processing and reacting to it by braking or 
stopping the car and interacting with the agent. There-
fore, in this case, LBFTS errors might be related more to 

delays in detection rather than to misses in information 
processing.

Examining the results of this study from the viewpoint 
of perceptual load theory (Lavie & De Fockert, 2003), we 
suggest that high visuospatial complexity increases the 
difficulty of a complex everyday task of detecting criti-
cal events while driving. In line with previous work on 
human perceptual and sensory limitations (Benoni & 
Tsal, 2012), and the link between perceptual load and 
suppressed neural circuits (Fougnie et  al., 2005), this 
study demonstrates that people perform worse in change 
detection tasks when the visuospatial complexity is high, 
even for the types of changes that people otherwise can 
easily perceive (e.g. comparing the same set of salient 
targets in low complexity environments). In this study, 
the performance of participants was primarily affected 
by visuospatial complexity in the case of high complex-
ity environments. Under these highly demanding cir-
cumstances, we observe attentional prioritisation by 
participants towards selective types of changes that were 
more relevant to the primary task of driving safely in the 
immersive environment. This behaviour by the partici-
pants did not vastly improve the overall performance but 
it did limit the effect of distractors, leading to better gaze 
control and detection performance for the subset of tar-
gets that involved road users in safety-critical situations. 
In line with previous studies (Murphy et al., 2016), these 
results suggest that high environmental complexity could 
drain surplus perceptual resources and thus reduce task-
irrelevant interference leading to relatively better perfor-
mance of the main task but compromised performance 
for secondary targets.

Applied implications
Driver education and testing. The results of this work 
can lead to the development of novel testing and train-
ing techniques for drivers, e.g. through the provision 
of metrics for effective driver attention and attentional 
strategies deployed. Such metrics can serve as extensions 
of existing tests such as Drive Aware Task (DAT) (Feng 
et  al., 2015) and Attention-Related Driving Errors Scale 
(ARDES) (Ledesma et  al., 2015) under diverse system-
atically controlled environmental conditions, involving 
complex environmental structures and/or complex inter-
action events, as utilised in our research. As shown in 
this study, environmental and temporal complexity affect 
human performance on high-level visual processes such 
as change detection during driving, however, even in 
highly complex situations people are able to adjust their 
behaviour and prioritise attention towards safety-critical 
situations. This suggests that professional drivers espe-
cially can be trained and tested on how efficiently they 

6 Studies of interaction patterns could include utilising varying design con-
ditions pertaining to position, gaze, gesture and orientation of interaction 
agents (e.g. vulnerable road users, pedestrians). Likewise, studies on event 
durations could include scenarios that evolve in different speed and include 
a different number of fine-grained activities. These positioned future studies 
merit a detailed treatment on their own, and hence are considered out of 
the scope of this paper.
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decelerate in highly complex situations and challeng-
ing conditions, adjust their fixations to detect targets in 
diverse areas of interest (AOI), make attentional choices 
between events when necessary, and disengage from tar-
gets and distractors. For example, testing abilities and 
behavioural traits of professional drivers should include 
not only visual acuity tests but also cognitive tasks such 
as monitoring and assessing changes in the behaviour 
of other vulnerable road users (e.g. kids, older adults), 
anticipating crossing behaviours in busy urban areas, 
responding to occlusion events, and keeping high situa-
tion awareness with overhead checks in highly dynamic 
urban environments, monitoring blind spots, etc. Over-
all, investigating the impact of environmental complexity 
and temporal proximity among events based on system-
atic behavioural studies on driving, we suggest that met-
rics of driver’s skills should include strategic preservation 
of attention to highly relevant events and drivers’ edu-
cation should involve training of attentional strategies 
based on the conscious knowledge of human’s physiolog-
ical attentional limitations.

Considering attentional strategies in relation to envi-
ronmental and temporal complexity, we posit that exter-
nal characteristics (e.g. environmental, temporal) are 
not always enough to holistically explain drivers’ per-
formance, as personal characteristics also play a critical 
role. Aspects of working memory capacity, attentional 
breadth, visual stability, spatial representation and spa-
tial capabilities, preference in attentional strategies, etc., 
can be dependent on individual differences deriving 
from age, gender, culture, or other cognitive specifici-
ties (Andermane et al., 2019; Angelone & Severino, 2010; 
McPhee et  al., 2004). Consequently, the evaluation and 
education of drivers should incorporate gaze and driving 
performance analysis taking into consideration the fact 
that different individuals may use different methods to 
address the same situation based on their skills. Moreo-
ver, novel educational techniques that involve knowledge 
of individual differences and focus on automatically iden-
tifying attentional failures related to attentional lingering, 
or excessive LBFTS errors during driving, can serve as an 
instrument for driving self-assessment in an educational 
context (e.g. self-assessment driving test in VR).

Human-centred visual intelligent systems. The behav-
ioural outcomes of naturalistic behavioural studies on 
high-level human processes as the ones discussed in 
this work, can constitute the basis for precedent-based 
modelling of human everyday interactions between 
each other and with the environment. Recent work in 
human-centred AI focuses on incorporating knowledge 
of human behaviour, human abilities and preferences 
in artificial visual intelligence systems (Bhatt & Suchan, 

2023, 2020), which can be valuable for anticipating and 
explaining human behaviour and interactions in domains 
such as autonomous vehicles and driving assistance sys-
tems (Suchan et al., 2021).

Specifically, human-centred explainable visual sense-
making refers to the process of providing explanations 
for events and interactions between humans and the sur-
rounding environment by analysing environmental fea-
tures (e.g. clutter, motion, scene structure) and human 
behavioural patterns (e.g. head movement, body posture, 
speed and direction of movement). This process neces-
sitates both high-level semantics and low-level visual 
computing, using a range of techniques developed in AI, 
Machine Learning, and Computer Vision. For the high-
level semantics, human-centred representation and rela-
tional abstractions are supported by modelling of space, 
events, actions, motion, and (inter)action, and they need 
to be grounded in real-world data of human experience. 
Overall, processing and semantic interpretation of large 
volumes of highly dynamic visuospatial imagery are 
central and psychology and behavioural research where 
data-centred analytical methods are gaining momentum.

Summary
By replicating a real-world driving experience in the 
virtual environment, we use a change detection task to 
assess the attentional cost of visuospatial complexity as 
well as the adoption of mitigation strategies deployed 
by the drivers. This study demonstrates that visuospatial 
complexity of the environment and the type of perceptual 
targets involved have a direct influence on change detec-
tion. Overall, while visuospatial complexity affects gaze 
behaviour and detection performance negatively, the 
effects are mitigated for changes involving road users in 
safety-critical situations. Moreover, gaze behaviour anal-
ysis shows successful anticipatory gaze and quick atten-
tion disengagement from behaviour changes, thereby 
indicating efficient attentional strategies deployed by 
the drivers, especially in high complexity scenes. These 
results add to our understanding of precise circum-
stances under which people adapt their attentional strat-
egies to compensate for an increase in task difficulty 
caused by external factors.

Outlook
This research explores the landscape of naturalistic 
behavioural studies and the systematic investigation 
of fundamental questions in high-level visual process-
ing, such as change blindness in the everyday embodied 
context of driving. Real-world or “in-the-wild” studies 
on driving behaviour have face validity and the distinct 
advantage of focusing on driving in its most naturalistic 
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context. Nevertheless, this absolute naturalism can lead 
to problems with confounds, noise and other restric-
tions in the data. Virtual reality (VR) studies provide an 
alternative to real-world embodied empirical studies of 
human behaviour, in a controlled environment, with ran-
dom assignment of participants, balanced experimental 
manipulations of conditions, and reliable datasets with 
physiological measurements such as eye movement data. 
Although in this VR study we develop a systematic way 
of testing high-level visual processing during driving and 
collecting multimodal behavioural data, faithfully repli-
cating VR-based empirical studies in the real-world will 
be necessary to establish the correspondence between 
the methodologies needed for responsible generalisation 
of the outcomes, and this process constitutes a theme of 
emerging interest in our research.

Specifically, our research develops between behav-
ioural studies “in-the-wild” and in VR to address ques-
tions on everyday complex cognitive tasks such as 
change detection, active navigation (Kondyli & Bhatt, 
2021, 2018; Kondyli et  al. 2018), event perception (Nair 
et  al., 2022), etc. Of great importance in this work are 
the multimodal interactions between humans, as well as 
between humans and their surrounding environment, 
specifically, the effect of environmental features such as 
manifest cues, structural characteristics, etc. We estab-
lish a methodology to systematically explore the effect 
of environmental features and their combinations on 
embodied everyday behaviour such as in driving and 
navigation (Kondyli et  al., 2020, 2021), and so, future 
work will expand towards other high-level cognitive pro-
cesses including visual foraging, visual search, attentional 
priming (Kristjánsson & Kristjánsson, 2019), as well as 

towards the investigation of individual differences with 
respect to age, experience, gender, spatial cognitive skills, 
etc. (Andermane et al., 2019; Mian & Jaffry, 2020).

Appendix

A. Visuospatial complexity model
In this study, we use a cognitive model of visuospatial 
complexity developed in our previous work—presented 
in Kondyli et  al. (2020) and Kondyli et  al. (2021)—to 
investigate how the combination of visual and spatial 
attributes in real-world scenes affect driving. The model 
incorporates: quantitative (e.g. feature congestion, sub-
band entropy, luminance, street size), structural (e.g. rep-
etition, symmetry), and dynamic attributes (e.g. direction 
of motion, number of moving objects, speed) extracted 
from systematic analysis of real-world scenes. These are 
combined with high-level characterisation of complexity 
based on qualitative evaluation of complexity and behav-
ioural data. Based on this model, we developed a range of 
driving environments in VR that correspond to different 
levels of visuospatial complexity. We manipulated:

• the number of objects in the scene per metre, the 
objects’ colours and size, the size of the street, and 
the clutter in the frames;

• the level of symmetry in the structure of the scene, 
as well as the repetition and order of buildings, trees, 
and other street objects; and

• the number of vehicles, pedestrians, and cyclists, and 
their facing direction, direction of movement, and 
speed.

Fig. 12 Structure of the experimental session for the three groups of participants
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Example scenes from the developed environments are 
demonstrated in Fig. 3.

B. Participants’ groups
To mitigate the effect of learning among the types of 
changes that appear with small differences in all three 
complexity levels, we employ three possible sequences 
of encountering the visuospatial complexity levels. Par-
ticipants were randomly assigned to one of the three 
groups A, B, and C and experienced the levels of com-
plexity in a different order (Fig. 12). The time between 
the pairs of changes was regulated in order for the pairs 

to be distinctive from each other and easier to analyse. 
The minimum time was 10 s, but more regularly it was 
between 10 s to 2 min, depending also on the driving 
speed and behaviour of the driver, as well as the traffic 
lights.

The structure of the 36 pairs of changes along the driv-
ing route of the study and the characterisation of the 
pairs based on the temporal proximity, change type, and 
visuospatial complexity level are described in Table  3. 
The description of every scenario involved in these 36 
pairs of changes is presented in detail in Tables 4, 5, 6.

Table 3 The structure of the 36 pairs of changes involved in the change detection task
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Table 4 Event scenarios—part 1—medium visuospatial complexity



Page 24 of 30Kondyli et al. Cognitive Research: Principles and Implications            (2023) 8:54 

Table 5 Event scenarios—part 2—high visuospatial complexity
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Table 6 Event scenarios—part 3—low visuospatial complexity
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C. Analysis of temporal proximity
These results suggested that time proximity can be con-
sidered an additional factor of task difficulty, while the 
effect was mostly absorbed by the detection for property 
changes, while the detection performance of behaviour 
changes mostly remained intact.

Analysis of Detection Rate. The analysis showed that the 
probability of detecting a change varies among the time 
proximity levels, as illustrated in Fig.  13a. We consider 
the time proximity level 4 s an outlier, as a closer analy-
sis suggested that the extensive duration of the behaviour 
change in the particular scenarios involved in this group 
was the major factor for the low detection performance 
recorded. A one-way between subjects ANOVA revealed 
a significant effect of time proximity on the detection rate 
for all levels F(5, 474) = 14.286, p < .001 . Post-hoc com-
parisons using Bonferroni test indicated that the detec-
tion score for the 0 s level ( M = 24.8% , SD = 21.3%) was 
significantly lower than the rest of the levels (e.g. with 
level 2 s recorded M = 43.8% , SD = 27.6%, or 6 s with 
M = 38.5% , SD = 24.3%) (the case of 4 s is consider an 
outlier and is exclude from this analysis, M = 15.2% , SD 
= 21%). No significant differences were found between 
the levels 1–8 s ( p > 0.56).

Especially the group with time proximity 0 s, recorded 
the lowest performance for property changes and the 
higher behaviour changes. The results suggest that 
people prioritise behaviour changes over property 
changes particularly when the time proximity in very 

short (0 or 1 s). A t-test analysis between the behav-
iour and the property changes showed significant dif-
ference of the means across the time proximity groups 
( t(938) = 18.047, p < .001, d = 1.16 ). Moreover, 
ANOVA analysis showed that the effect of time prox-
imity to detection performance is strongly significant 
for property changes ( F(5, 478) = 14.382, p < .001 ), 
but only marginally significant for behaviour changes 
( F(5, 478) = 3.368, p = .005 ). These results suggested 
that time proximity can be considered an additional 
factor of task difficulty. The effect was mostly absorbed 
by the detection for property changes, while the detec-
tion performance of behaviour changes mostly remained 
intact.

Analysis of Reaction Time (RT). One-way ANOVA of RTs 
for the subset of changes that were detected (on average 
36.6% of all property changes), showed a significant effect 
of time proximity on RT, F(5, 926) = 4.440, p = .001, d = . 
Participants were significantly slower at detecting a prop-
erty change that happened at the same time as a behav-
iour change (0 s level, M = 1.63 , SE = 0.91), than in the 
case where there was a time gap of 1 to 8 s between the 
two changes (Fig. 13b). Post-hoc comparisons using Bon-
ferroni test indicated that the mean score for the 0 s time 
proximity level was significantly different from the rest 
of levels ( p < .001 ). No significant difference was found 
between the rest of the levels (1–8 s).

Overall, the number of data points for each condi-
tion was not enough to provide a conclusive result on 

Fig. 13 Detection rate and reaction time (RT) for detection of property changes (2nd change), with respect to the time proximity from the 1st 
change. All error bars are standard errors. a Detection rate for all groups of time proximity, b reaction time for all groups of time proximity
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the effect of time proximity among all conditions; they 
did, however, indicate a significant difference between 
the changes which happen simultaneously and the ones 
with a few seconds time gap in between the pair. The 
results of detection performance, as well as the RT, sug-
gest that detection performance for the second changes 
was significantly compromised when this change was 
performed simultaneously (time proximity of 0 s) to 
a behaviour change, with a probability of 24.8% to be 
detected, and an average RT of 1.633 s. For the rest of 
the groups of time proximity, a recovering trend was 
observed, with the best performance recorded in the 
condition of 2 s time proximity (with a probability of 
43.8% to detect the change in an average of 1.306 s).

Abbreviations
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LBFTS  Looked-but-failed-to-see
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