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Abstract 

People miss a high proportion of targets that only appear rarely. This low prevalence (LP) effect has implications for 
applied search tasks such as the clinical reading of mammograms. Computer aided detection (CAD) has been used to 
help radiologists search mammograms by highlighting areas likely to contain a cancer. Previous research has found 
a benefit in search when CAD cues were correct but a cost to search when CAD cues were incorrect. The current 
research investigated whether there is an optimal way to present CAD to ensure low error rates when CAD is both 
correct and incorrect. Experiment 1 compared an automatic condition, where CAD appeared simultaneously with the 
display to an interactive condition, where participants could choose to use CAD. Experiment 2 compared the auto-
matic condition to a confirm condition, where participants searched the display first before being shown the CAD 
cues. The results showed that miss errors were reduced overall in the confirm condition, with no cost to false alarms. 
Furthermore, having CAD be interactive, resulted in a low uptake where it was only used in 34% of trials. The results 
showed that the presentation mode of CAD can affect decision-making in LP search.
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Introduction
Visual search is an important part of our everyday life, 
whether it is searching for a mobile phone in a living 
room, a child in a playground, or car in a car park. Some 
visual search tasks have significant implications for our 
health and safety. For example, a baggage screener search-
ing through x-rays for a prohibited item or radiologists 
searching through mammograms for a cancer. These lat-
ter searches are made all the more difficult given that the 
targets only appear rarely (e.g. cancers typically appear in 
fewer than 1% of cases, Gur et al., 2003) and that search 
for a low prevalence item leads to a large proportion of 
miss errors (Wolfe et al., 2005). Given the importance of 
finding a rare mass in radiology and the serious implica-
tions of missing a cancer, it is critical to find ways to help 
detection of a low prevalence target. One method to help 
with this is computer aided detection.

Computer aided detection (CAD) uses computer algo-
rithms to identify areas of interest within a mammogram 
and mark them for radiologists to inspect, with the aim 
to help readers better detect a cancer (Castellino, 2005; 
Gilbert et al., 2008; Lehman et al., 2015). The use of CAD 
is available globally, with some countries using CAD sys-
tems more than others (e.g. Guerriero et al., 2011; Hous-
sami et al., 2009; Lehman et al., 2015; Sato et al., 2014). 
Research into how best to use CAD is vital given that 
there has been a large investment into its development to 
help radiologists search mammograms (estimated to cost 
over $400 million a year, Lehman et al., 2015). However, 
at present, research has shown that CAD technology 
does not measure up to expectation with little benefit in 
cancer detection (e.g. Fenton et al., 2007, 2011; Lehman 
et  al., 2015). One of the issues is that CAD systems are 
typically tested using enriched sets of mammograms 
where cancer prevalence is high. However, in a clinical 
setting the prevalence of a cancer is much lower (Horow-
itz, 2017). This leads to problems as search performance 
at high prevalence is not necessarily representative of 
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search performance at low prevalence. Furthermore, 
there is little research into how to best present CAD to 
readers for optimal reading.

Why is it important to consider prevalence rates in search?
Kundel (1982) was one of the first researchers to highlight 
the issue of prevalence in the medical field and noted that 
the prevalence of a disease needed to be considered when 
reporting observational studies in radiology and the 
performance of radiology image systems. In the clinical 
field, Egglin and Feinstein (1996) and Ethell and Manning 
(2001) found that prevalence rates affected detection of 
pulmonary emboli and wrist fractures, respectively, with 
lower detection rates at lower prevalence. Wolfe et  al. 
(2005) investigated this effect in the laboratory where 
they designed a study in which participants searched 
for a low prevalence target in a visual search task. Par-
ticipants were asked people to detect a target that could 
appear 50%, 10% and 1% of the time. With this reduction 
in prevalence rates there was a marked increase in the 
number of targets that were missed (from 7 to 16% and 
30%, respectively). This increase in miss errors when the 
target is rare is known as the low prevalence (LP) effect 
and has been replicated multiple times (e.g. Kunar et al., 
2010, 2021; Mitroff & Biggs, 2014; Rich et al., 2008; Rus-
sell & Kunar, 2012; Van Wert et  al., 2009; Wolfe et  al., 
2007).

Several accounts have been proposed for the LP Effect. 
Fleck and Mitroff (2007) suggested that the LP Effect was 
due to a motor bias, whereby at low prevalence there 
was an increased proportion of motor errors, due to the 
propensity of participants pressing the ‘target absent’ 
key. However it has been shown that, this theory cannot 
account for the full LP effect as, even with the removal of 
motor-errors, participants missed a larger proportion of 
targets at LP compared to when targets had a high prev-
alence (Van Wert et al., 2009; Kunar et al., 2010, 2017a, 
2017b, 2021; Russell & Kunar, 2012; Rich et al., 2008; see 
also Horowitz, 2017 for a discussion).

Wolfe and Van Wert (2010) proposed a multiple deci-
sion model (MDM), which suggested that the LP effect 
occurred due to two reasons. First at LP, the quitting 
threshold for when a participant decides to stop search-
ing is reduced so that people make a response before 
they search the display sufficiently. Evidence in support 
of this comes from Rich et al. (2008) who found that peo-
ple made fewer eye movements, and failed to fixate the 
target more often, at LP compared to when the target had 
a High Prevalence (HP, see also Peltier & Becker, 2016). 
Second, the MDM proposed that under LP conditions, 
people showed a criterion shift, where responses become 
more conservative. That is at LP, people were less will-
ing and needed more evidence before responding that a 

target was present. This has been supported from stud-
ies using Signal Detection Theory (SDT, Green & Swets, 
1967; Macmillan & Creelman, 2005) where a shift in 
response bias (as measured by c) has been observed at LP 
(Wolfe et al., 2007; see also Horowitz, 2017; Drew et al., 
2020; Kunar et al., 2021; Russell & Kunar, 2012; Van Wert 
et al., 2009; Wolfe & Van Wert, 2010).

The majority of LP studies have been laboratory studies 
(e.g. Drew et al., 2020; Fleck & Mitroff, 2007; Kunar et al., 
2021; Mitroff & Biggs, 2014; Rich et al., 2008; Russell & 
Kunar, 2012; Wolfe et  al., 2005, 2007). However, Evans 
et al. (2013a, 2013b) found a similar effect occurred in a 
clinical setting, in which they embedded a mammogram 
known to contain a cancer into a medical reading proce-
dure. It was found that trained readers missed this cancer 
30% of the time, showing that even in a clinical setting, 
readers are prone to miss rare targets. Other studies have 
investigated ways to improve LP search (e.g. Wolfe et al., 
2007). Kunar et al. (2021) found that having two observers 
search the same mammogram led to a reduction in miss 
errors (see also Wolfe et al., 2007). If two readers read the 
same mammogram in the same room at the same time, 
target detection was improved due to an improvement 
in sensitivity (as measured by SDT, using A′). However, if 
two observers read the same display independently (e.g. 
in separate rooms) then target detection was improved, 
as the response bias shift, typically observed at LP, was 
reduced. Although double reading leads to improved LP 
search and was previously deemed to be a cost-effective 
procedure to run in the UK, this practice may not be sus-
tainable in the future as the population of women that 
need to be screened increases (Guerriero et  al., 2011). 
Furthermore, double reading procedures are expensive 
with double the number of radiologists needed and may 
be difficult to sustain with an aging population (James 
et al., 2010). In response to this rise in demand, computer 
aided detection has been proposed as a way to simulate 
double reading procedures, in which CAD acts as the 
second reader without the increasing expenditure of 
human labour in terms of both time and financial costs 
(Azavedo et al., 2012).

The benefits and costs of computer aided detection
CAD has been approved for use in mammography 
by the Food and Drug Administration (FDA) in the 
USA, with the aim to improve work-flow and reduce 
demands on radiologists and trained readers (Castel-
lino, 2005; Gilbert et al., 2008). It has been evaluated in 
the clinical field either by the use of Randomised Con-
trol Trials (RCTs) or by recruiting radiologists or other 
trained readers to read mammograms in an observa-
tional setting (e.g. Gilbert et  al., 2008; Hupse et  al., 
2013; Freer and Ulissey, 2001). RCTs have the benefit 
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in that they can evaluate CAD in a real clinical envi-
ronment. However, they are disadvantaged as there is 
no way to know the true miss errors that occur, as the 
radiologist, by definition will be unaware that they have 
missed a potential abnormality (unless a mass presents 
at a later scan or the woman becomes symptomatic at 
a later date). Furthermore, RCTs often involve lengthy 
periods of data collection (e.g. one RCT investigat-
ing CAD versus a double reading procedure took over 
7 years for data collection, Gilbert et al., 2008) and sci-
entists are also ethically limited in what can be manipu-
lated in the normal clinical reading procedure to avoid 
potential disruption to a patient’s care.

In contrast, observational studies using radiologists 
or trained readers have the benefit of being able to test 
a greater range of CAD conditions by using ‘truth cases’ 
(i.e., mammograms that are known in advance to contain 
a cancer or not). Here, different reading conditions can be 
scientifically manipulated and investigated, without the 
same ethical concerns needed in real-life reading where 
patient care is at stake. However, these studies are limited 
by the time-constraints of radiologists and trained read-
ers, so that (1) studies may be under-powered due to the 
low availability of readers (in some cases as few as 2 or 3, 
e.g. Freer and Ulissey, 2001) and (2) they may be tested 
under conditions where the target has a high prevalence 
(given that low prevalence data collection is lengthy and 
highly time-consuming, typically requiring thousands of 
trials). These differences in procedures in observational 
studies may also affect the way that radiologists respond, 
causing them to either under or over-estimate the num-
ber of cases that need to be recalled (Castellino, 2005).

In response, Kunar et  al. (2017a, 2017b) developed a 
laboratory based, mammogram-reading procedure to 
complement RCTs and observational studies investigat-
ing CAD. In this study naïve readers were recruited and 
trained to search for LP targets, with the premise that the 
underlying mechanisms within the ‘human visual search 
engine’ are universal across experts and non-expert 
searchers (Wolfe et al., 2016). These procedures had the 
advantage of being able to recruit enough participants for 
sufficient experimental power in LP conditions. Kunar 
et al. (2017a, 2017b) found that having a valid CAD cue 
led to improved target detection compared to when no 
CAD cue was presented. However, miss errors greatly 
increased on trials when the target was present but the 
CAD cue was incorrect (i.e. it marked an area that did not 
contain a cancer) or was not presented (a cancer was pre-
sent but had not been flagged up by a CAD cue). Kunar 
et  al. (2017a, 2017b) proposed an over-reliance hypoth-
esis whereby participants became over-dependent on 
CAD, rather than rely on their own judgements, affect-
ing their capacity to find a target when CAD technology 

failed (see also Russell & Kunar, 2012 and Drew et  al., 
2020, who found similar evidence using eye movements).

The above research shows that there are both bene-
fits and costs of using CAD and that optimal use of this 
technology depends on its human–computer interac-
tion. Given that co-operation between human observ-
ers and CAD technology is vital, it is also important to 
examine how best to present CAD to maximise its ben-
efit. In current US clinical practice, readers are required 
by the FDA to view the image alone first and then view 
the image with the use of CAD (Castellino, 2005). This 
reading procedure has its benefits. Drew et  al. (2020) 
investigated two CAD systems using a visual search task 
where participants were asked to search for a letter T 
among distractor Ls (prevalence rate of 10%). In one of 
their experiments, CAD cues were presented automati-
cally alongside the search display. In a different experi-
ment, participants used the CAD cue interactively, in 
which they clicked on an area of the display which would 
then present a CAD recommendation. Target preva-
lence was also manipulated to contain both high and low 
prevalence conditions. From these experiments it was 
shown that having an LP target exacerbated the costs of 
an incorrect CAD cue compared to HP (see also Kunar 
et  al., 2017a, 2017b), however having the CAD cue be 
interactive mitigated these costs. Please note, that this 
benefit was in relation to a condition where people were 
never shown a CAD cue rather than in relation to one 
where participants were automatically shown the CAD 
cue (which Drew et al., 2020, did not examine). Further-
more, Hupse et  al. (2013) compared CAD prompts that 
were shown automatically to a condition in which read-
ers could interactively use CAD. They also found the use 
of interactive CAD to be a more effective tool for detect-
ing masses in mammograms.

These studies indicate that under LP conditions there 
is a benefit in using CAD interactively. However, there 
are some limits to this research which means that this 
hypothesis has not been directly tested. As mentioned 
above, although Drew et al. (2020) investigated two differ-
ent ways of presenting CAD, these presentation methods 
were never directly analysed or compared to determine 
which presentation method led to fewer miss errors or 
false alarms at Low Prevalence (as this was outside the 
remit of their research question). Instead, each presen-
tation method was compared to a condition where no 
CAD cues were used. Therefore, from Drew et al. (2020) 
the optimal presentation method of presenting CAD can-
not be established. Direct comparisons of CAD presenta-
tion mode were made by Hupse et  al. (2013). However, 
they used an experimental design in which the target had 
a high prevalence (which we know has different search 
mechanisms to LP, Wolfe & Van Wert, 2010, Horowitz, 
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2017) and some of their mammograms were repeated to 
the readers across experimental sessions: a procedure 
known in the visual search literature to improve people’s 
search performance (Chun & Jiang, 1998).

Despite the FDA’s requirement for readers to first view 
the medical image alone before the use of CAD, other 
researchers have suggested there is a cost to this viewing 
method. For example, Du-Crow et  al. (2019) have sug-
gested that viewing the image alone first, before the pres-
entation of CAD may lead readers to feel a false sense of 
security (or ‘safety net’) as the expectation is that CAD 
will highlight any potential abnormalities that have been 
missed. Du-Crow et al. (2019) found supporting evidence 
of this using eye movements, which showed that on the 
initial (pre-CAD) search of an image, the percentage of 
image covered (as measured by the area surrounding fix-
ations) was less than when people were asked to search a 
condition with no CAD.

In summary, there is no clear consensus, of the optimal 
way to present CAD when the target has a low preva-
lence. We know that presenting CAD concurrently with 
the search display, leads to an over-reliance on the CAD 
cues (Drew et al., 2012; Kunar et al., 2017a, 2017b). Does 
changing the presentation mode of CAD lessen this over-
reliance? One reason for this over-confidence in CAD 
could be that CAD markers acts as ‘attention grabbing’ 
bottom-up attentional cues (e.g. Drew et al., 2020; Theeu-
wes, 2004). Given their salience, participants may not be 
able to help but attend these cues, if they appear simulta-
neously with the display, which might affect their judge-
ments (see Kunar et al., 2017a, 2017b). Therefore, having 
the CAD cue appear at a later stage, after the mammo-
gram has already been searched, may alleviate this issue: 
as the salient markers do not appear on first reading they 
do not affect initial judgements (this is especially impor-
tant as early and initial processing of the image is an 
important factor that enables experts to determine the 
presence of a cancer, Evans et al., 2013a, 2013b). This was 
investigated across two experiments, in which CAD pres-
entation modes were directly compared. In Experiment 
1, CAD cues were either presented automatically along-
side the mammogram (replicating conditions of Kunar 
et  al., 2017a, 2017b and Drew et  al., 2012) or presented 
interactively, where participants could choose to have 
the CAD presented after the initial display, should they 
want verification (the interactive condition). Experiment 
2 compared CAD presentation in conditions where CAD 
was presented automatically with the display to when 
CAD was always presented after initial reading of the 
display (confirm condition). It was predicted that hav-
ing people search the display initially before CAD would 
lead to fewer false alarms and miss errors when the CAD 
cue was incorrect compared to when CAD appeared 

automatically. This is because participants’ judgements 
would not be affected by the presence of a salient CAD 
cue in initial reading. However, after people had viewed 
CAD then the proportion of targets that were found 
would be equivalent when the CAD cue accurately pre-
dicted the target location.

Of final note, these experiments were also used to 
determine the behavioural preference of people to use 
CAD when they were given a choice. The interactive con-
dition (Experiment 1) would be identical to the confirm 
condition (Experiment 2) if people made the choice to 
use the CAD cue. That is, CAD would only be effective 
in the interactive condition if there was a behavioural 
preference to use this for the majority of trials. As CAD 
has been proposed to act as double reader, in place of a 
human observer (Azavedo et al., 2012) then it is essential 
that people chose to interact with it. If people prefer to 
opt out of using CAD in the interactive condition then 
this behavioural preference has implications for the effi-
cacy of CAD use overall. This was investigated in Experi-
ment 1.

Experiment 1
Method
Participants
Twenty participants (M = 19.2  years, 11 female, 9 male) 
took part in Experiment 1. In all experiments, partici-
pants were recruited from the University of Warwick 
participant pool, had no prior training in reading mam-
mograms and were paid for their time. All participants 
had normal or corrected-to-normal vision. Ethical 
approval for all studies was granted by the Humanities 
and Social Sciences Research Ethics Committee at the 
University of Warwick. Participant numbers were deter-
mined in advance based on previous research (e.g., 
Drew et  al., 2012; Kunar et  al., 2017a, 2017b; Wolfe 
et al., 2007). A power analysis calculated using G*Power 
(F-tests, effect size = 0.25, alpha = 0.05, see Faul et  al., 
2007) showed that the minimum number of participants 
needed to achieve a power of 0.8, for each experiment 
was 12 (based on the trial numbers in each condition). 
Therefore, we would expect that testing 20 participants 
for each of the experiments would provide ample power 
to detect significant effects, if present.

Stimuli and procedure
The experiment was programmed using BlitzMax and 
presented on a PC. The mammogram images were taken 
from the selection of ‘normal’ mammograms (those not 
containing a cancer) of the Digital Database for Screen-
ing Mammography (DDSM) database (Heath et al., 1998, 
2001). All images were selected from the database at ran-
dom. Images were presented in the centre of the display 
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and subtended approximately 11 degrees by 19 degrees 
at a viewing distance of 57  cm (although the individual 
size of each image varied because they were real mam-
mograms).1 For target present trials cancerous mass 
images were selected at random from four of the cancer 
cases on the DDSM. These cancers were then transposed 
onto mammograms that previously contained no cancer 
using imaging editing software so that each image con-
tained one cancer (each cancer appeared equally as often 
throughout the experiment). The cancer could appear 
on any area of the breast tissue again chosen at random 
(mimicking conditions in a clinical setting), provided that 
it was clearly distinguishable once fixated (see also Kunar 
et  al., 2017a, 2017b, 2020). As the mammograms were 
selected at random from DDSM the breast tissue var-
ied in density. This affected target saliency from trial to 
trial (i.e. a cancer is likely to be more salient on less dense 
breast tissue). Please note this variation in target sali-
ence occurred across all of the experimental factors (i.e. 
target present vs absent trials and all the different CAD 
conditions). Furthermore, it replicates the high variability 
observed in clinical mammograms where saliency of the 
cancer is varied depending on breast tissue density and 
appearance of the cancerous mass. The CAD cues were 
the outline of a red box that subtended 1.1 degrees by 1.1 
degrees at a viewing distance of 57 cm. All mammogram 
images were created offline.

In each condition, there were 900 target absent tri-
als and 100 target present trials (to give an overall target 
prevalence rate of 10%). For the target absent trials, 675 
trials (75%) were presented without any CAD cues (cor-
rect CAD). The other 225 trials (25%) of target absent tri-
als contained a CAD cue placed on a random area of the 
mammogram (incorrect CAD, see also Russell & Kunar, 
2012; Kunar et  al., 2017a, 2017b for similar methodol-
ogy). For target present trials, 60 trials showed a CAD 
cue that correctly highlighted a mass (correct CAD), 20 
trials showed a mass that fell outside of the CAD cue, 
with the CAD placed on another random area within 
the breast tissue (incorrect CAD) and 20 trials contained 
a mass but did not show any CAD cue (no CAD). Par-
ticipants were aware that the target, if present, was likely 
to be cued by the CAD prompt, however, they were also 
told that on some trials there would be no CAD prompts 
on present trials, or the target could appear outside the 
CAD cue. Please note, that target present trials were 
more likely to contain a CAD cue than target absent trials 

(i.e. on 80% of trials vs 25% of trials) as in the field the 
CAD algorithms used would be more likely to display a 
prompt when a cancer is present than when it is absent. 
For each condition, participants viewed all 1000 mam-
mogram images presented in a random order. An exam-
ple image can be found in Fig. 1.

Participants completed two experimental conditions: 
an automatic CAD condition and an interactive CAD 
condition. For the automatic condition participants were 
first shown a blank screen for 500  ms. They were then 
presented with one of the mammogram images. CAD 
cues were automatically presented at the same time 
as the mammogram. Participants were asked to judge 
whether the mass was present or absent by pressing 
either the ‘m’ or the ‘z’ key, respectively. If no response 
was made within 30  s the trial ‘timed-out’ and the next 
trial started automatically. Following a response or ‘time-
out’, a blank screen was again displayed before the next 
fixation dot and trial. The interactive condition was simi-
lar, except that mammograms were first presented with-
out CAD. Participants made an initial response as to 
whether a cancer was present or not by pressing the ‘m’ 
or ‘z’ key, respectively. They were then shown the next 
screen asking them “Do you want to check with the use 
of CAD?” They pressed the ‘y’ key if the answer was yes 
or the ‘n’ key if the answer was no. If they chose yes, the 
mammogram was re-presented with the CAD cue over-
laid. If there was no CAD cue associated with that par-
ticular trial then the mammogram would be re-presented 
without any CAD cue. Participants were then again asked 
to respond as to whether a cancer was present or not by 
pressing ‘m’ or ‘z’, respectively. Participants were free to 

Fig. 1  An example of a correct CAD trial in which the target was 
present. Here the CAD cue highlighted the presence of a cancer. In 
present, incorrect CAD trials the cancer appeared outside of the CAD 
cue and in present, no CAD trials a cancer was present but no CAD 
cue was shown

1  Please note that some of the images from the DDSM contained dates and/
or artefacts on the background of the image similar to images seen by radiolo-
gists in clinical mammography. However, as the dates/artefacts only appeared 
on the background of the image they did not affect the actual search task.
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change their response from their initial response should 
they wish to. In each condition reaction times and error 
rates for both the initial responses (in the automatic 
and interactive condition) and confirm responses (in 
the interactive condition) were recorded. If participants 
chose not to see the CAD cue the experiment moved to 
the next trial.

Alongside the confirm response in the interactive con-
dition, in both the automatic and the interactive condi-
tions participants had the option of correcting their 
responses. If the participants recognized that they had 
made an error, they were able to correct it on the follow-
ing trial, by pressing the ‘Escape’ key during any time of 
the next trial (see Fleck & Mitroff, 1997; Van Wert et al., 
2009; Kunar et  al., 2010,  2017a, 2017b, 2020, Russell & 
Kunar, 2012; Rich et  al., 2008, for similar methodolo-
gies). This would log in the data file that the participant 
had noticed their mistake so that motor errors could be 
calculated. They then proceeded with the current trial as 
normal, responding with an ‘m’ or ‘z’ key if the target was 
present or absent, respectively. No feedback was given 
after any response, or correction, was made.

To familiarise themselves with the stimuli, participants 
were shown examples of the mammogram images and 
cancers prior to each of the experiments. In this train-
ing session participants were first shown images of the 
cancerous masses on their own. The experimenter gave 
participants information of what to look for (e.g. the 
cancers have a spiculated appearance). They were then 
shown 12 different mammograms, one after the other, 
each containing a cancer. Participants were asked to 
point to the cancer, while the experimenter was in the 
same room (the experimenter would provide feedback if 
needed). Once participants completed this cancer identi-
fication task and both the participant and experimenter 
were confident that the participant could identify a mass, 
they then proceeded to take a practice block before each 
experimental block. During this practice block the exper-
imenter again ensured that participants were able to rec-
ognise the cancer, when present. If any of the participants 
had difficulties identifying the cancer they were shown 
more examples and could repeat the practice condition 
until both the participant and experimenter were confi-
dent that they were able to identify the cancer. However, 
all the participants responded correctly in the first prac-
tice session and none were asked to repeat it. RTs, self-
corrections and error rates were recorded. Within each 
condition breaks occurred automatically every 200 trials, 
after which participants continued with the experiment 
when they were ready. Given the length of each condi-
tion, the automatic and interactive conditions took place 
over two different sessions, each lasting approximately 

2 h. The presentation order of conditions was counterbal-
anced across participants.

As the results of interest are from cognitive rather than 
motor response errors (i.e. those that can be corrected 
in the field) the analyses were conducted using the self-
corrected data (see also Kunar et al., 2017a, 2017b, 2020). 
RTs responded after 30  s and before 200  ms were con-
sidered outliers and removed from data analysis. Bayes 
Factors analyses were also reported (calculated with a 
Cauchy prior width of 0.707 using JASP version 0.9.2),2 
alongside frequentist statistics. The inclusion of Bayes-
ian analyses gave the advantage of being able to evaluate 
evidence in support of the null hypothesis (Wagenmak-
ers et al., 2018a). The recommendations of Jeffreys (1961) 
were adopted, in which a BF10 (which compares evi-
dence of the alternative hypothesis to evidence for the 
null hypothesis) of 1 to 3 provides anecdotal evidence 
for the alternative, a BF10 of 3 to 10 provides substan-
tial evidence for the alternative, a BF10 of 10 to 30 pro-
vides strong evidence for the alternative, a BF10 of 30 to 
100 provides very strong evidence for the alternative and 
a BF10 of greater than 100 provides decisive evidence for 
the alternative. The inverse of these numbers (BF01) pro-
vide evidence in support the null hypothesis (Jarosz & 
Wiley, 2014).

Results
One participant was removed from analysis as 82.5% of 
their RTs were faster than 200 ms in the interactive con-
dition. For the other 19 participants 14.3% of all data 
were removed as outliers.3 Error rates and mean correct 
reaction times for all conditions are presented in Figs. 2 
and 3.

The experiment investigated whether cancer detec-
tion was improved when participants could choose to 
interact with CAD compared to when CAD was pre-
sented automatically alongside the mammogram. Miss 
errors and false alarms in the interactive condition were 
calculated by the proportion of cancers detected at the 
‘final’ response. This final response varied depend-
ing on whether participants had chosen to check CAD 
on a particular trial. For trials in which CAD was 
checked, the final response was the response following 

2  Please note we only report Bayes statistics for the planned t-tests as Bayes 
factors for repeated measures ANOVAs still has its challenges and is an ongo-
ing topic of research (Wagenmakers et al., 2018b).
3  This is a higher proportion of outliers than typically observed in a visual 
search task. This high proportion was due to participants responding faster 
than 200 ms (resulting in 13.9% of outliers). These fast RTs were witnessed 
across participants. This point was addressed in Experiment 2 by encourag-
ing participants to search the display thoroughly before response. Neverthe-
less, even with the removal of outliers in Experiment 1, this still led to 86% 
of data available for analysis.
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the presentation of CAD. For trials where participants 
chose not to check CAD, the final response was the 
response participants made before the trial moved onto 
the next display.

Participants chose to check CAD on 34.3% of all trials 
in the interactive condition. A t-test was used to inves-
tigate whether participants were more likely to choose 
to view CAD when a cancer was present in the display 
compared to when it was not. The results showed that 
there was no difference in whether participants chose 
to check CAD if the target was present (39.9% of tri-
als) versus absent (34.5% of trials), t(18) = 1.11 p = 0.28, 
d = 0.26, with anecdotal evidence in support of the null, 
BF10 = 0.41.

Miss errors
Looking at Fig.  2, we see that miss errors were higher 
overall in the interactive condition than the automatic 
condition. This was particularly the case when the CAD 
cue was correct. They were also affected by CAD cue. 
A 2 × 3 within-participants ANOVA on miss errors 
with factor of condition (automatic vs interactive CAD) 
and CAD (correct CAD, incorrect CAD and no CAD) 
showed there to be a significant main effect of condi-
tion, F(1, 18) = 5.13, p = 0.036, ηp

2 = 0.22 in which there 
were fewer miss errors in the automatic than the interac-
tive condition. There was also a significant main effect of 
CAD, F(2, 36) = 65.04, p < 0.001, ηp

2 = 0.78, in which there 
were fewer miss errors in the correct CAD, followed by 
incorrect CAD and then the no CAD conditions. There 
was a significant condition × CAD interaction, F(2, 
36) = 6.33, p = 0.004 ηp

2 = 0.26. Planned t-tests showed 
that with correct CAD there were fewer miss errors in 
the automatic compared to the interactive CAD condi-
tion, t(18) = 4.02, p < 0.001, d = 0.92, with very strong evi-
dence in support of the alternative BF10 = 44.32. When 
CAD was incorrect there was no difference in miss 
errors between the automatic condition and the interac-
tive CAD condition, t(18) = 1.72, p = 0.10, d = 0.40, with 
anecdotal evidence in support of the null, BF10 = 0.82. 
For no CAD trials there was also no difference in miss 
errors between the automatic and interactive condition, 
t(18) = 1.81, p = 0.09, d = 0.41, with anecdotal evidence in 
support of the null, BF10 = 0.93.

Fig. 2  Proportion of miss errors and false alarms in the automatic 
and interactive conditions of Experiment 1

Fig. 3  D′ and c values for the automatic and interactive conditions in 
Experiment 1
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False alarms
Looking at Fig.  2,4 we see that false alarms were higher 
overall in the automatic condition than the interactive 
condition. They were also affected by CAD cue. A 2 × 2 
within-participants ANOVA on false alarms with factor 
of condition (automatic vs interactive CAD) and CAD 
(incorrect CAD, vs no CAD) showed there to be a main 
effect of condition, F(1, 18) = 15.88, p < 0.001, ηp

2 = 0.47, 
in which there were fewer false alarms in the interac-
tive compared to the automatic condition. There was 
also a significant main effect of CAD, F(1, 18) = 26.46, 
p < 0.001, ηp

2 = 0.60, in which more false alarms were 
made in the incorrect CAD condition compared to the 
no CAD condition. The condition × CAD interaction was 
not significant, F(1, 18) = 1.29, p = 0.27 ηp

2 = 0.07. As the 
interaction was not significant the data were not analysed 
further.

Signal detection theory analyses
Signal detection theory was used to calculate how CAD 
affected d′ (a change in sensitivity) and c (a change in cri-
terion) across presentation conditions.5 Figure  3 shows 
the d′ and c values.

Sensitivity (d′)
Figure 3 shows that although there was an effect of CAD 
on d′ there was little overall difference in d′ between the 
automatic and interactive conditions. A 2 × 3 within-
participants ANOVA on d′ with factor of condition 
(automatic vs interactive CAD) and CAD (correct CAD, 
incorrect CAD and no CAD) showed there to be no 
main effect of condition, F(1, 18) = 5.39e−4, p = 0.98, 
ηp

2 = 2.99e−5. There was a significant main effect of 
CAD, F(2, 36) = 41.10, p < 0.001, ηp

2 = 0.70, in which 
d′ was greatest in the correct CAD, followed by the no 
CAD and then the incorrect CAD conditions. There was 
a significant condition × CAD interaction, F(2, 36) = 6.06, 
p = 0.005 ηp

2 = 0.25. Planned t-tests showed that with 
correct CAD there was no difference in d′ between 
the automatic and the interactive CAD condition,6 

t(18) = 1.85, p = 0.08, d = 0.42, with anecdotal evidence 
in support of the null, BF10 = 0.98. Neither was there a 
difference in d′ between automatic and interactive con-
ditions when there was no CAD, t(18) = 0.41, p = 0.69, 
d = 0.09, with substantial evidence in support of the null, 
BF10 = 0.26, or when CAD was incorrect, t(18) = 1.56, 
p = 0.14, d = 0.36, with anecdotal evidence in support of 
the null, BF10 = 0.67.

Criterion (c)
Figure 3 shows that criterion was affected both by CAD 
and by whether CAD was presented automatically or 
interactively. A 2 × 3 within-participants ANOVA on c 
with factor of condition (automatic vs interactive CAD) 
and CAD (correct CAD, incorrect CAD and no CAD) 
showed there to be a main effect of condition, F(1, 
18) = 4.32, p = 0.05, ηp

2 = 0.19, in which c was greater 
in the automatic condition compared to the interactive 
condition, and a main effect of CAD, F(2, 36) = 70.46, 
p < 0.001, ηp

2 = 0.80, in which c was greatest in the no 
CAD condition followed by the incorrect CAD and 
then correct CAD conditions. The condition × CAD 
interaction was also significant, F(2, 36) = 4.88, p = 0.01 
ηp

2 = 0.21. Planned t-tests showed that there was no dif-
ference in c between the automatic and interactive con-
ditions when CAD was correct, t(18) = 0.73, p = 0.48, 
d = 0.17, with substantial evidence in support of the null, 
BF10 = 0.30, or when there was no CAD, t(18) = 1.62, 
p = 0.12, d = 0.37, with anecdotal evidence in support of 
the null, BF10 = 0.72. However, c was greater in the auto-
matic than the interactive condition when CAD was 
incorrect, t(18) = 3.65, p = 0.002, d = 0.84, with strong 
evidence in support of the alternative BF10 = 22.0.

Automatic versus checked interactive CAD
As mentioned above, participants only chose to check 
CAD in the interactive condition on 34% of trials. To 
examine, how participants responded in the interactive 
condition when they chose to check CAD, error rates 
from these trials were compared to those of the auto-
matic condition (see Fig. 4).7

Miss errors: automatic versus interactive when CAD 
was chosen
Figure 4 shows that there was an effect of CAD on miss 
errors, however little difference in miss errors between 

6  In several of the analyses the p-values indicate that there was a trend 
towards a significant result (with a p-value between 0.05 and 0.1, Olsson-
Collentine et al., 2019). For continuity and the purpose of the results, I state 

7  Please note that in some conditions participants never chose the option to 
check CAD, therefore participant numbers in the analyses vary depending 
on data availability.

4  Please note that in these experiments participants did not respond to the 
location of the cancer, rather they responded to whether they believed a target 
was present in the display. For the purpose of these experiments we consider 
target present trials, where participants pressed the target present key as a 
‘hit’. However, it could be that on some trials participants had not found the 
actual cancer but were responding to a non-target area that they believed con-
tained a mass. We discuss this further in the General Discussion.

5  False alarm or miss error rates of 0 and 1 were adjusted using the for-
mulas 1/2n and 1 −  (1/2n), where n = the number of trials (Macmillan & 
Kaplan, 1985, see also Russell & Kunar, 2012, Wolfe et al., 2007, and Kunar 
et al., 2021, who used this procedure).

that these marginal values are not significant. However, they are of interest 
when examining the statistical interactions.

Footnote 6 (continued)
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the automatic and interactive checked-CAD condition. 
A 2 × 3 within-participants ANOVA on miss errors with 
factor of condition (automatic vs interactive checked-
CAD) and CAD (correct CAD, incorrect CAD and no 
CAD) showed there to be no significant main effect of 
condition, F(1, 16) = 0.36, p = 0.56, ηp

2 = 0.02. There 
was a significant main effect of CAD, F(2, 32) = 52.54, 
p < 0.001, ηp

2 = 0.77, in which there were fewer miss 
errors in the correct CAD, followed by incorrect CAD 
and then the no CAD conditions. There was no sig-
nificant condition × CAD interaction, F(2, 32) = 1.88, 
p = 0.17, ηp

2 = 0.11. As the interaction was not significant 
the data were not analysed further.

False alarms: automatic versus interactive when CAD 
was checked
Figure 4 shows that there was an effect of CAD on false 
alarms. There was no difference in false alarms between 
presentation mode when there was no CAD cue, how-
ever, there were more false alarms in the interactive 
CAD-checked condition than the automatic when CAD 
was incorrect. A 2 × 2 within-participants ANOVA on 
false alarms with factor of condition (automatic vs inter-
active checked-CAD) and CAD (incorrect CAD, vs no 
CAD) showed there to be no main effect of condition, 

F(1, 17) = 1.24, p = 0.28, ηp
2 = 0.07. There was a sig-

nificant main effect of CAD, F(1, 17) = 45.42, p < 0.001, 
ηp

2 = 0.73, in which more false alarms were made in 
the incorrect CAD condition compared to the no CAD 
condition. The condition × CAD interaction was sig-
nificant, F(1, 17) = 5.03, p = 0.04 ηp

2 = 0.23. Planned 
t-tests showed that when CAD was incorrect, a greater 
number of false alarms were made in the interactive 
checked-CAD condition than the automatic condition, 
t(17) = 2.60, p = 0.02, d = 0.61, with substantial evidence 
in support of the alternative, BF10 = 3.15. There was no 
difference in false alarms between the automatic and 
interactive checked-CAD condition, when no CAD cue 
was presented, t(18) = 0.14, p = 0.89, d = 0.03, with sub-
stantial evidence in support of the null, BF10 = 0.24.

Discussion
Experiment 1 compared whether presenting CAD along-
side the mammogram (in the automatic condition) led to 
better search at low prevalence than when participants 
could choose to interact with CAD. The results showed 
that overall, people made fewer miss errors in the auto-
matic condition compared to the interactive condition 
(26% vs 32%, respectively). However, they also made 
more false alarm errors in the automatic condition com-
pared to the interactive (30% vs 17%, respectively). The 
results are mixed in terms of outcomes. In terms of can-
cer detection, the automatic condition showed superior 
performance. In terms of minimising false alarms, the 
interactive condition was the better presentation mode.

Overall, the data from both conditions replicate the 
over-reliance pattern observed in previous work (e.g. 
Kunar et al., 2017a, 2017b; Russell & Kunar, 2012). Miss 
errors were reduced when the CAD cue was correct. 
However, when the CAD cue was incorrect or there was 
no CAD cue then miss errors were high. False alarms 
were also increased with the presence of an incorrect 
CAD cue. In all conditions having a correct CAD cue 
aided target detection and having an incorrect CAD cue 
led to poorer search performance. However, these effects 
on miss errors and false alarms were differentially miti-
gated by how the CAD cues were presented.

Examining the miss errors, the results showed that, 
when CAD was accurate search was better overall in the 
automatic than the interactive condition. As the CAD 
cue was highly salient, then under conditions where it 
was visible and correct, there would be an expected ben-
efit of it being presented. As participants only chose to 
view the CAD cue on 34% of trials in the interactive con-
dition, it makes sense that more targets were found in the 
automatic condition, given that CAD was utilised on all 
trials. Furthermore, the automatic condition showed no 
miss error cost in comparison to the interactive condition 

Fig. 4  Proportion of miss errors and false alarms in the automatic 
and interactive checked CAD conditions of Experiment 1
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when CAD was either incorrect or not shown. In terms 
of cancer detection rates, the automatic condition is the 
most beneficial presentation mode.

However, examining the false alarms, there were a 
greater proportion of false alarms in the automatic condi-
tion compared to the interactive condition. This occurred 
for both incorrect and no CAD (correct) conditions. In a 
clinical setting, an increase in false alarms would mani-
fest as an increase in the number of women that are 
falsely recalled for further tests. This has serious financial 
and psychological implications for the women involved 
(Aro, 2000). Having the CAD cue be interactive miti-
gates these costs, but with the caveat that, overall, more 
women go undiagnosed as having a mass.

Unsurprisingly, CAD had an effect on sensitivity (as 
measured by d′) with an increase in sensitivity to detect 
a target when the CAD cue was correct in comparison 
to the no CAD and incorrect CAD condition. Although 
there was a trend for sensitivity to be lower in the inter-
active condition for correct CAD trials, (which also cor-
responds with the increase in miss errors for these trials), 
there was no overall difference in sensitivity when d′ 
was compared across automatic or interactive condi-
tions. When examining criteria, CAD had an effect on 
response criteria with a shift to a more liberal response 
criteria in the correct CAD condition. Interestingly, there 
was an overall shift in response criteria between presen-
tation modes with the interactive condition showing a 
more liberal response bias than the automatic. This shift 
in response bias was likely to be driven by the incorrect 
CAD condition. Interestingly, there was no clear effect of 
this response bias on the miss errors or false alarms when 
the interactive CAD trials were examined, as a whole. 
However, looking at the error rates in Fig. 4, we see that 
false alarms were higher in the interactive-Checked CAD 
condition than the automatic.8 This increase in false 
alarms is consistent with a more liberal response bias, 
where participants required less evidence to respond that 
a target is present.

The data are also of interest when we examine the pro-
portion of times that participants checked CAD in the 
interactive condition. Participants only checked CAD on 
34% of trials. This is far from ideal given the premise that 
CAD is to act as a ‘second reader’ in place of a radiologist. 
CAD can only be effective if it is chosen to be used as a 
tool to help search. If readers instead chose not to use 
CAD in favour of reading the mammograms alone this 
limits the efficacy of CAD technology. We discuss this 
further in the General Discussion.

Experiment 1 examined how the presentation of CAD 
affected peoples’ search performance at low prevalence. 
Participants either viewed the CAD cues simultaneously 
with the mammogram or could use them interactively 
should they wish, as a tool to confirm their response. 
The miss error data contradict the prediction that there 
should be no difference in miss errors when the CAD cue 
was correct. However, as mentioned above in this experi-
ment participants only chose to use the CAD cues on 
34% of the trials. Therefore, for the majority of trials in 
the interactive condition participants chose not to view 
the CAD cue. Experiment 2 investigates whether a simi-
lar pattern of results occurs on trials where participants 
were always shown the CAD cue, after they had searched 
the mammogram without CAD initially. This was again 
compared to an automatic condition, where the CAD 
cues were automatically shown to participants on initial 
presentation of the mammogram.

Experiment 2
Method
Participants
Twenty participants (M = 19.5  years, 14 female, 6 male) 
took part in Experiment 2. All participants had normal or 
corrected-to-normal vision. Participants were recruited 
separately from Experiment 1, however, they were not 
excluded from participation had they already taken part 
in Experiment 1.9

Stimuli and procedure
Participants completed two conditions: an Automatic 
condition and a Confirm CAD condition. The stimuli 
and procedure for the automatic condition were identi-
cal to those used in Experiment 1. The confirm condition 
was similar to the interactive condition of Experiment 
1, except that after viewing and responding to the ini-
tial mammogram on each trial, participants were always 
shown the CAD cues. If there was no CAD cue associ-
ated with that particular trial, then the mammogram 
would be re-presented without the CAD cue. Partici-
pants were then asked to give a second response as to 
whether a cancer was present by pressing an ‘m’ if the 
cancer was present or a ‘z’ if the cancer was absent. The 
second response could either confirm or change their ini-
tial response. Once the second response had been made 

9  As data were anonymised for ethical reasons it cannot be determined how 
many participants (if any) took part in both Experiments 1 and 2. Participants 
were not asked if they had completed any previous experiments conducted by 
the research group, so it is unknown how (or if ) this affected the data. If par-
ticipants took part in the previous study, their data may have been affected 
by learning effects. However, please note that even with any learning effects 
participants still showed an over-reliance of CAD in all conditions.

8  Miss errors were also numerically lower in the interactive-checked CAD 
condition in comparison to the Automatic condition for Incorrect CAD cues, 
however this difference was not significant, t(16) = 1.61, p = 0.13.
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the next trial began. RTs and errors were recorded after 
both responses. Given the high proportion of trials where 
people responded faster than 200  ms in Experiment 1, 
we encouraged people to make sure they took time to 
search the display before response in all trials, in Experi-
ment 2. Similar to Experiment 1, participants took part 
in the automatic and confirm conditions over two differ-
ent sessions, each lasting approximately 2 h. The presen-
tation order of conditions was counterbalanced across 
participants.

Results
Due to a programming error some participants only 
had a time-out period of 10 s (rather than 30 s). To rec-
tify this, and as most people responded within this time 
period, we removed all trials where participants took 
longer to respond than 10  s from analysis. Trials where 
participants responded faster than 200  ms were also 
removed from analysis. In total, these outliers led to the 
removal of 1.1% of all data. Error rates and mean correct 
reaction times for all conditions are presented in Figs. 5 
and 6.

Miss errors
Looking at Fig.  5, we see that miss errors were lower 
overall in the confirm condition than the automatic 

condition. This was particularly the case when the CAD 
cue was incorrect. They were also affected by CAD cue. 
A 2 × 3 within-participants ANOVA on miss errors 
with factor of condition (automatic vs confirm CAD) 
and CAD (correct CAD, incorrect CAD and no CAD) 
showed there to be a significant main effect of condi-
tion, F(1, 19) = 11.43, p = 0.003, ηp

2 = 0.38, in which 
overall there were fewer miss errors in the confirm 
condition than the automatic condition. There was 
also a main effect of CAD, F(2, 38) = 52.42, p < 0.001, 
ηp

2 = 0.73, in which there were fewer miss errors in 
the correct CAD, followed by incorrect CAD and then 
the no CAD conditions. There was a significant con-
dition × CAD interaction, F(2, 38) = 22.15, p < 0.001 
ηp

2 = 0.54. Planned t-tests showed that participants 
made fewer miss errors in the automatic than the con-
firm CAD condition when the CAD cue was correct, 
t(19) = 3.19, p = 0.005, d = 0.71 with substantial evi-
dence in support of the alternative BF10 = 9.39. How-
ever, when the CAD cue was incorrect participants 
missed more targets in the automatic condition than 
in the confirm CAD condition, t(19) = 4.90, p < 0.001, 
d = 1.10, with decisive evidence in support of the alter-
native, BF10 = 277.75. There was no difference in miss 
errors across conditions when the target was present 

Fig. 5  Proportion of miss errors and false alarms in the automatic 
and confirm conditions of Experiment 2 Fig. 6  D′ and c values for the automatic and confirm conditions in 

Experiment 2
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with no CAD cue, t(19) = 1.55, p = 0.14, d = 0.35, with 
anecdotal evidence in support of the null, BF10 = 0.65.

False alarms
Looking at Fig.  5, we see that there was little effect of 
presentation mode on false alarms. However, false alarms 
were affected by the CAD cue. A 2 × 2 within-partici-
pants ANOVA on false alarms with factor of condition 
(automatic vs confirm CAD) and CAD (incorrect CAD vs 
no CAD) showed there to be no main effect of condition, 
F(1, 19) = 0.53, p = 0.48, ηp

2 = 0.03. However, there was a 
significant main effect of CAD, F(1, 19) = 16.52, p < 0.001, 
ηp

2 = 0.47, in which more false alarms were made in the 
incorrect CAD compared to the no CAD condition. 
There was also a significant condition × CAD interac-
tion, F(1, 19) = 6.19, p = 0.02 ηp

2 = 0.25. Planned t-tests 
showed there was no significant difference in false alarms 
between the automatic and confirm CAD conditions 
when the incorrect CAD cue was shown, t(19) = 0.48, 
p = 0.64, d = 0.11, with substantial evidence in support of 
the null, BF10 = 0.26. Neither was there a significant dif-
ference in false alarms between conditions when no CAD 
cue was present, t(19) = 1.83, p = 0.08, d = 0.41, with 
anecdotal evidence in support of the null, BF10 = 0.93.

Signal detection theory analyses
Signal Detection Theory was used to calculate how CAD 
affected d′ (a change in sensitivity) and c (a change in cri-
terion) across presentation conditions. Figure  6 shows 
the d′ and c values.

Sensitivity (d′)
Figure 6 shows that although there was an effect of CAD 
on d′ there was little overall difference in d′ between the 
automatic and confirm conditions. A 2 × 3 within-partic-
ipants ANOVA on d′ with factor of condition (automatic 
vs confirm CAD) and CAD (correct CAD, incorrect CAD 
and no CAD) showed there to be no main effect of con-
dition, F(1, 19) = 0.04, p = 0.85, ηp

2 = 0.002. There was a 
significant main effect of CAD, F(2, 38) = 39.73, p < 0.001, 
ηp

2 = 0.68, in which d′ was greatest in the correct CAD, 
followed by the no CAD and then the incorrect CAD 
conditions. There was a significant condition × CAD 
interaction, F(2, 38) = 7.14, p = 0.002 ηp

2 = 0.27. Planned 
t-tests showed that with correct CAD there was no differ-
ence in d′ between the automatic and the confirm CAD 
condition, t(19) = 1.82, p = 0.09, d = 0.41, with anecdotal 
evidence in support of the null BF10 = 0.92. Neither was 
there a difference in d′ between automatic and confirm 
conditions when there was no CAD, t(19) = 0.42, p = 0.68, 
d = 0.09, with substantial evidence in support of the null, 
BF10 = 0.25, or when CAD was incorrect, t(19) = 1.81, 

p = 0.09, d = 0.40, with anecdotal evidence in support of 
the null, BF10 = 0.91.

Criterion (c)
Figure 6 shows that criterion was affected both by CAD 
and by whether CAD was presented in automatic or con-
firm mode. A 2 × 3 within-participants ANOVA on c 
with factor of condition (automatic vs confirm CAD) and 
CAD (correct CAD, incorrect CAD and no CAD) showed 
there to be a main effect of condition, F(1, 19) = 4.35, 
p = 0.05, ηp

2 = 0.19, in which c was greater in the auto-
matic condition compared to the confirm condition and a 
main effect of CAD, F(2, 38) = 74.20, p < 0.001, ηp

2 = 0.80, 
in which c was greatest in the no CAD condition followed 
by the incorrect CAD and then correct CAD condi-
tions. The condition × CAD interaction was also signifi-
cant, F(2, 38) = 5.76, p = 0.007 ηp

2 = 0.23. Planned t-tests 
showed that there was no difference in c between the 
automatic and confirm conditions when CAD was cor-
rect, t(19) = 0.92, p = 0.37, d = 0.21, with substantial evi-
dence in support of the null, BF10 = 0.34, or when there 
was no CAD, t(19) = 1.76, p = 0.10, d = 0.39, with anecdo-
tal evidence in support of the null, BF10 = 0.85. However, 
c was greater in the automatic than the confirm condi-
tion when CAD was incorrect, t(19) = 3.82, p = 0.001, 
d = 0.85, with very strong evidence in support of the 
alternative BF10 = 31.93.

Comparison of interactive versus confirm conditions
Given that we are interested in how presentation modes 
of CAD affect miss errors and false alarm rates, two sepa-
rate ANOVAs were run to compare responses across the 
interactive condition of Experiment 1, with the confirm 
condition of Experiment 2.

Miss errors
There were fewer miss errors overall in the confirm 
compared to the interactive condition. There was also 
an effect of CAD. A 2 × 3 ANOVA on miss errors with 
a between-participant factor of condition (interactive 
vs confirm CAD) and within-participant factor of CAD 
(correct CAD, incorrect CAD and no CAD) showed 
there to be a significant main effect of condition, F(1, 
37) = 5.25, p = 0.03, ηp

2 = 0.12, in which overall there 
were fewer miss errors in the confirm condition than 
the interactive condition. There was also a main effect of 
CAD, F(2, 74) = 66.49, p < 0.001, ηp

2 = 0.64, in which there 
were fewer miss errors in the correct CAD, followed by 
incorrect CAD and then the no CAD conditions. There 
was no significant condition × CAD interaction, F(2, 
74) = 0.69, p = 0.51 ηp

2 = 0.02. As the interaction was not 
significant the data were not analysed further.
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False alarms
Although there was an effect of CAD on false alarms 
there was no effect of presentation mode. A 2 × 2 
ANOVA on false alarms with a between-participant 
factor of condition (interactive vs confirm CAD) and 
CAD (incorrect CAD vs no CAD) showed there to be 
no main effect of condition, F(1, 37) = 3.12, p = 0.09, 
ηp

2 = 0.08. However, there was a significant main effect 
of CAD, F(1, 37) = 18.64, p < 0.001, ηp

2 = 0.34, in which 
more false alarms were made in the incorrect CAD com-
pared to the no CAD condition. There was no significant 
condition × CAD interaction, F(1, 37) = 0.01, p = 0.93 
ηp

2 = 2.06e−4. As the interaction was not significant the 
data were not analysed further.

Discussion
Experiment 2 compared an automatic condition, to a 
confirm condition. The results showed that the confirm 
presentation mode showed better performance than the 
automatic presentation mode, in terms of fewer miss 
errors and no cost to false alarms. A between-experiment 
comparison further showed that there was an overall 
benefit of the confirm mode in comparison to the inter-
active mode in terms of fewer miss errors (21% vs 32%, 
respectively) and no cost in terms of false alarms.

Overall, the results from the automatic condition again 
indicate an over-reliance on the CAD cue, replicating 
data from Experiment 1 and Kunar et al. (2017a, 2017b). 
Miss errors were greatly reduced if the mass appeared 
within the CAD cue. However, if the mass appeared out-
side of the CAD cue or no CAD was shown then errors 
were much higher. Furthermore, there were a greater 
number of false alarms when the CAD cue was incor-
rectly presented on target absent trials. People’s search 
performance was being adversely affected by incorrect 
CAD cues. Of importance, similar to Experiment 1, the 
cost of CAD was mitigated by how it was presented.

Unlike Experiment 1, there was no difference in false 
alarms between conditions. That is, neither the auto-
matic of confirm presentation mode showed a benefit 
or a cost over the other in terms of false alarms. Exam-
ining miss errors, across all trials, fewer targets were 
missed in the confirm condition compared to the auto-
matic condition (21% vs 29%). However, this difference 
in miss errors varied depending on the accuracy of 
the CAD cue. When CAD was accurate, more targets 
were missed in the confirm condition than the auto-
matic condition. This is surprising, given that partici-
pants saw the CAD cue on all trials in both conditions. 
There was no difference in miss errors on trials when 
the CAD cue was not presented. However, on trials 

when the CAD cue highlighted an incorrect area, fewer 
miss errors were observed in the confirm compared to 
the automatic condition. There are two reasons why 
this might be. First, it could be that the presence of 
the CAD cue led participants to re-search the display 
more thoroughly when they were asked to confirm. To 
investigate this RTs were compared for participants ini-
tial response (without CAD) in the confirm condition 
to their second response, after they had been shown 
CAD. However, the results showed that RTs were sig-
nificantly shorter after the second response when CAD 
had been presented, (1253  ms vs 519  ms respectively, 
t(19) = 7.40, p < 0.01, d = 1.65, with decisive evidence 
for the alternative, BF10 = 32,359.48). This suggests that 
participants were not taking the time to search the dis-
play thoroughly when they were being asked to confirm 
their response. Instead, it is more likely that partici-
pants believed the CAD algorithm had detected an 
anomaly that they have missed. In this case, they may 
be more likely to trust in the CAD cue versus their own 
judgement, following the over-reliance hypothesis.

Examining the SDT analyses, similar to Experiment 
1, CAD had an effect on sensitivity (as measured by d′) 
with an increase in sensitivity to detect a target when 
the CAD cue was correct in comparison to the no CAD 
and incorrect CAD condition. However, there was no 
overall difference in sensitivity when d′ was compared 
across automatic and confirm conditions (although 
similar to Experiment 1, there was a trend for sensitivity 
to be lower in the confirm condition for correct CAD 
trials). When examining criteria, CAD had an effect on 
response criteria with a shift to a more liberal response 
in the correct CAD condition than in the incorrect and 
no CAD conditions. Participants also showed an overall 
difference in response bias between presentation condi-
tions, where criteria in the confirm condition showed a 
more liberal response bias than in the automatic con-
dition. Please note, that the SDT results are puzzling 
in relation to the overall error data. In terms of SDT, 
lower miss errors in the confirm condition would be 
thought to occur with a change in response bias and/or 
an increase in sensitivity. Although there was a change 
in response bias, which may have explained why par-
ticipants missed fewer targets, this should also have 
resulted in an increase in false alarms. Furthermore, 
the d′ data showed no overall change in sensitivity. One 
reason for these differences may be that the decrease 
in confirm miss errors looks to be largely driven by the 
incorrect CAD cues. This may explain the results, as d′ 
in these trials showed a hint of change in which d′ was 
marginally greater in the confirm than in the automatic 
conditions. Further research would be needed to con-
firm this.
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General discussion
The work in this paper investigated how search for an LP 
target was affected by CAD presentation. Experiment 1 
compared an automatic condition where CAD cues were 
presented simultaneously alongside a mammogram to an 
interactive condition, where participants chose whether 
or not to check CAD, after initial reading. Experiment 
2 compared an automatic condition to a confirm condi-
tion, where participants first searched the display without 
CAD, before being shown the CAD cues on all trials and 
asked to confirm or change their response.

Overall, the data suggest that presenting CAD in con-
firm mode led to better search performance. Both in 
comparison to the automatic condition and the inter-
active condition, there were fewer miss errors in total 
and no cost in terms of false alarm rates. Du-Crow et al. 
(2019) suggested that the confirm presentation method 
was flawed as it gave readers a ‘safety net’ so that par-
ticipants would be less likely to search the initial display 
thoroughly. However, the current results suggest other-
wise, with search performance, in terms of finding can-
cers superior in the confirm condition, with little cost to 
false alarms.

Despite the overall benefit to search performance in the 
confirm condition, there was a small cost to miss errors 
when the CAD cue was correct. Miss errors for correct 
CAD conditions were higher in the confirm condition 
compared to the automatic condition (11% vs 6%, respec-
tively). One potential reason may be that participants 
found it easier to over-ride the salient CAD cue if there 
was a delay to its onset with the original mammogram 
display. There is evidence to suggest that top-down atten-
tional guidance mechanisms can increase with display 
time (Kunar et  al., 2008; Watson & Humphreys, 1997), 
which may have allowed participants to better disregard 
the salient cue if it appeared later. Furthermore, pre-
senting the CAD cue with the initial mammogram gave 
a strong exogenous signal that would result in high acti-
vation on a bottom-up saliency or priority map, mak-
ing it hard to ignore (Itti and Koch, 2001; Wolfe, 2021). 
This salience may have affected people’s decisions so 
that they were more likely to indicate the presence of a 
target (Kunar et  al., 2017a, 2017b). On the other hand, 
presenting the CAD cue after people have already made 
a judgement on target presence, may mitigate the sali-
ence of this cue as participants showed a confirmation 
bias for their initial decision. Confirmation bias has 
been shown to affect decision making in a number of 
medical environments (e.g. Croskerry, 2002; Pang et  al., 
2017; Tschan et  al., 2009). Croskerry (2002) suggested 
that confirmation bias would lead to people disregard-
ing important data if it disagrees with an initial medical 
decision. In terms of the current work this might mean 

that if the CAD cue opposed original judgement, partici-
pants may be more likely to dismiss it. Please note that 
this may have only happened in some trials. However, 
given that miss errors (and the variance) in CAD correct 
conditions were low, even a slight increase in miss errors 
would be enough to observe a significant difference. This 
may not be the case in conditions where miss errors and 
the variance was larger (e.g. false alarm trials). Although 
one could argue that the cost to miss errors was rela-
tively small, the high health stakes of missing a cancer in 
a clinical environment ensure that it is important to keep 
miss errors to a minimum. This has implications, given 
that the confirm presentation mode is recommended by 
the FDA. Therefore, clinical readers should be advised 
of the importance of sufficient consideration of all CAD 
cues that are presented after initial reading, with poten-
tial referral to third parties or arbitration on cases where 
CAD cues are subsequently shown.

The above results suggest that the salience and presen-
tation mode of CAD affects people’s judgements when 
it correctly cued the target. What about trials when 
the CAD cue was incorrect? This was important on 
false alarm trials, in  situations where CAD incorrectly 
prompts an area. Across all conditions, false alarms were 
increased when CAD was presented on target- absent 
trials. Interestingly, there were no differences in the pro-
portion of false alarms in the confirm and automatic con-
ditions. However, false alarms were reduced overall, in 
the interactive condition in comparison to the automatic 
condition. There are two potential reasons for this. First, 
as mentioned above, it could be that again people were 
better able to disregard the salience of the CAD cue if 
there was a delay to its onset, giving participants a chance 
to read the mammogram first, without CAD. However, 
if this were the driving factor, in this case we would also 
expect a similar performance in the confirm condition. 
Second, given that participants only chose to check CAD 
on approximately a third of trials, there would have been 
many target-absent ‘incorrect CAD’ trials, in which CAD 
was not actually shown. In this case, participants’ judge-
ments would not have been affected by the presence of 
the CAD cue. This second reason was supported when 
examining the false alarms in the interactive checked 
CAD trials, where false alarms increased when CAD cues 
were shown.

Our results suggest that there was little benefit of 
showing CAD interactively. This contrasts with the 
findings of Hupse et  al. (2013) and Drew et  al. (2020) 
who report benefits of interactive CAD. One reason is 
that Hupse et al (2013) used an enriched data set, with 
a high prevalent target. The results of this study again 
show the importance of the fact that prevalence rates 
of the target change search outcomes and needs to be 
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considered when testing how best to use CAD systems. 
A second reason may be that in the current experi-
ments, participants chose to use CAD on a relatively 
small proportion of trials in the interactive condition 
(i.e. on 34% of trials). The exact proportion of trials that 
CAD was used interactively for the work of Hupse et al. 
(2013) and Drew et al. (2020) is unknown. However, the 
studies by Drew et  al. (2020) incentivised participants 
with point scoring for good search outcomes, thereby 
encouraging participants to make regular use of the 
interactive CAD. If participants were interacting with 
the CAD cues on the majority of trials then this may in 
practice look like the confirm presentation mode in the 
current work (which showed an overall improvement 
in search). It is likely that, the proportion of times that 
CAD is utilised affects search performance.

The uptake of CAD when readers can choose to use 
it is also an important point to consider. In this study, 
participants showed a limited use of CAD in the inter-
active condition. This is noteworthy, as it suggests a 
behavioural preference for participants to rely on their 
own judgements without the use of CAD for the major-
ity of trials. Although they did not give an exact per-
centage, Hupse et al. (2013) also reported that readers 
showed a limited propensity to use the interactive CAD 
prompt. This is significant given that CAD has been 
proposed to act as a ‘second reader’ to replace double 
reading procedures (e.g. Azavedo et  al., 2012). Double 
reading has been shown to be an effective method of 
reducing the LP effect and finding a rare cancer (e.g. 
Kunar et al., 2021). If participants chose not to engage 
with CAD, they are in effect implementing a sub-opti-
mal single reading procedure, which would have impli-
cations in the clinical field. It will be up to future work 
to investigate the proportion of times that CAD is uti-
lised in mammography under interactive conditions. 
However, if it is found that radiologists choose not to 
use CAD on the majority of trials then this highlights 
a separate failing in CAD technology in terms of user 
uptake.

The current work also replicated the over-reliance 
effect shown by Kunar et  al. (2017a, 2017b). When the 
CAD cue was correct, people made fewer errors than 
when the CAD cue was incorrect, showing that peo-
ple’s judgements, rightly and wrongly, were influenced 
by the presence of CAD. Interestingly, the confirm con-
dition showed some evidence of mitigating the cost for 
miss errors, when the CAD cue was incorrect. In this 
condition miss errors were lower than in the automatic 
condition. It may be that having CAD as a ‘safety net’ is 
beneficial under these particular circumstances: partici-
pants were more likely to trust that CAD had detected 
a cancer that they had missed. Interestingly, in this 

particular instance, over-confidence in the technology 
led to an improvement in cancer detection.

Wolfe and Van Wert (2010) proposed a Multiple Deci-
sion Model to explain the high miss errors observed 
under LP, in which both the quitting threshold of search 
and the response bias changed at LP. The signal detec-
tion data of these experiments can also be used to help 
understand how CAD affects LP search, particularly 
when CAD cues are correct. In all experiments, the 
results showed that having a correct CAD leads to an 
improvement in sensitivity (as measured by d′). People 
were better able to detect a cancer, from a non-cancer, 
when it was prompted by CAD. There was also an effect 
of CAD on response criteria so that when CAD was cor-
rect participants required less evidence to respond to a 
target’s presence. This change in response bias mitigates 
the typical conservative shift observed in LP conditions 
(Wolfe and Van Wert, 2010; Horowitz, 2017; Drew et al., 
2020; Kunar et al., 2021; Russell & Kunar, 2012; Van Wert 
et  al., 2009; Wolfe & Van Wert, 2010). Both the change 
in sensitivity and response criteria led to a reduction in 
miss errors when CAD was correct. The SDT data can 
also be used to understand why the confirm condition 
produced the optimal search performance. Here we see 
that although the confirm condition did not show an 
overall improvement of sensitivity, it did lead to a change 
in response bias so that participants showed a more lib-
eral response in accepting that a target was present. This 
change in response bias again mitigated the typical LP 
shift to a more conservative response proposed by the 
Multiple Decision Model (Wolfe and Van Wert, 2010).

The experiments in this study used a present/absent 
response task where participants pressed one key if they 
thought a target was present and another if the target was 
absent. For the purpose of these studies, on target pre-
sent trials it was assumed that when people responded 
‘target present’ they had found the cancer. However, it 
could be that sometimes participants were instead (incor-
rectly) responding to a ‘non-target’ area which they had 
falsely identified as a target. Future work should therefore 
consider using a localisation response, whereby partici-
pants clicked on the location of a target. This would help 
remove any ambiguity as to whether participants were 
responding correctly to the target or incorrectly to a non-
target area.

Of final note, the results in this paper have implica-
tions for practice and policy in terms of CAD use and 
training of mammogram readers. Having CAD be pre-
sented in confirm mode should be the default recom-
mendation for all clinical settings. However, it is also 
important to train mammogram readers as to how to 
best engage with this technology. For example, to miti-
gate errors due to confirmation bias and over-reliance 
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effects, readers could be required to complete a train-
ing programme to educate them on cognitive and psy-
chological factors that we now know influence medical 
search. This could include training on cognitive biases, 
decision-making, perception, prevalence and inatten-
tional blindness (see Drew et  al., 2013 for an exam-
ple of how inattentional blindness affects search with 
medical images). Training courses have been offered 
as a solution to offset cognitive biases in other applied 
tasks (e.g. forensic psychology, Kassin et al., 2013) and 
provide a good way to educate readers on how to iden-
tify, and thus better avoid, cognitive ‘pitfalls’ that lead 
to inaccurate judgements. Furthermore, educational 
training has been found to be a highly effective method 
in combatting cognitive bias in applied settings (Sellier 
et  al., 2019). These training courses would be particu-
larly important for newly qualified radiologists given 
their lack of experience in mammography. Radiolo-
gists who are considered experts in their field and have 
acquired a vast range of experience may be more likely 
to disregard inaccurate CAD prompts and will have a 
greater experience in recognising a cancer when a CAD 
prompt fails. Therefore, CAD could disproportionately 
affect the judgements of radiologists and readers who 
are early on in their career. Targeting readers with less 
clinical experience as those eligible for training in cog-
nitive bias and other psychological factors could be an 
effective method to help reduce medical errors.
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