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Finding formulas: Does active search 
facilitate appropriate generalization?
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Abstract 

Background:  One criterion of adaptive learning is appropriate generalization to new instances based on the original 
learning context and avoiding overgeneralization. Appropriate generalization requires understanding what features 
of a solution are applicable in a new context and whether the new context requires modifications or a new approach. 
In a series of three experiments, we investigate whether searching for an algebraic formalism before receiving direct 
instruction facilitates appropriate generalization.

Results:  (1) Searching buffers against negative transfer: participants who first searched for an equation were less 
likely to overgeneralize compared to participants who completed a tell-and-practice activity. (2) Likelihood of creating 
a correct new adaptation varied by performance on the searching task. (3) Asking people to sketch alleviated some of 
the negative effects of tell-and-practice, but sketching did not augment the effect of searching. (4) When participants 
received more elaborate tell-and-practice instruction, the advantages of searching were less notable.

Conclusions:  Searching for an algebraic formula prior to direct instruction may be a productive way to help learn-
ers connect a formula to its referent and avoid overgeneralization. Tell-and-practice instruction that only described 
the mathematical procedures led to the greatest levels of overgeneralization errors and worst performance. Tell-and-
practice instruction that highlighted connections between the mathematical structure of the formula and the visual 
referent performed at similar or marginally worse levels than the search-first conditions.
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Introduction
Mathematics provides a way to formalize our descrip-
tions of patterns observed in the world and define their 
scope of application. A central goal of mathematics 
instruction is to help learners develop flexible formaliza-
tions that they can transfer appropriately across contexts 
(Day & Goldstone, 2012; Star & Newton, 2009). Ideally, 
students should be able to recognize when to apply ideas 
and recognize the boundaries of when ideas are no longer 
appropriate. Broadly speaking, there are two potential 
approaches to acquiring flexible understanding of math-
ematical relations.

Knowledge from empirical experience
In an induction-first approach, people learn ideas from 
experiences. This idea has roots in Piaget’s characteri-
zation of children as scientists learning from the world 
around them (1973), and more recently in embodied 
cognition research that emphasizes the role of percep-
tual-motor experience in learning (Abrahamson, 2009; 
Barsalou, 1999; Glenberg, 1997; Lakoff & Núñez, 2000). 
Instructional methods that come out of this tradition 
emphasize grounding symbols in hands-on activities 
(e.g., Lehrer & Schauble, 2004; Montessori, 1965). An 
array of discovery learning approaches begin with expe-
riential activities and transition to more formal notation 
through inductive reasoning (Fuson et  al., 1997; Hie-
bert et al., 1996; Kamii & Dominick, 1998). In particular, 
inventing a symbolic representation based on instances 
provides students with a better sense of the relationships 
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among variables (Rittle-Johnson & Star, 2007; Schwartz 
et al., 2011). These approaches lead to improvements in 
students’ conceptual knowledge and transfer (Carpen-
ter et al., 1998; Hiebert & Wearne, 1996), including bet-
ter preparation for future learning (Schwartz & Martin, 
2004; Schwartz et  al., 2011). However, there are two 
risks to inductive learning activities. First, it takes time 
to induce a pattern. Second, some individuals may never 
induce a useful symbolic structure (Gick & Holyoak, 
1980). There is some evidence, however, that students 
who do not induce appropriate rules during discovery 
activities still show benefits from subsequent instruction 
(Kapur, 2008; Schwartz & Bransford, 1998).

Knowledge from symbolic representations
Another approach is to begin with symbols, provid-
ing students with equations and asking them to practice 
them across several problems. There are several strengths 
to this approach. First, symbols are compact: an equa-
tion can express a whole range of values as a function. 
Previous research has shown that mathematics can help 
students learn more than verbal explanations (2005b; 
Schwartz et al., 2005a) and that beginning with symbolic 
representations can better promote transfer than starting 
with a range of concrete instances (Kaminski et al., 2009). 
To teach formulas, much of US instruction relies on clear 
lectures followed by practice problems (Third Interna-
tional Math and Science Study, Stigler & Hiebert, 2004). 
Researchers who champion direct instruction highlight 
these methods’ effectiveness in guiding students toward 
fluency (Chen & Klahr, 2003; Klahr & Nigam, 2004; 
Mayer, 2004). Furthermore, proponents of cognitive load 
theory posit that less-structured instructional meth-
ods unnecessarily overload students’ working memory 
(Kirschner et al., 2006; Sweller, 1988).

However, when students receive heavily symbolic 
instruction, they may not understand what the symbols 
represent. A risk of learning rules without an underly-
ing conceptual model is that learners can have brittle 
knowledge of what is “right” and “wrong” without know-
ing why (Lehrer & Schauble, 2004; Lehrer et  al., 2000). 
Students can memorize how to solve equations without 
learning why they work (Catrambone, 1998; Schwartz 
et al., 2011). Acquiring a purely symbolic understanding 
of a formula as a way to manipulate variables can also be 
problematic when approaching new situations; students 
with shallow understanding may be at risk of negative 
transfer, not recognizing when to apply an idea directly 
and when they need to modify it to fit a new situation. 
When students have well-rehearsed procedures, they can 
often miss key changes in problems, relying on percep-
tual similarity to help them determine what to do. For 
example, elementary-school children often make errors 

on equivalence problems, overgeneralizing their routines 
for addition (Knuth et al., 2006; McNeil & Alibali, 2004, 
2005; Sherman & Bisanz, 2009). Students may also rely 
on other surface features, such as the cover story in word 
problems, and overgeneralize accordingly when their 
understanding of equations is not linked to the real-word 
contexts they represent (Ross, 1987).

Instruction for transfer
It may be possible to integrate the two approaches 
through instruction for transfer. Because students need 
to connect a formula to the structures of the referent and 
map symbols into the context, such instruction aims to 
balance empirical investigation of new ideas and teach-
ing symbolic forms. Many research-based instructional 
methods leverage this combination of direct instruction 
and discovery learning, in approaches such as schema-
broadening instruction (e.g., Jitendra et  al., 2015), 
problem-based learning (e.g., Loyens et  al., 2011), and 
relational learning (Richland et  al., 2012). Furthermore, 
there is evidence that beginning with an empirical search 
for structure can be a productive preliminary step before 
receiving direct instruction to promote transfer, in inves-
tigations of learning about ratios, statistics, and physics 
(Kapur, 2008, 2014; Schwartz & Martin, 2004; Schwartz 
et al, 2011).

In this paper, we investigate the role of searching for 
an equation before receiving direct instruction about 
an algebra problem. Our focus is on measuring stu-
dents’ abilities to generalize appropriately to new con-
texts. Previous work on analogical transfer and transfer 
often focuses on situations where the context of a prob-
lem is changed and students need to recognize how new 
surface features map onto previous features, thus lift-
ing and reapplying the same underlying deep structure 
to a new problem (e.g., Barnett & Ceci, 2002; Gentner 
& Markman, 1997; Gick & Holyoak, 1983; Reed, 1993). 
In contrast, we investigate a situation where the surface 
features are similar, but elements of the deep structure 
have changed, a different kind of challenge people face 
extending what they know to new situations (Schwartz 
et  al., 2012). To answer our generalization questions 
appropriately, we think two steps are essential. First, peo-
ple need to realize they should not overgeneralize. They 
need to understand the learned solution deeply enough 
to recognize what features of the context can vary while 
maintaining or violating conditions of applicability. The 
second step entails generating a new structure to accom-
modate the new question. In a mathematical task, this 
often involves finding a new equation that builds on a 
known solution.

Appropriate generalization is a challenging aspect of 
transfer (Ellis, 2007). People may not realize that the deep 
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structure has changed and continue to use previously 
learned routines, showing negative transfer (Hutchins 
et  al., 2020; Singley & Anderson, 1989). Even if they do 
realize that their previous routines are incorrect, they 
may not spontaneously produce new generalizations. 
People can be “overzealous” with their application of 
ideas across contexts when they do not recognize more 
efficient or appropriate alternatives (Schwartz et  al., 
2012). Forestalling this problem is important if the ulti-
mate goal of education is to create adaptive expertise 
(Hatano & Inagaki, 1986; Schwartz et al., 2005a, 2005b). 
Thus, in Experiment 1, we contrasted negative transfer 
following instruction for transfer using search as com-
pared to traditional tell-and-practice instruction. In 
Experiment 2, we augmented the instruction-for-transfer 
approach by giving learners a better idea of the goal of 
their inductive search, i.e., creating a formula. In Experi-
ment 3, we used an enriched tell-and-practice condition.

Sketching and diagrams
In Experiment 2, we also sought to understand the role 
of diagrams and drawing in avoiding negative trans-
fer. Drawing sketches helps students visualize, elaborate 
on, and understand STEM concepts, which facilitates 
problem solving (Arcavi, 2003; Montague, 1998; Ruchti 
& Bennett, 2013; Van Garderen, 2006). The process of 
drawing aids in students’ understanding of the con-
cepts underlying a new problem and reveals to teachers 
which concepts a student may misunderstand (Ruchti & 
Bennett, 2013). Self-directed drawing can be helpful for 
learning about scientific ideas (Ainsworth et  al., 2011; 
Gobert & Clement, 1999; Leopold & Leutner, 2012; Van 
Meter, 2001). Sketching has been shown to outperform 
summarizing for learning about spatial domains such 
as biological mechanisms (Sheredos & Bechtel, 2017), 

geoscience (Gagnier et al., 2017; Garnier et al., 2017; Jae-
ger et al., 2018), and chemistry (Cooper et al., 2017).

While an extensive literature has detailed the role of 
diagrams in problem solving (e.g., Court, 1993; Larkin & 
Simon, 1987; Van Heuvelen, 1991), we investigate the role 
of prompting students to create their own sketches as a 
tool for algebraic problem solving. There is little prior 
research on sketching in this context. Based on findings 
about multiple representations in mathematics problem 
solving (Brenner et  al., 1997; Hegarty & Kozhevnikov, 
1999; Kieran, 1992), we thought that sketching in service 
of generating and solving an algebraic equation might 
help learners to create an additional representation.

The polygon perimeter problem
Our task involved learning of an abstract rule for the 
perimeter of a row of shapes. The polygon perimeter 
problem is a growth pattern problem in which the solv-
er’s task is to determine the perimeter of a row of regu-
lar polygons arranged in a single line (see Fig.  1a). The 
polygon perimeter problem has been used in mathemat-
ics education research as an example of growth pattern 
problem that allows a general abstract solution to be built 
from a range of possible contexts (e.g., Driscoll, 1999; 
Koellner et  al., 2007). In our task, stimuli consisted of 
shapes ranging from three sides (triangles) to six sides 
(hexagons) in rows of 3–10 shapes. The total perime-
ter of the row varies  linearly as a function of the size and 
number of shapes. Perimeter can be expressed in formu-
las that simplify to this format: Perimeter = (s − 2)n + 2, 
where s represents the number of sides per polygon and n 
represents the number of polygons in the row. For exam-
ple, for the middle figure in Fig. 1a, s equals 4 because the 
individual polygons in the row are squares with four sides 
each and n equals 6 because there are six squares in the 

Fig. 1  Study materials. a Sample figures used in the learning trials. Figures consisted of single rows of 3–10 shapes ranging from 3 sides (triangles) 
to 6 sides (hexagons). b Figures used in two transfer questions. In both arrangements, the perimeter formula for a single row of shapes must be 
adapted
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row. To compute the perimeter, a solver should first sub-
tract 2 from s to account for the 2 sides of each shape that 
overlap on the interior edges and do not contribute to the 
outside perimeter edges of the figure. The resulting value 
(2) is multiplied by the number of shapes in the row (6), 
and then 2 is added to this product to represent the final 
two sides that make up the left and right edges of the row. 
The perimeter value is 14.

We tested the effects of applying a given formula or 
generating the formula from a diagram. Participants in 
the search condition received the formula afterward, so 
our research isolated the effects of beginning with a for-
mula versus beginning with an inductive search and later 
receiving direct instruction. Of special interest was the 
effect on participants’ abilities to generalize appropriately 
to new problem types. We examined both steps of this 
process: avoiding overgeneralization and correct adapta-
tion. Participants practiced with one row of shapes, and 
in our generalization transfer questions (see Fig.  1b), 
there were two rows of shapes. For these arrangements, 
the perimeter formula for a single row of shapes must 
be adapted. For example, for a figure with two rows of 
squares, 3 internal sides must be subtracted, modifying 
the first part of the formula to (s − 3). Subsequently, there 
are 2 additional edges to consider (one on each of the left 
and right sides), so the formula should be modified to 
(s − 3)n + 4. Substituting 4 and 8 for s and n, respectively, 
would result in 12, the perimeter of the two-row figure.

Experiment 1
Experiment 1 investigated the optimal timing of direct 
instruction. We hypothesized that direct instruction 
and practice would lead to overgeneralization, and that 
inventing a formula would help avoid it. An open ques-
tion was whether there is benefit for searching for a for-
mula but not finding it, as found in productive failure 
research (Kapur, 2008).

Method
Participants
Seventy-two participants were recruited through a large 
state university’s undergraduate psychology pool. Aver-
age age was 20.11 years old (SD = 2.45). All participants 
had taken algebra and geometry courses, but fewer had 
taken trigonometry, precalculus, or calculus courses. 
There were no significant differences in age, gender bal-
ance, or mathematics course experience between condi-
tions. For more details, see Appendix (Table 11).

Design and procedure
There were 3 learning blocks (18 trials each) followed 
by transfer measures. The instructions of each learning 
block were manipulated such that participants spent 

time using different strategies to solve the problems. 
Participants were randomly assigned to condition: 
search or tell-and-practice. Each participant completed 
the study individually over approximately 45  min. All 
participants began by counting the perimeter in block 
1. In block 2, participants either searched for a for-
mula (search condition) or were told the formula (tell-
and-practice condition). All participants were told the 
formula in block 3. Finally, participants completed gen-
eralization measures after the learning phase.

Learning Blocks  First, all participants completed a 
block of problems where they simply counted the num-
ber of sides to determine the perimeter. There were no 
condition differences in the instructions provided for 
block 1.

The second block differed by condition. Individuals in 
the search condition were asked to search for an algebraic 
rule for perimeter that can be used with all shapes and 
all numbers of shapes. They were asked to indicate when 
they had determined the rule to the experimenter ver-
bally and the trial number on which they found the rule 
was recorded. After finding the rule, these participants 
were instructed to use it to solve for the perimeter on 
the remaining problems in the second block. Participants 
in the tell-and-practice condition were given the perim-
eter formula, (s − 2)*n + 2, at the beginning of the second 
block and asked to calculate the perimeter using this for-
mula. The variables were defined in the instructions as 
the number of sides and number of shapes, but the rela-
tionship described by this function was not explained.

For block 3, all participants received the perimeter for-
mula and were instructed to apply it to find the perimeter 
on these 18 trials. For participants in the tell-and-prac-
tice condition, the instructions for this block of trials 
were identical to the instructions in block 2. A complete 
list of the instructions is available on the Open Science 
Framework (OSF) repository for this project, which can 
be found at https://​osf.​io/​3s8ay/?​view_​only=​dea08​3debf​
6145d​f8759​1037f​5ed91​7f.

Measures
Learning phase measures  We noted whether par-
ticipants found a formula in the search conditions, and 
whether the formula was algebraic. For a formula to be 
considered algebraic, it must be able to be used without 
the referent present, i.e., it must be abstract. As an exam-
ple, a formula that entailed counting the top and side edges 
of the figure and multiplying that total by 2 would not be 
considered algebraic because it still requires the solver to 
do a significant amount of counting using the figure. In 

https://osf.io/3s8ay/?view_only=dea083debf6145df87591037f5ed917f
https://osf.io/3s8ay/?view_only=dea083debf6145df87591037f5ed917f
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contrast, a formula such as (s * n) − (s − 1) * 2 can be solved 
without a figure present, indicating that it is algebraic.

Generalization measures  After the three learning blocks, 
all participants answered four generalization measures. In 
the first two problems, the pattern was modified such that 
two rows of shapes made up the figure as shown in Fig. 1b. 
To correctly determine the perimeter, participants could 
count the number of outside edges or use a modified alge-
braic formula.

A second experimental factor was manipulated 
between-subjects at the time of the transfer questions to 
explore the nature of participants’ ability to adapt to new 
contexts; two forms of the transfer question were used. 
Form A stated, “Here is a new pattern. How would you 
solve this problem to find the perimeter?” In this ques-
tion form, participants were asked to determine the 
perimeter with no guidance about strategy and no pro-
vided formula. In contrast, Form B included the formula 
and asked participants to use or adapt it to solve for the 
perimeter. The wording for Form B read, “Here is a new 
pattern and here is the formula you just used. [printed 
formula] Please use or adapt the formula you used before 
to solve this problem to get the perimeter.”

This difference in wording allows the experiment to 
explore an aspect of transfer. With Form A, participants 
can spontaneously generalize their own solution or our 
formula, or choose a different method, such as count-
ing. Because Form B explicitly asks participants to use or 
adapt the provided formula, it tests whether participants 
can adapt a formula that may be different than their own 
methods. This is especially relevant in the Search condi-
tion, where some individuals could generate alternative 
forms of the perimeter solution during the learning phase 
of the study.

Coding scheme  Participants’ responses to the two 
transfer questions fell into three categories as described 
in Table  1. The “adapt” code applies to strategies that 
resulted in a formula with modified parameters that could 
be generalized to a different number of shapes arranged 
in the same double-row pattern. “Overgeneralizing” the 

formula was defined as directly applying the previously 
used formula to the new context without accounting for 
the new parameters posed by the different arrangements 
of shapes. This strategy resulted in an incorrect answer. 
“Other” strategies were not algebraic and did not result in 
a generalizable formula that could be used with a differ-
ent number of shapes. Responses could only receive one 
code. If a participant adapted the formula and counted to 
double-check his or her solution, the response was coded 
as adapt. Interrater reliability for the eight squares and ten 
hexagons tasks was κ = 0.85 and κ = 0.92, respectively.

Visualization and  formula comprehension meas-
ures  After the first two transfer questions, we included a 
two-part task that asked students to compute the perim-
eter for (a) a figure comprised of 100 squares in a single 
row and (b) a figure comprised of two rows of 100 squares 
each. We consider this a visualization measure, because 
participants received no diagrams and thus were required 
to visualize the figures. Participants’ responses were 
coded as overgeneralizing if they involved directly using 
the provided formula to calculate the perimeter for two 
rows of 100 squares (substituting 200 for the total num-
ber of shapes, ignoring the additional overlapping sides). 
Interrater reliability on this coding scheme was κ = 0.93. 
Table 3 shows participants’ approaches by condition.

Finally, we included a measure asking participants why 
we subtract 2 in the perimeter formula to gauge their 
understanding of how the formula related to the refer-
ent. Participants’ responses were coded for whether they 
included a reference to the idea of overlapping, shared, or 
internal sides that are not counted in the perimeter. This 
was used to measure comprehension of the formula. For 
the complete measures, see the OSF repository.

Results
Learning task results
The majority of participants in the search condition (72%) 
found a formula. However, many of these formulas were 
not algebraic, but instead very closely tied to the referent. 
Formulas were coded as algebraic if they did not involve 
counting the entire perimeter and were applicable to all 
shapes and numbers of shapes. Only 17% of the search 
participants found an algebraic formula.

Response times on block 1 did not differ by condition 
(MSearch = 14.7  s, SDSearch = 10.8; MTell-and-practice = 14.1  s, 
SDTell-and-practice = 10.1; t = 0.95, p = 0.34). On block 2, 
tell-and-practice participants applying the formula 
had comparable average response times per trial, MTell-

and-practice = 13.7  s, SDTell-and-practice = 9.6. In contrast, 
search participants were significantly slower with high 
variability, MSearch = 44.4  s, SDSearch = 55.8 (t = 13.59, 

Table 1  Transfer question strategy codes and sample responses

Strategy code Sample response

Adapt “Number of sides minus 2 … I have to 
change that. The number of sides minus 
4 times the number of shapes plus 6”

Overgeneralize “I’d start by counting the number of 
shapes. It’s 2 rows of 5 so 10. The shapes 
are hexagons, so 4 times 10 is 40 plus 2 
is 42”

Other Counting, skip-counting, or other solutions
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p < 0.01). Tell-and-practice participants also had sig-
nificantly lower average response times per trial on the 
third block as compared to search participants, likely an 
effect of practicing the formula (MTell-and-Practice = 9.8  s, 
SDTell-and-Practice = 5.4; MSearch = 12.7  s, SDSearch = 9.7; 
t = 6.71, p < 0.01).

Transfer task results
Two rows generalization measures  First, we report accu-
racy, and then we focus on strategy use. Table  2 shows 
the accuracy results by condition and question form. Chi-
square tests found a significant relation between these 
factors and transfer accuracy for the eight squares meas-
ure (χ2 (3, N = 72) = 11.25, p = 0.01) and ten hexagons 
measure (χ2 (3, N = 72) = 8.95, p = 0.03). Adjusted stand-
ardized residuals were computed to determine the con-
tribution of each condition and question form combina-
tion to the obtained chi-square values. A residual greater 
than ± 2 indicates a lack of fit with the null hypothesis that 
accuracy was at chance. Tell-and-practice condition par-
ticipants given question Form B (provided the formula on 
the transfer tasks) had an adjusted residual of − 3.3 for the 
squares task and − 2.9 for the ten hexagons task, indicat-
ing that this combination of condition and question form 
performed worse than would be expected by chance. The 
difference by condition (collapsing across question form) 
was marginally significant for the eight squares question 
(χ2 (1, N = 72) = 3.60, p = 0.06) and the ten hexagons ques-
tion (χ2 (1, N = 72) = 2.83, p = 0.09). 

Table  2 shows the strategy results by condition and 
question form. Chi-square tests found a significant rela-
tion between these factors and transfer strategy use 
for the eight squares measure (χ2 (3, N = 72) = 11.25, 
p < 0.005) and ten hexagons measure (χ2 (3, 
N = 72) = 14.65, p = 0.02). The tell-and-practice, question 
Form B condition had adjusted residuals of 3.3 for over-
generalizing on the eight squares task and ten hexagon 
task and − 2.9 for “other” strategies on both tasks. These 
residuals indicate that this combination of condition and 

question form were more likely to overgeneralize than 
would be expected by chance.

Visualization measure  The visualization measure 
included two parts. First, participants were given the for-
mula and asked to compute the perimeter for a row of 100 
squares. Next, participants were asked to compute the 
perimeter for a figure made up of two rows of 100 squares. 
The likelihood of overgeneralizing by condition is margin-
ally significant (χ2 (1, N = 72) = 3.57, p = 0.06) (Table 3).

Formula comprehension measure  Participants’ 
responses were coded for whether they included a refer-
ence to the idea of overlapping, shared, or internal sides 
that are not counted in the perimeter. In general, partici-
pants performed quite well on this question. 83.3% of par-
ticipants in the search condition got this question correct 
while 80.6% of participants in the tell-and-practice condi-
tion got this correct. This difference was not statistically 
significant between the conditions (χ2 (1, N = 72) = 0.94, 
p = 0.76). Anecdotally, it is possible that answering this 
question helped participants to understand the formula.

Transfer among search condition participants  We sepa-
rated participants in the search condition into two groups: 
those who did and did not successfully invent a formula. 
The rate of inventing was low, which affords us the ability 
to do a more direct comparison of the effects of invent-
ing a formula (see Table 4). On all three tasks, tell-and-

Table 2  Participants’ accuracy and strategy use as a function of condition and question form

a Cells represent the percent of participants in each condition who used that strategy

Eight squares Ten hexagons

Accuracy (%) Overgeneralizea 
(%)

Othera (%) Adapta Accuracy (%) Overgeneralizea 
(%)

Othera (%) Adapta

Tell-and-practice (N = 36)

 Form A 67 33 67 0 50 33 67 0

 Form B 22 78 22 0 11 83 17 0

Search (N = 36)

 Form A 72 28 72 0% 55 39 56 6%

 Form B 55 39 44 17% 44 44 44 11%

Table 3  Visualization measure strategies by condition

Cells represent the percent of participants in each condition that used that 
strategy

Overgeneralize 
(%)

Correct 
(Add 2) 
(%)

Double (%) Misc (%)

Tell-and-practice 
(N = 36)

64 25 8 3

Search (N = 36) 42 39 8 11
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practice participants were most likely to overgeneralize. 
Participants who did invent an algebraic formula were the 
least likely, and participants who searched for a formula 
but did not arrive at an algebraic formula were in the mid-
dle. We compared the rate of overgeneralizing among tell-
and-practice participants to search participants who did 
not find a formula to investigate the possibility of produc-
tive failure. The trend is consistent across all three tasks, 
but we did not find statistically significant evidence of an 
advantage of trying to search for the eight squares task (χ2 
(1, N = 66) = 3.26, p = 0.07), the ten hexagons task (χ2 (1, 
N = 66) = 0.894, p = 0.34), or the 200 squares task (χ2 (1, 
N = 66) = 1.97, p = 0.16).

Discussion
We observed few algebraic equations among participants 
in the search condition. Instead, many students created 
procedures that relied on constants and counting rather 
than variables. Thus, when given a new problem, these 
students were likely to continue counting and using other 
non-general solution methods. We did observe condition 
differences, particularly on question Form B, which asked 
students to use or adapt what they had learned (a typi-
cal feature of assessments). Providing the formula on the 
transfer test was especially associated with overgeneraliz-
ing for students in the tell-and-practice condition. Being 
told a formula and then being asked to apply it in another 
context runs the risk of overgeneralizing, as one may not 
question whether the previously learned routine can be 
directly applied. Without a formula, participants were 
more likely to reason about the problem directly, using 
counting or other strategies.

Experiment 2
In Experiment 2, we sought to remedy an issue in Experi-
ment 1 and to extend our line of inquiry with a new 
instructional condition. In Experiment 1, we observed 
that participants had difficulty with finding an algebraic 

formula. As reported, many participants created non-
algebraic lists of procedures or other non-generalizable 
methods for finding the perimeter that relied on count-
ing. In Experiment 2, we added more support to our 
definition of a formula by providing examples in the 
beginning of the second block for participants in the 
Search conditions.

We also investigated the role of diagrams and sketch-
ing. Some participants received diagrams as in the pre-
vious study, and others were asked to sketch the shape 
figures. We crossed this sketching manipulation with 
the search versus tell-and-practice manipulation. With 
the search instructions, our hypothesis was that sketch-
ing may help people see which parts of the shapes con-
tribute to the perimeter, and then be more likely to find a 
formula. With tell-and-practice instructions, we thought 
sketching may help people connect the provided formula 
to the figure. We predicted that the sketching conditions 
would be less likely to overgeneralize than participants 
given diagrams for each problem.

Method
Participants
Undergraduate participants (n = 161) were recruited 
through the same undergraduate psychology participant 
pool and randomly assigned to one of four between-
subjects conditions: tell–diagram (n = 38), tell–sketch 
(n = 39), search–diagram (n = 39), and search–sketch 
(n = 37). Three individuals were dropped from analyses 
for miscounting perimeter on over half of the block 1 tri-
als. Additionally, we dropped five individuals who arrived 
late to their study sessions and did not complete the post-
tests. One-hundred-fifty-three participants remained in 
the analyses. See Appendix (Table 12) for a summary of 
the demographics.

Materials and procedure
The procedure for Experiment 2 was very similar to 
Experiment 1. However, participants solved the prob-
lems on pencil and paper instead of using a computer, 
completing three separate problem packets, the trans-
fer problems, and a demographics sheet. No additional 
tools, such as calculators, were provided. The entire 
session took approximately 1  h. We allowed up to four 
participants per timeslot. Individuals worked at oppo-
site corners of a large conference room and did not col-
laborate; we analyze these data at the individual level. A 
researcher remained in the room for each session, dis-
tributing and collecting materials from each individual. 
Researchers instructed the participants to complete 
each page in order, without referring to any previous 
pages. Experimenters answered clarifying questions but 

Table 4  Likelihood of overgeneralizing by condition and 
formula-finding

Cells represent the percent of participants in that condition who 
overgeneralized

Eight 
squares 
(%)

Ten 
hexagons 
(%)

200 
squares 
(%)

Tell-and-practice (n = 36) 56 58 64

Search

 Found algebraic formula (n = 6) 17 17 17

 Did not find formula (n = 30) 33 47 47
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did not provide hints or assistance to participants. For 
example, researchers answered questions such as “what 
does ‘perimeter’ mean?” and “do I need to sketch for this 
part?” but did not answer “what is the formula?” or make 
any comments about individuals’ progress.

Trials were again presented in a fixed randomized 
order. Because of the additional manipulation, the num-
ber of trials per study block was decreased from 18 to 
13, which still allowed for each item to be shown at least 
once. Seven items were shown twice and these repeat 
items were distributed across shapes and numbers of 
shapes. Following the study blocks, we assessed partici-
pants’ transfer and understanding of the formula using 
the same measures as in Experiment 1 (see OSF for com-
plete instructions and measures). Finally, participants 
completed a paper-based demographics questionnaire.

Design
The study used a 2 × 2 between-subjects design, crossing 
the previous manipulation (search vs. tell-and-practice) 
with a sketching manipulation (sketch vs. diagram). Par-
ticipants either referenced shapes printed on a page (dia-
gram conditions) or read descriptions of shapes to sketch 
(sketch conditions).

Sketching manipulation  The sketching manipulation 
was introduced during block 1 of the study. Participants 
in sketch conditions received descriptions of figures to 
draw (e.g., “three triangles in a row”). These individuals 
also received a reference sheet showing how to draw each 
type of shape in a row (see OSF repository). In block 1, 
sketch participants were instructed to sketch the figures 
described and count the outside edges. In the subsequent 
blocks, no explicit instructions about sketching were 
given, but participants continued to receive descriptions 
of the figures instead of diagrams. Participants in the dia-
gram conditions received images for all three blocks as in 
Experiment 1.

Search conditions: instruction about formulas  To clarify 
the task, participants in the search groups received a sheet 
explaining algebraic formulas before beginning Block 2. 
The sheet explained that a formula is a set of mathemati-
cal steps taken to find the perimeter without counting 
each edge, which works for all types of shapes (e.g., a 
formula that only works for triangles would not count). 
Participants were free to ask questions before moving on, 
and researchers limited answers to those about formulas 
in general; researchers did not reveal or hint at steps to the 
target formula.

Measures
Experiment 2 used the same measures and similar cod-
ing schemes as Experiment 1. Participants first com-
pleted two transfer questions asking for the perimeter of 
two-row figures (squares and hexagons). All participants 
received the formula and were asked to use or adapt the 
formula to find the perimeter (Form B). Responses to 
these questions were coded for accuracy and strategy. 
Because of the nature of small-group data collection (as 
compared to individual think-aloud protocols), we could 
not always distinguish between correct adaptation of 
the formula and counting. Both strategies indicated that 
a participant did not use the given formula for these 
questions. Interrater reliability was κ = 0.96 on the eight 
squares task and κ = 0.96 on the ten hexagons task.

Next, participants completed the two-part question 
asking participants to determine the perimeter of a row 
of 100 squares and two rows of 100 squares. As in Experi-
ment 1, responses were coded for accuracy and strategy 
use. Interrater reliability on the coding scheme for this 
question was κ = 0.75.

Finally, participants’ knowledge of the formula was 
probed by again asking, “What does the ‘− 2’ in the for-
mula represent? Why do we subtract two?” Responses 
were coded for whether they attributed the “− 2” to the 
overlapping sides in the row.

Results
Learning task results
We coded individuals as having found a formula if they 
circled “yes” for the question “Did you use a formula to 
find the perimeter?” and recorded the formula they noted 
during the search packet. Sixty-four participants (84% of 
the search conditions) reported that they had found a for-
mula. There was no association between finding a formula 
and accuracy on the eight squares (χ2 (1, N = 76) = 2.83, 
p = 0.09), ten hexagons (χ2 (1, N = 76) = 0.01, p = 0.92), 
or 200 squares (χ2 (1, N = 76) = 1.68, p = 0.43) questions. 
Separately, we coded whether each formula was alge-
braic. Of the 64 participants who stated that they found 
a formula, 36 found an algebraic formula, i.e., 48% of the 
participants in the search conditions found an algebraic 
formula.

We coded whether the formulas that participants 
found were algebraic and we compared accuracy among 
participants who did and did not find algebraic formula 
during the learning phase and accuracy on the trans-
fer measures. There was a positive relationship between 
finding an algebraic formula during the learning phase 
and accuracy on the eight squares transfer question, 
χ2 (1, N = 76) = 4.6, p = 0.03. There was no relationship 
between finding an algebraic formula and accuracy on 
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the ten hexagons (χ2 (1, N = 76) = 0.553, p = 0.46) or 200 
squares (χ2 (1, N = 76) = 4.66, p = 0.10) questions.

The amount of time participants spent on the learning 
blocks varied by condition, with searching and sketch-
ing both requiring more time. On average, participants 
in the tell–diagram condition took 16.34 min (SD = 5.98) 
and tell–sketch participants took 25.78 min (SD = 9.63). 
The search conditions took longer; search–diagram par-
ticipants took an average of 29.51  min (SD = 9.72) to 
complete the learning blocks with the average for search–
sketch at 34.35 min (SD = 8.83).

Effects of sketching on finding a formula  We also inves-
tigated whether sketching or seeing diagrams affected 
participants’ ability to find a formula during the search 
task. Seventy-eight percent of participants in the search–
sketch condition and 90% of search–diagram participants 
reported finding a formula. There was no significant effect 
of condition on participants’ likelihood of finding a for-
mula (χ2 (1, N = 76) = 1.84, p = 0.17) or on their likeli-
hood of finding an algebraic formula, χ2 (1, N = 76) = 2.63, 
p = 0.11. The process of visualizing and sketching a row of 
shapes did not facilitate formula induction.

Transfer task results
Two rows generalization measures  Table  5 shows the 
accuracy results by condition. Chi-square tests found a sig-
nificant relation between these factors and transfer accu-
racy for the eight squares measure (χ2 (3, N = 153) = 18.04, 
p < 0.001) and ten hexagons measure (χ2 (3, N = 153) = 10.87, 
p = 0.01). On the squares question, adjusted standardized 
residuals of 3.8 for the search–diagram condition and − 3.1 
for the tell–diagram conditions indicate that searching for 
a formula and receiving a diagram was particularly associ-
ated with correct performance and that participants who 
saw a diagram and were told the formula were particularly 
likely to be incorrect. Similar adjusted standardized resid-
uals for the ten hexagons question (2.1 for search–diagram 
and − 3.1 for tell–diagram) indicate that this pattern is 
stable across both question types. Separate hierarchical 

log-linear models for the eight squares and ten hexagon 
tasks indicate that a third-order interaction among search/
tell-and-practice condition assignment, sketch/diagram 
assignment, and accuracy is significant for both the eight 
squares task (χ2 (1) = 9.55, p = 0.002) and the ten hexagons 
task (χ2 (1) = 5.77, p = 0.02).

Examining strategy use supports the accuracy results. 
As shown in Table  6, there was a significant effect 
of condition assignment on participants’ likelihood 
of overgeneralizing for the eight squares task (χ2 (3, 
N = 153) = 18.02, p < 0.001) and the ten hexagons task 
(χ2 (3, N = 153) = 21.25, p < 0.001). Adjusted standard-
ized residuals of − 3.7 for the search–diagram condi-
tion and 3.2 for the tell–diagram condition indicate that 
these two conditions overgeneralized less often and more 
often than expected by chance on the eight squares task, 
respectively. The same pattern was observed for the ten 
hexagons task (adjusted standardized residual = − 3.6 
for search–diagram and 3.9 for tell–diagram). Separate 
hierarchical log-linear models for the squares and hexa-
gon tasks indicate that a third-order interaction among 
search/tell-and-practice condition assignment, sketch/
diagram assignment, and likelihood of overgeneraliz-
ing is significant for both the squares task (χ2(1) = 9.04, 
p = 0.003) and the hexagons task (χ2(1) = 10.74, 
p = 0.001).

Visualization measure  Table  6 indicates the percent 
of participants in each condition who overgeneralized 
on this question, directly using the provided formula for 
both one row and two rows of squares. A chi-squared 
analysis denotes a significant effect of condition, χ2 (3, 
N = 147) = 19.24, p < 0.001. Examining the adjusted stand-
ardized residuals indicates that participants in the search–
diagram condition were again less likely to overgeneralize 
than expected (adjusted standardized residual = − 2.8) 
and individuals in the tell–diagram condition were more 
likely to overgeneralize than expected by chance (adjusted 
standardized residual = 4.0). A third-order interaction 

Table 5  Post-test task accuracy by condition

Eight 
squares 
(%)

Ten 
hexagons 
(%)

200 
squares 
(%)

Why − 2? (%)

Tell-and-practice

 Diagram (n = 37) 29 18 19 63

 Sketch (n = 39) 49 44 31 66

Search (n = 36)

 Diagram (n = 39) 77 54 25 75

 Sketch (n = 38) 49 43 20 81

Table 6  Participants’ likelihood of overgeneralizing as a function 
of condition

Eight squares 
(%)

Ten hexagons 
(%)

200 
squares 
(%)

Tell-and-practice

 Diagram (n = 37) 68 74 68

 Sketch (n = 39) 49 46 39

Search

 Diagram (n = 39) 21 21 19

 Sketch (n = 38) 47 44 31
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among search/tell-and-practice condition assignment, 
sketch/diagram assignment, and overgeneralizing on this 
measure was found to be significant via hierarchical log-
linear analysis (χ2(1) = 6.47, p = 0.01).

Formula comprehension measure  Similar to Experi-
ment 1, participants were quite accurate at answering 
this question; across condition, 72% of participants were 
correct. There was no effect of condition on accuracy, χ2 
(3, N = 153) = 3.75, p = 0.29. There was a significant posi-
tive relationship between this question and accuracy on 
the eight squares (χ2(1) = 4.17, p = 0.04) and ten hexagons 
(χ2(1) = 7.82, p = 0.005) questions.

Transfer among  search condition participants  Table  7 
shows the likelihood of overgeneralizing on the three gen-
eralization tasks by condition and formula-finding suc-
cess. Again, participants who found a formula were the 
least likely to overgeneralize. Participants in the Search 
condition who did not successfully find an algebraic for-
mula were more likely to overgeneralize and participants 
in the tell-and-practice condition were most likely to over-
generalize. We again compared the likelihood of overgen-
eralizing in the tell-and-practice condition to participants 
who searched but failed to find a formula. We did not 
find statistical evidence to support the idea of productive 
failure on the eight squares task (χ2 (1, N = 114) = 1.58, 
p = 0.21), but we found marginally significant differences 
on the ten hexagons task (χ2 (1, N = 114) = 3.64, p = 0.06) 
and 200 squares task (χ2 (1, N = 114) = 3.46, p = 0.06).

Discussion
Comparing the two diagram conditions, we observe that 
participants who search for a formula are consistently 
less likely to overgeneralize it across measures.

Search participants were more likely to find an alge-
braic formula than in Experiment 1, which indicates that 
providing additional information about formulas seemed 
to help participants understand how to create formulas. 

It is also possible that completing the task on paper 
rather than via computer-facilitated searching; this ques-
tion could be studied in future work.

Across all three generalization measures, a consistent 
pattern emerged: sketching seemed to hinder perfor-
mance when coupled with the search instructions and 
help performance among the tell-and-practice condition. 
Because we primarily aimed to explore potential relation-
ships between searching and overgeneralization, we did 
not continue the sketching manipulation into the next 
experiment, as it only improved performance in the tell-
and-practice condition.

Experiment 3
In Experiment 3, we sought to control time on task, 
which was previously uncontrolled. In previous experi-
ments, participants in the search conditions spent more 
time on block 2 than tell-and-practice participants, 
because searching for a formula was more time-consum-
ing than applying a given formula. It is possible that sim-
ply spending more time on the problems led to the lower 
rates of negative transfer, instead of the instructional 
manipulation. Thus, we required all participants to spend 
the same amount of time during the learning phases in 
Experiment 3.

We also added more instructional support to the tell-
and-practice condition by explaining the function of each 
operation in the formula and visually tying each step to 
the geometric figure. Tell-and-practice condition partici-
pants received this direct instruction in blocks 2 and 3; 
search condition participants received it in block 3. More 
elaborate direct instruction may be more similar to class-
room experiences than the direct instruction provided in 
Experiments 1 and 2. We preregistered our study design 
and analysis plan for Experiment 3 (see https://​osf.​io/​
3s8ay/?​view_​only=​dea08​3debf​6145d​f8759​1037f​5ed91​
7f ).

Method
Participants
Using the pwr package in R, we conducted a power 
analysis to determine a sufficient sample size for this 
experiment. To achieve a power of 0.9 with 1 df and a sig-
nificance level of 0.05, we found that we needed 64 total 
participants to detect an effect size as strong as the effect 
observed between the two diagram conditions in Experi-
ment 2. We recruited several extra participants to ensure 
that we would have sufficient power even if any partici-
pants were dropped and also to have more sensitivity.

Seventy-four participants were recruited through the 
same undergraduate psychology participant pool and 
randomly assigned to one of two between-subject con-
ditions. Of them, four were excluded from analyses: one 

Table 7  Likelihood of overgeneralizing by condition and 
formula-finding

Cells represent the percent of participants in that condition who 
overgeneralized

Eight 
squares 
(%)

Ten 
hexagons 
(%)

200 
squares 
(%)

Tell-and-practice (n = 76) 58 60 53

Search

 Found algebraic formula (n = 36) 19 23 15

 Did not find formula (n = 41) 46 41 34

https://osf.io/3s8ay/?view_only=dea083debf6145df87591037f5ed917f
https://osf.io/3s8ay/?view_only=dea083debf6145df87591037f5ed917f
https://osf.io/3s8ay/?view_only=dea083debf6145df87591037f5ed917f
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was under 18 years old, one did not complete the trans-
fer tasks, and two struggled substantially with the first 
block of counting problems. One additional participant 
did not complete the demographics survey and was 
excluded from descriptive statistics. Sixty-nine partici-
pants remained between the tell-and-practice and search 
groups (57 women, 12 men). See Appendix (Table 13) for 
a summary of the demographics.

Materials
Participants completed written packets for each study 
block. The tell-and-practice packet (received in blocks 2 
and 3 in the tell-and-practice condition, and in block 3 
in the search condition) was more elaborate compared 
to previous experiments. This packet details step-by-step 
instructions about how the formula works, connecting 
each algebraic step to the figure. For instance, “We sub-
tract 2 because 2 sides on each shape are not part of the 
perimeter.” See the OSF repository to compare the com-
plete instructions for each condition in block 2. As in 
previous experiments, an example figure accompanied 
the tell-and-practice condition instructions.

Procedure
The entire session took approximately 1  h. We allowed 
up to four participants per timeslot, all being assigned 
the same condition. Experiment 3 followed the same 
3-packet learning phase paradigm followed by a post-test 
packet of generalization questions. In this experiment, 
time on task was controlled; each participant spent 5 min 
on block 1, and 8 min each on blocks 2 and 3. Because 
of the time on task manipulation, the number of items 
per problem packet was increased to ensure continued 
practice. If participants finished early, the experimenter 
instructed them to check their work by redoing the 
problems.

Participants were randomly assigned to condition 
(search or tell-and-practice). All participants began by 
counting the perimeter in block 1. In block 2, partici-
pants either searched for a formula (search condition) or 
were told the formula (tell-and-practice condition). All 
participants were told the formula in block 3. After the 
learning phase, participants completed transfer measures 
and a demographics sheet.

Measures
As in the previous experiments, we recorded whether 
participants found a formula in the search conditions, 
and whether the formula was algebraic. We used the 
same measures as in Experiments 1 and 2. Participants 
completed two transfer questions asking for the perim-
eter of two-row figures (squares and hexagons). All 

participants received the formula and were asked to use 
or adapt the formula to find the perimeter. Responses to 
these questions were coded for accuracy and strategy. 
Interrater reliability was κ = 0.96 on the squares task and 
κ = 0.96 on the hexagons task.

Participants completed the two-part question asking 
participants to determine the perimeter of a row of 100 
squares and two rows of 100 squares. As in Experiments 
1 and 2, responses were coded for accuracy and strategy 
use. Interrater reliability on the coding scheme for this 
question was κ = 0.75. Finally, participants were asked, 
“What does the ‘− 2’ in the formula represent? Why do 
we subtract two?”. Responses were coded for whether 
they attributed the “− 2” to the overlapping sides in the 
row.

Results
Learning task results
The majority of search condition participants (68%) 
found a formula during the search block. We analyzed the 
relationship between finding a formula during the learn-
ing phase and accuracy on the transfer measures. There 
was a relationship between inventing a formula and accu-
racy for the eight squares (χ2 (1, N = 69) = 7.27, p = 0.01), 
ten hexagons (χ2 (1, N = 69) = 5.72, p = 0.02), and the 200 
squares (χ2 (1, N = 69) = 8.87, p < 0.01) measures.

We separately coded whether participants found an 
algebraic formula. Of the 23 participants who found 
a formula in the search condition, 19 of them (86%) 
found an algebraic formula. There was no relation-
ship between finding an algebraic formula and accuracy 
on any of the post-test transfer measures; for the eight 
squares (χ2 (1, N = 69) = 0.20, p = 0.66), ten hexagons (χ2 
(1, N = 69) = 0.03, p = 0.86), and the 200 squares (χ2 (1, 
N = 69) = 0.009, p = 0.92) post-test transfer measures.

Transfer task results
Two rows generalization measures  Table  8 shows the 
accuracy results by condition. Performance was quite 
similar between the two conditions. There was no signifi-
cant effect of condition on accuracy for the eight squares 
or ten hexagons transfer questions; (χ2 (1, N = 69) and (χ2 
(1, N = 69) = 0.61, p = 0.44), respectively.

Table 8  Post-test task accuracy by condition

Eight 
squares 
(%)

Ten 
hexagons 
(%)

200 
squares 
(%)

Why − 2? (%)

Tell-and-practice 
(n = 36)

72 56 39 69

Search (n = 34) 68 65 35 85
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Participants’ strategies were coded as in the previ-
ously reported studies. See Table  9 for the likelihood 
of overgeneralizing on each problem. There was not a 
significant difference in likelihood of overgeneraliz-
ing by condition for the eight squares problem (χ2 (1, 
N = 69) = 0.01, p = 0.92) or the ten hexagons problem 
(χ2 (1, N = 69) = 1.27, p = 0.26). On the ten hexagons 
problem, 47% of search condition participants and 17% 
of tell-and-practice condition participants adapted 
the formula; search participants were significantly 
more likely to adapt the formula for this measure (χ2 
(1, N = 69) = 6.15, p = 0.01). However, this effect was 
not statistically significant for the eight squares prob-
lem, with 53% and 33% of the participants adapting 
the formula in the search and tell-and-practice con-
dition participants, respectively (χ2 (1, N = 69) = 2.0, 
p = 0.16). This may suggest that the effect of condition 
may be more pronounced on more challenging transfer 
questions.

Visualization measure  There was no significant effect 
of condition on overgeneralization on the 200 squares 
measure (χ2 (1, N = 69) = 0.02, p = 0.89). In both condi-
tions, the incidence of overgeneralizing was quite low, 
as shown in Table 9.

Formula comprehension measure  Participants were 
generally accurate in answering the comprehension 
question; 78% of participants correctly indicated that 
the “− 2” in the formula corresponds to the shared 
sides. While search participants were more likely to be 
accurate, there was not a statistically significant effect of 
condition (χ2 (1, N = 69) = 2.49, p = 0.11). Accuracy on 
this comprehension question was marginally associated 
with higher performance on the squares question, (χ2 
(1, N = 69) = 3.95, p = 0.05), but not significantly associ-
ated with performance on the hexagons question (χ2 (1, 
N = 69) = 2.28, p = 0.13).

Transfer among search condition participants  Table 10 
shows the likelihood of overgeneralizing on the trans-

fer tasks by condition and formula-finding success. 
When comparing participants in the tell-and-practice 
condition, participants in the search condition who 
found a formula, and participants in the search condi-
tion who did not find a formula, we found a significant 
effect of group membership on the 100 squares prob-
lem (χ2 (1, N = 69) = 6.73, p = 0.04) and the ten hexa-
gons problem (χ2 (1, N = 69) = 9.17, p = 0.01). There was 
a marginal effect on the eight squares problem (χ2 (1, 
N = 69) = 5.06, p = 0.08). Participants who found a for-
mula were the least likely to overgeneralize. We did not 
find evidence to support a productive failure argument 
in these findings; participants who searched but did not 
find a formula were not better prepared to transfer than 
participants who received direct instruction (and, in 
fact, were more likely to overgeneralize, though there 
may be selection bias in incoming math ability within 
this group).

Discussion
Study 3 was conducted to investigate the effectiveness 
of more elaborate tell-and-practice instruction in com-
parison with our search condition. We preregistered our 
study plan and we conducted analyses in the same man-
ner as in the previous studies. These findings suggest that 
direct instruction can be effective for teaching formulas, 
especially when the instruction explains how each aspect 
of the formula works and when the formula is tied to a 
geometric referent.

Participants who searched and successfully found a 
formula were the least likely to overgeneralize on all 3 
transfer problems, however. Tell-and-practice was not as 
strong a buffer against overgeneralizing as searching was, 
perhaps indicating that the participants who searched 
and found a formula had a deeper understanding of the 
mechanics of the formula.

Table 9  Participants’ likelihood of overgeneralizing as a function 
of condition

Eight 
squares (%)

Ten hexagons 
(%)

200 
squares 
(%)

Tell-and-practice (N = 36) 28 39 25

Search (N = 34) 29 23 26

Table 10  Likelihood of overgeneralizing by condition and 
formula-finding

Cells represent the percent of participants in that condition who 
overgeneralized

Eight 
squares 
(%)

Ten 
hexagons 
(%)

200 
squares 
(%)

Tell-and-practice (n = 36) 28 39 25

Search

 Found algebraic formula (n = 23) 17 9 13

 Did not find formula (n = 11) 55 55 55
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General discussion
In three experiments, we compared a typical instruc-
tional method, tell-and-practice, to inventing with exam-
ples before receiving direct instruction. In our first two 
studies, we consistently found that beginning with a 
search for a formula helped learners avoid negatively 
transferring the formula that they learned, although in 
Experiment 2 that effect did not hold when they also had 
to sketch. We suggest that search helps students connect 
the formula to the referent. However, in Experiment 3, 
we found that more elaborate direct instruction works 
almost as well as search, perhaps by tying mathematical 
procedures to the underlying concepts.

Does searching affect generalization?
In the introduction, we outlined two steps involved in 
properly generalizing a formula to a new problem with 
a different underlying structure. First, we hypothesized 
that people need to notice that a previously helpful rou-
tine was no longer applicable and needed to modifica-
tion. In our studies, we found evidence that this step was 
more likely to occur among people who first searched for 
a formula before receiving direct instruction about the 
steps of the formula. These participants were less likely 
to overgeneralize and continue using the formula when it 
was no longer appropriate. A second component of gen-
eralizing is that people need to determine how to adapt 
the formula to create a new formula.

Participants’ experience with mathematics was likely a 
factor in their success on the searching task. Some par-
ticipants in Experiment 1 created non-algebraic formu-
las very tied to the referents and that lacked abstraction. 
These participants were more likely to overgeneralize 
than their counterparts who created algebraic formulas. 
Providing clearer task instructions helped to alleviate this 
issue in Experiments 2 and 3.

Even with scaffolding, some participants were more 
successful than others at inventing an algebraic formula. 
There may be stable individual differences in how likely 
people are to generate rules rather than focus on exem-
plars. McDaniel and colleagues (2014) found that people 
who generated rules to describe patterns in visual data-
sets were more likely to generalize to a novel categori-
zation task and more likely to resist using idiosyncratic 
features in generalizing the trained category. Similarly, 
our participants who invented formulas were less sus-
ceptible to overgeneralizing based on surface features. 
Future work could investigate whether participants who 
invent algebraic formulas in geometry do the same in 
other spatial and geometric tasks.

Generally, our findings suggest that searching prior 
to direct instruction can help learners develop an 

understanding of the formula and mathematical pro-
cesses such that they recognize a need for generaliza-
tion and do not negatively transfer based on surface 
cues when it is no longer applicable (Schwartz & Martin, 
2004). These findings align with research on concreteness 
fading, which suggest that beginning with more concrete 
instances and working toward an abstract representation 
can be an effective way of developing transferable knowl-
edge (Fyfe et al., 2014; Goldstone & Son, 2005). Though 
there are some tradeoffs with efficiency during the learn-
ing phase, the benefits of this approach appear on future 
learning tasks. The scope of instruction, however, was 
not sufficient for a majority of learners to reach the sec-
ond phase of generalization, correct adaptation. Future 
research could build on this work by providing instruc-
tion lasting more than a single session.

Does sketching help?
A promising finding from Experiment 2 is that sketching 
helped people learn from direct instruction. However, 
in conjunction with the search instructions, it was more 
effective to provide learners with a diagram. Perhaps the 
combination of inventing and drawing a sketch was too 
taxing in terms of extrinsic cognitive load (Paas et  al., 
2003) for these participants. Alternatively, it may be that 
in tell-and-practice instruction, participants could think 
about how the given formula related to the individual 
sides of the shapes they were constructing during the 
sketching activity (Arcavi, 2003). In contrast, diagrams 
might help students search for a formula. Drawing a 
figure could be a detriment as it adds an additional step 
between each searching trial and could result in a switch 
cost whereby the processing of the formula and mathe-
matics may be broken up (Wylie & Allport, 2000). This 
pattern points to the need for more research regarding 
sketching and problem solving under different instruc-
tional conditions.

Limitations
One limitation of our investigation is that we did not 
include a pretest. Because we are interested in the nature 
of students’ inventing mathematical ideas for new prob-
lems for which they have not received previous instruc-
tion, we did not want to use a pretest that may have 
biased participants by providing them with an initial 
experience solving algebra problems involving geomet-
ric figures. We used mathematics class experiences as a 
proxy when possible, and we did not see an effect when 
comparing individuals who did or did not have expe-
rience taking calculus courses. Still, future research 
could include a pretest or individual differences meas-
ures as covariates to ensure that our results could not 
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be explained by selection bias in incoming mathematics 
ability.

Additionally, we do not know how participants would 
have performed on the generalization tasks had they 
received feedback, as they would in a classroom. The 
stimuli themselves provided some intrinsic feedback—by 
counting, participants could realize that applying the for-
mula was not correct. However, we do not know whether 
more direct feedback or subsequent direct instruction 
would have affected the pattern of results.

Because the learning task was self-paced, time on task 
was not equated across participants in Experiments 1 
and 2. (In Experiment 3, we controlled time on task.) In 
Experiments 1 and 2, we equated the number of problems 
that all participants solved instead. Learners who were in 
the search conditions generally took longer to search for 
a formula than it took for participants to apply a given 
formula. However, the argument that total time on task is 
solely determinant of transfer success is undermined by 
the fact that, in Experiment 2, the condition that took the 
longest time was the search–sketch condition. If simply 
spending more time was beneficial, we would expect this 
condition to have the lowest rates of overgeneralizing.

Finally, a set of limitations relate to the generalizabil-
ity of these findings to classroom contexts. We recognize 
that laboratory research with a relatively short interven-
tion does not directly map to educational settings. We 
suggest that translational research that builds on these 
studies in authentic classroom contexts could be a pro-
ductive step in the application of these findings. Con-
siderations such as optimal ways of providing feedback 
during the search and generalization phases, ways to 
handle the idiosyncrasies of invented solutions, and cre-
ating tasks with multiple entry points for learners of dif-
ferent mathematical experiences would all come into play 
for translating this approach to schools.

Implications
Despite the limitations, we see several implications of 
this work. Our most successful instructional condition 
included a blend of inventing and tell-and-practice, sug-
gesting that a compromise between these two types of 
instruction may be especially effective at helping students 
gain deep understanding. With respect to avoiding incor-
rect overgeneralization, in all studies, those in the search 
condition who were able to generate an algebraic formula 
performed best. We found marginal and consistent evi-
dence in support of productive failure over basic tell-and-
practice instruction in Experiments 1 and 2, suggesting 

that simply searching for a formalism even without suc-
ceeding at creating an algebraic formula may be a worth-
while preliminary step before receiving formula-only 
direct instruction. However, in Experiment 3, those who 
received enhanced direct instruction performed on aver-
age better than those in the search condition who were 
unable to generate an algebraic formula.

We found evidence that searching was productive for 
resisting overgeneralizing, but that students may not be 
likely to find a modified formula with only one instance 
of a new pattern. Anecdotally, our brief formula com-
prehension question seemed to help participants con-
nect the formula to the referent. Perhaps asking students 
to explain the steps of an equation in context could 
be fruitful in laying the groundwork for creating new 
abstractions.

Our results underscore the importance of focusing on 
transfer and generalization in assessments. Had we only 
focused on efficiency on a single problem type, we might 
have concluded that inventing and discovery learning are 
not worth pursuing because they are slower. However, by 
considering the overall efficiency across the learning task 
and the generalization task, it appears that the benefits of 
these more open-ended instructional techniques appear 
on future problem solving, to a strong degree over for-
mula-only direct instruction, and to a lesser degree over 
direct instruction closely tied to the referent. Further, 
this generalization task extends the field’s investigation 
into transfer and the ways that learning tasks can prepare 
people for future learning.

Conclusion
We offer a contribution to the goal of creating learn-
ers with adaptive expertise that can be generalized 
across contexts and applied in new learning situations. 
We extend previous research on inventing paradigms 
by incorporating a generalization task and identifying 
avoidance of overgeneralization as a first step toward 
adaptation. Across three studies, our findings suggest 
that instructional approaches that orient students to the 
spatial referents underlying symbolic formulas, such as 
encouraging students to search for deep structure prior 
to receiving direct instruction, can support students in 
stopping their routine processing and recognizing the 
need for adaptation. Ultimately, this understanding can 
help learners to not only know procedures but also know 
the boundary conditions that define the usefulness of 
their ideas.



Page 15 of 18Hallinen et al. Cogn. Research            (2021) 6:50 	

Appendix

Demographics by condition
See Tables 11, 12, and 13.

Table 11  Experiment 1 descriptive statistics by condition

College year: 1 = freshman, 2 = sophomore, 3 = junior, 4 = senior

Algebra, geometry, calculus: % of participants who had taken this course

Science or engineering major: % of participants who were science or engineering majors

Age (SD) Gender (% 
female) (%)

College year (SD) Algebra (%) Geometry (%) Calculus (%) Science or 
engineering 
major (%)

Tell-and-practice (N = 36) 20.00 (1.85) 64 2.36 (1.07) 100 100 53 14

Search (N = 36) 20.22 (2.96) 56 2.19 (1.01) 100 100 61 11

Table 12  Experiment 2 descriptive statistics by condition

College year: 1 = freshman, 2 = sophomore, 3 = junior, 4 = senior

Algebra, geometry, calculus: % of participants who had taken this course

Science or engineering major: % of participants who were science or engineering majors

Age (SD) Gender (% 
female) (%)

College year (SD) Algebra (%) Geometry (%) Calculus (%) Science or 
engineering 
major (%)

Tell-and-practice

 Diagram (N = 37) 20.32 (3.31) 79 2.30 (1.14) 100 100 45 16

Sketch (N = 39) 19.73 (1.34) 77 2.05 (0.89) 100 100 41 13

Search

 Diagram (N = 39) 19.15 (1.08) 73 1.97 (0.95) 100 100 59 22

 Sketch (N = 38) 19.76 (2.07) 70 2.32 (1.04) 100 100 51 16

Table 13  Experiment 3 descriptive statistics by condition

College year: 1 = freshman, 2 = sophomore, 3 = junior, 4 = senior

Algebra, geometry, calculus: % of participants who had taken this course

Science or engineering major: % of participants who were science or engineering majors

Age (SD) Gender (% 
female) (%)

College Year (SD) Algebra (%) Geometry (%) Calculus (%) Science or 
engineering 
major (%)

Tell-and-practice (N = 36) 23.67 (10.44) 78 2.78 (1.01) 97 97 36 14

Search (N = 33) 21.39 (4.34) 88 2.87 (1.13) 100 100 58 15
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