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Abstract 

We investigated whether standardized neuropsychological tests and experimental cognitive paradigms measure the 
same cognitive faculties. Specifically, do neuropsychological tests commonly used to assess attention measure the 
same construct as attention paradigms used in cognitive psychology and neuroscience? We built on the “general 
attention factor”, comprising several widely used experimental paradigms (Huang et al., 2012). Participants (n = 636) 
completed an on-line battery (TestMyBrain.org) of six experimental tests [Multiple Object Tracking, Flanker Interfer-
ence, Visual Working Memory, Approximate Number Sense, Spatial Configuration Visual Search, and Gradual Onset 
Continuous Performance Task (Grad CPT)] and eight neuropsychological tests [Trail Making Test versions A & B (TMT-A, 
TMT-B), Digit Symbol Coding, Forward and Backward Digit Span, Letter Cancellation, Spatial Span, and Arithmetic]. 
Exploratory factor analysis in a subset of 357 participants identified a five-factor structure: (1) attentional capac-
ity (Multiple Object Tracking, Visual Working Memory, Digit Symbol Coding, Spatial Span), (2) search (Visual Search, 
TMT-A, TMT-B, Letter Cancellation); (3) Digit Span; (4) Arithmetic; and (5) Sustained Attention (GradCPT). Confirmatory 
analysis in 279 held-out participants showed that this model fit better than competing models. A hierarchical model 
where a general cognitive factor was imposed above the five specific factors fit as well as the model without the gen-
eral factor. We conclude that Digit Span and Arithmetic tests should not be classified as attention tests. Digit Symbol 
Coding and Spatial Span tap attentional capacity, while TMT-A, TMT-B, and Letter Cancellation tap search (or attention-
shifting) ability. These five tests can be classified as attention tests.
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Significance statement
Assessment of cognitive function in clinical popula-
tions, for both clinical and research purposes, is primar-
ily based on standardized neuropsychological testing. 
However, this approach is limited as a clinical research 
tool due to two major issues: sensitivity and construct 
validity. Deriving new measures based on contempo-
rary work in cognitive psychology and cognitive neu-
roscience could help to solve these problems. However, 

we do not understand the relationship between existing 
neuropsychological tests and widely used cognitive para-
digms. The goal of this paper is to begin to address this 
problem, using factor analysis tools to map the relation-
ships, specifically in the domain of attention. Our results 
should provide guidance for which neuropsychological 
tests should be classified as attention tests, and hopefully 
provide inspiration for the development of new clinical 
assessments based on experimental attention paradigms. 
Furthermore, we hope we have provided a template for 
other researchers to explore the connections between 
cognitive paradigms and neuropsychological tests in 
domains beyond attention. By bringing these fields closer 
together, we can improve our scientific understanding of 
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cognition, and ultimately improve the welfare of people 
who suffer from cognitive disorders and deficits.

Introduction
Assessing cognitive functioning across the gamut of 
health and mental health conditions has traditionally 
relied on standardized neuropsychological test batteries 
(Foti et al., 2017; Helmstaedter et al., 2003; Meade et al., 
2018; Vives et  al., 2015). However, this approach may 
be reaching its limits as a clinical research tool in many 
fields, due to two major issues: sensitivity and construct 
validity (Bilder & Reise, 2019; Horowitz et al., 2018; How-
ieson, 2019; Kessels, 2019; Marcopulos & Łojek, 2019; 
Parsons & Duffield, 2019). We and others have proposed 
that deriving new measures based on contemporary 
work in cognitive psychology and cognitive neuroscience 
could help to solve these problems (Carter & Barch, 2007; 
Horowitz et  al., 2018). However, we currently do not 
understand the relationship between existing neuropsy-
chological tests and widely used cognitive paradigms. 
The goal of this paper is to begin to address this prob-
lem, using factor analysis tools to map the relationships. 
Specifically, we will address the attention domain, which 
was the most frequently assessed cognitive domain in our 
survey of cancer-related cognitive impairment studies 
(Horowitz et al., 2019).

Many neuropsychological tests were originally 
designed to diagnose severe cognitive difficulties (e.g., 
resulting from stroke). As a result, they tend to lack sen-
sitivity to the less severe, and often more diffuse cogni-
tive difficulties encountered by many clinical populations 
(Nelson & Suls, 2013). This insensitivity may contribute 
to the widely observed lack of correlation between objec-
tive neuropsychological tests and patients’ subjective 
reports of their own cognitive problems (Jenkins et  al., 
2006; Srisurapanont et al., 2017).

Neuropsychological tests tend to be developed from a 
practical rather than a theoretical standpoint, and often 
tap multiple cognitive abilities in a single test (Sohlberg 
& Mateer, 1989). This means that it is often difficult to 
know exactly what cognitive faculties are being measured 
by a given test (Kessels, 2019; Schmidt et al., 1994). The 
Digit Symbol Coding test, for example, is a widely used 
neuropsychological test that is variously held to measure 
attention, psychomotor speed, working memory, pro-
cessing speed, and executive function (Horowitz et  al., 
2019). In the clinical setting, this lack of specificity can 
be an advantage. If a patient has cognitive problems, 
they are likely to show up on the Digit Symbol Coding 
test. However, the downside is that it is very difficult 
to pin down which cognitive faculties are affected (Jae-
ger, 2018). For research purposes, this construct validity 

problem is a major limitation (McFall, 2005; McFall & 
Townsend, 1998), and poses a general challenge to inte-
grating neuropsychological research with cognitive neu-
roscience (Horowitz et al., 2019).

In contrast to the neuropsychological tradition, experi-
mental paradigms (“paradigms” rather than “tests”, 
because there is no standard version; Kessels, 2019) in 
basic cognitive psychology and cognitive neuroscience 
are explicitly created to test theoretical models of spe-
cific cognitive functions and operations. Experimental 
paradigms often have internal manipulations that allow 
for separations of subcomponent processes. Consider 
the visual search paradigm, in which observers search 
through N items to find a target (e.g., search for the T 
among Ls). Instead of looking at the overall response 
time, the experimenter computes the slope of the regres-
sion line for response time as a function of N to yield a 
pure search rate, independent of perceptual, response, 
and motor stages (Sternberg, 1966). Similarly, in the Erik-
sen flanker paradigm (Eriksen & Eriksen, 1974) partici-
pants see three letters, and are asked to give one response 
if the central letter belongs to one category (e.g., X or 
T) and another response if it belongs to another (e.g., 
O or C). If the two flanking letters come from the same 
category as the target (e.g., X T X, compatible trial), 
responses are typically faster than when they come from 
different categories (e.g., X C X, incompatible). The pri-
mary dependent measure is again not overall response 
time, but the incompatible-compatible difference score, 
which provides a measure of the strength of interference 
from incompatible responses. This sort of logic is rare in 
neuropsychological tests, perhaps in part because they 
have been largely administered, even now, as paper-and-
pencil tests. Consider the Trail Making Test (Partington 
& Leiter, 1949), in which participants are asked to con-
nect a sequence of digits in order (1, 2, 3, etc., version 
A) or alternate between digits and letters (1, A, 2, B, etc., 
version B). The score for each version is overall com-
pletion time. This score conflates search ability, motor 
function, and executive function into a single score. As 
with the Digit Symbol Coding test, this makes the Trail 
Making Test sensitive to a wide range of deficits, which 
contributes to its popularity (along with the fact that it 
is not proprietary), while making the results difficult to 
interpret (Kessels, 2019) though several groups have 
attempted to decompose Trail Making Test performance 
(Crowe, 1998; Misdraji & Gass, 2010; Salthouse, 2011). 
Interestingly, the Trail Making Test does produce a dif-
ference score: the difference between versions A and B is 
held to measure target-switching or executive function 
(Crowe, 1998; Sánchez-Cubillo, 2009). However, this dif-
ference score is rarely reported in the scientific literature 
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(e.g., in the cancer-related cognitive impairment field, see 
Horowitz et al., 2019).

One way to bridge this gap is to take experimental para-
digms and adapt them to the demands of clinical research 
and practice. Several recent ventures in this direction 
have been based on Posner and Petersen’s (1990) influ-
ential Attentional Network theory, which proposed that 
attention is divided into three separate functional brain 
networks. The alerting network is defined as maintaining 
a vigilant and alert state, the orienting network involves 
directing attention in space, and the executive control 
is responsible for resolving conflict between responses 
(MacLeod et  al., 2010). Based on this conceptualiza-
tion of attention, Fan et al. (2002) developed the Atten-
tional Network Test, which combines a flanker task (with 
incongruent, congruent, and neutral trials) and a cued 
reaction time task (with central, double, spatial, and no 
cue trials). The difference between trials with congruent 
and incongruent flankers measures executive control, 
the difference between central and spatial cues measures 
orienting, and the difference between double and no-cue 
trials measures orienting. The Dalhousie Computerized 
Attention Battery (Jones et  al., 2016) was also designed 
to measure the alerting, orienting, and executive control 
networks, using a battery of eight tasks adapted from the 
experimental literature. Simple and choice reaction time 
tasks measure alerting, visual search measures orient-
ing, while a go/no go task, a dual task, a flanker task, and 
item and location working memory tasks measure execu-
tive control. The NIH Toolbox (https://​www.​healt​hmeas​
ures.​net/​explo​re-​measu​rement-​syste​ms/​nih-​toolb​ox) is 
a comprehensive set of computerized tests designed to 
measure cognitive, emotional, sensory, and motor func-
tions. The NIH Toolbox Cognition Battery, part of the 
NIH Toolbox initiative, uses a version of the flanker test 
derived from the ANT to measure inhibitory control 
(Zelazo et al., 2013).

The ANT has been adopted fairly widely. A review by 
Arora, Lawrence, and Klein (Arora et al., 2020) found 889 
studies using the ANT through 2019. Similarly, the paper 
describing the NIH Toolbox Cognition Battery Execu-
tive Function and Attention components has been cited 
in 244 papers as of early 2021. The Dalhousie battery has 
not had much time to gain traction; we could only find 
two non-methodological papers that had cited it (Cun-
ningham et  al., 2018; Sardiwalla et  al., 2019). However, 
none of the three batteries showed up in our survey of 
meta-analyses of cancer-related cognitive impairment 
(Horowitz et al., 2019), or in a survey of practicing clini-
cal neuropsychologists (Rabin et al., 2016).

We propose that factor analysis can serve as a use-
ful tool to help establish construct validity. By mapping 
the relationships between neuropsychological tests and 

experimental paradigms, we can gain a better under-
standing of how neuropsychological tests relate to con-
temporary theories in cognitive psychology and cognitive 
neuroscience. Our approach is to run a set of participants 
on a battery composed of experimental cognitive para-
digms from the attention literature and neuropsychologi-
cal tests commonly used to measure attention in clinical 
populations, and use factor analysis to see whether the 
neuropsychological tests load on the same factor as the 
experimental paradigms.

Factor analysis is widely used in the development and 
validation of neuropsychological test batteries, but typi-
cally this is only done to understand the factor struc-
ture within a battery (e.g., Jones et al., 2015; Price et al., 
2002). Two studies have used factor analysis to under-
stand the relationships among neuropsychological 
tests commonly used to assess attention. Mirsky et  al. 
(1991) found that many tests loaded onto a “perceptual-
motor speed” factor (including Stroop, the Trail Making 
Test, Digit Symbol Coding, and Digit Cancellation), a 
“numerical-mnemonic” factor (Digit Span and Arithme-
tic) a “vigilance” factor (Continuous Performance Test) 
and a “flexibility” factor (Wisconsin Card Sorting Test). 
Schmidt et  al. (1994) found separate factors for “scan-
ning” (Stroop, TMT-A & -B, Digit Symbol Coding) and 
“spanning” (Visual Span, Digit Span Forwards, Digit Span 
Backwards).

In studies of intelligence, the Cattell–Horn–Carroll 
taxonomy (McGrew, 2009) is an influential factor-ana-
lytic scheme for organizing tests into domains (termed 
“broad abilities). While the taxonomy was developed on 
intelligence batteries, there is a certain amount of overlap 
with neuropsychological testing, where batteries (or tests 
from batteries) such as the Wechsler Adult Intelligence 
Scale often serve clinical purposes. Recent meta-factor-
analytic work from Jewsbury et  al. (2017) and Agelink 
van Rentergem et al. (2020) show that the Cattell–Horn–
Carroll framework also fits well to data from neuropsy-
chological batteries.

Studies that have tried to map clinical neuropsycho-
logical tests to laboratory or experimental paradigms 
are rare. In the working memory domain, Shelton et  al. 
(2009) showed that clinical tests from the Wechsler 
batteries (Wechsler Adult Intelligence Scale III and 
Wechsler Memory Scale) correlated poorly with a fac-
tor defined by laboratory paradigms such as operation 
span (OSPAN, Turner & Engle, 1989), while the labora-
tory paradigms better predicted fluid intelligence. To our 
knowledge, no one has used factor analysis to study the 
relationship between neuropsychological attention tests 
and experimental attention paradigms.

As an object of study, attention lacks the sort of strong 
criterion construct that fluid intelligence presents for 
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working memory (Shelton et al., 2009). However, a study 
from Huang et al. (2012) provides a useful starting point. 
Huang et al. tested 257 participants on 17 different exper-
imental paradigms drawn from the attention literature, 
including nine “primary” and eight “secondary” para-
digms, selected for their theoretical relevance as attention 
measures (Bundesen, 1990; Desimone & Duncan, 1995; 
Huang & Pashler, 2007; Posner & Petersen, 1990; Treis-
man & Gelade, 1980). In a principal components analysis, 
all nine primary paradigms loaded strongly on a single 
general attention factor, which Huang et  al. termed a, 
with analogy to g, the general intelligence factor. The a 
factor accounted for 35% of total task variance, while 65% 
of the variance was explained by task-specific mecha-
nisms. This result suggests that there is a single underly-
ing attention mechanism that can be measured with one 
of the nine primary paradigms. To be precise, a should 
be regarded as a selective attention factor, as there were 
no sustained attention paradigms in Huang et al.’s battery.

In contrast, a study from Skogsberg et al. (2015), who 
tested 222 participants on 11 tasks, concluded that atten-
tion measures could be meaningfully divided into four 
clusters: spatiotemporal attention, global attention, tran-
sient attention, and sustained attention. Unfortunately, 
the set of attention tests analyzed by Skogsberg et al. has 
very little overlap with the Huang et al. (2012) set; only 
Multiple Object Tracking was included in both analyses. 
It is possible that Huang et al.’s a is a subset of the four 
clusters identified by Skogsberg et  al. We return to this 
topic in the discussion.

The plan for the current study was to determine 
whether neuropsychological tasks used to measure atten-
tion would load on to the same factor(s) as tests derived 
from experimental cognitive paradigms. We chose to 
design our study around Huang et al. (2012)’s a factor. By 
using a single factor that would correlate with multiple 
tests, we thought to achieve more power while simplify-
ing the interpretation of the data.

We designed a battery composed of six experi-
mental tests, and eight neuropsychological tests. The 
experimental tests included five selective attention 
paradigms, and one sustained attention test. The five 
selective attention tests (multiple object tracking, spa-
tial configuration visual search, visual working memory, 
approximate number sense, and flanker interference) 
were selected to represent the paradigms that had the 
strongest correlations (i.e., 0.56–0.67) to the a factor in 
Huang et al.’s (2012) study, were widely used in experi-
mental, cognitive psychology, and had strong theoreti-
cal justifications as attention measures. It is important 
to note that our tests were not identical to those used 
by Huang et al. This project was not an attempt to rep-
licate Huang et  al., but to build on the concept of the 

general attention factor. In some cases (multiple object 
tracking, visual working memory, approximate num-
ber sense, and flanker interference), we opted to use 
tasks that were already available on the TestMyBrain 
platform.

The multiple object tracking (MOT) task corresponds 
to the Tracking paradigm in Huang et al.’s (2012) battery. 
In MOT, participants need to remember and track a set 
of targets among a larger set of identical distractors. This 
requires selective attention to track targets while exclud-
ing distractors. Selective attention is central to successful 
performance in these tasks (Holcombe et  al., 2014; Vul 
et  al., 2009), and the paradigm has been a useful prov-
ing ground for models of attention (Cavanagh & Alvarez, 
2005; Pylyshyn & Storm, 1988; Scholl, 2009). A version of 
the MOT was included in the Skogsberg et al. (2015) bat-
tery. Our MOT task asked participants to track 3–5 out 
of 10 disks, while Huang et  al.’s Tracking paradigm had 
participants track 4 out of 8 disks.

Visual search has played a central role in attentional 
theory for decades (Schneider & Shiffrin, 1977; Tre-
isman & Gelade, 1980). Spatial configuration search, 
where targets are distinguished from distractors only by 
the internal arrangement of components, is widely held 
to index serial shifts of covert attention (Bricolo et  al., 
2002; Wolfe, 2021; Woodman & Luck, 1999). Here we 
employed the widely used spatial configuration search for 
T-shaped targets among L-shaped distractors. This cor-
responds to Huang et  al.’s (2012) Configuration Search 
task for squares that were white-above-black among 
black-above-white.

Visual working memory (VWM) may seem like an 
odd choice to measure attention, especially when we 
are trying to distinguish between attention and working 
memory functions. However, VWM is a distinct, modal-
ity-specific memory store (Fougnie & Marois, 2011), 
and is tightly linked to selective attention, in that both 
encoding (Emrich et al., 2017; Praß & de Haan, 2019) and 
maintenance in VWM require visual attention (Makovski 
et al., 2008; Roper & Vecera, 2014; Sandry & Ricker, 2020). 
Huang et  al. (2012) used a Visual Short-Term Memory 
task requiring participants to memorize an array of six 
colors and then recreate this array from memory after 
it offset (i.e., full report paradigm). However, it is much 
more common to use a change-detection paradigm to 
measure visual short-term or working memory capacity 
(Luck & Vogel, 1997; Pashler, 1988). In a change detec-
tion paradigm, the whole array is presented at recall, and 
the participant has to indicate whether or not any ele-
ment has changed. This approach is more time-efficient, 
and also avoids the complication of changes in the state 
of the memory during an extended report process (Peters 
et  al., 2018). Accordingly, we measured Visual Working 



Page 5 of 26Treviño et al. Cogn. Research            (2021) 6:51 	

Memory (VWM) in a change-detection paradigm where 
participants had to memorize four shapes and report 
whether one of them changed after a brief delay.

Enumeration and numerosity perception are also 
tightly linked to selective attention. Specifically, enu-
meration can be described as an attentional individuation 
mechanism (Mazza & Caramazza, 2015). Whether we 
perceive precise counts or estimates depends on whether 
attention is focused or distributed (Chong & Evans, 
2011). To measure numerosity perception, Huang et  al. 
(2012) employed a Counting task that required partici-
pants to report whether the number of dots on the screen 
was even or odd. We opted for the Approximate Num-
ber Sense (ANS, Halberda et al., 2012) task that required 
participants to indicate whether there were more blue 
dots than yellow dots or vice versa. The ANS task is more 
strongly linked to attention, since it is a selective enumer-
ation task, requiring participants to filter out irrelevant 
items.

The final paradigm was response selection, a form of 
internal attention (Chun et  al., 2011) involving selec-
tion between competing actions. Huang et  al. (2012)’s 
Response Selection task was a 4-alternative forced-choice 
response to the color of a ball. We chose the Flanker 
Interference task (Eriksen & Eriksen, 1974), which 
requires participants to respond to a central target in 
the presence of irrelevant flanking stimuli that could be 
congruent or incongruent with the correct response. This 
choice was made partly for theoretical reasons, in that the 
requirement to filter out distraction makes the Flanker 
Interference task more of a selective attention task than 
a forced-choice response time task. Additionally, the 
Flanker Interference task is more widely used, both in 
experimental cognitive psychology and in neuropsychol-
ogy. The Attentional Network Task (Fan et al., 2002), the 
Dalhousie Computerized Attention Battery, and the NIH 
Toolbox Cognition Battery executive function and atten-
tion sub-battery (Zelazo et al., 2013) all include a Flanker 
Interference component.

Finally, we also included a sustained attention test, 
the Gradual Onset Continuous Performance Test (grad-
CPT). The gradCPT is similar to continuous perfor-
mance tasks that require frequent responses, such as the 
Sustained Attention to Response Task (Robertson et al., 
1997), except that the gradCPT uses gradual transitions 
between stimuli, rather than abrupt onsets that may cap-
ture attention (Yantis & Jonides, 1990) and thus reduce 
sensitivity to vigilance decrements (Rosenberg et  al., 
2013). The gradCPT has been demonstrated to be sen-
sitive to individual differences (Fortenbaugh et al., 2015; 
Rosenberg et al., 2013).

In contrast, the eight neuropsychological tests (Trail 
Making Test versions A & B (TMT-A, TMT-B), Digit 
Symbol Coding, Forward and Backward Digit Span, 
Letter Cancellation, Spatial Span, and Arithmetic) were 
not chosen for their theoretical or empirical links to 
attention. We selected the tests most frequently used 
to measure attention in our review of the literature on 
cancer-related cognitive impairment in  cancer survi-
vors (Horowitz et al., 2019). Digit span, arithmetic, let-
ter cancellation, and the Trail Making Test were also 
among the most frequently used tests for “attention, 
concentration, and working memory” in a survey of 
the membership lists of the National Academy of Neu-
ropsychology and the International Neuropsychologi-
cal Society (Rabin et  al., 2016), so we believe that this 
usage is typical of neuropsychological practice.

Historically, the neuropsychological tests used to 
measure attention have not been grounded in atten-
tional theory (Mirsky et al., 1991; Schmidt et al., 1994). 
Tests such as Digit Span (measuring the number of 
digits participants can recall) and Arithmetic (ability 
to solve mathematical word problems) would seem to 
have little relationship to attention, since they do not 
require any sort of selection or filtering. Indeed, in 
our database of cancer-related cognitive impairment 
studies (Horowitz et  al., 2019), these tests are also 
frequently classified under working memory, rather 
than attention. Then again, given that visual work-
ing memory and numerosity perception tests do seem 
to be linked to attention, we should not rule out these 
tests as attention measures out of hand. The Trail Mak-
ing and Letter Cancellation tests closely resemble the 
visual search paradigm. However, as noted above, it is 
difficult to parse out the search component from motor 
factors or ability to alternate sequences (in the TMT-
B). The Digit Symbol Coding test, in which participants 
are given a symbol-number key and asked to match a 
presented symbol to its corresponding number within 
an allowed time, similarly seems to tap into a number 
of cognitive domains, including visual search. Spatial 
Span, a visuospatial analog of the Digit Span tests, may 
be related to multitarget spatial attention tasks such 
as MOT (Trick et  al., 2012). Notably, the Spatial Span 
test is alone among the neuropsychology tests we used 
in that it is never classified as anything other than an 
attention test in our dataset (Horowitz et al., 2019).

We hypothesized that the five selective attention par-
adigms would load on a common factor, a. We included 
the sustained attention paradigm on a hunch that some 
of the neuropsychological tests were better at predict-
ing vigilance than selection. The key research question 
was which of the neuropsychological tests, if any, would 
also load on the a factor.
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Method
Participants
Sample size
Recommendations for determining the minimal sample 
size for factor analysis have been diverse and often con-
tradictory (MacCallum et al., 1999; Preacher & MacCal-
lum, 2002), though Thompson (2004) suggested that a 
sample size of 300 is generally considered sufficient. That 
said, there are some basic guiding principles to take into 
account when determining sample size, including the 
strength of the relationship between variables and factors 
(measured by level of communality), the number of fac-
tors, and the number of variables per factor. Smaller sam-
ple sizes are required when the communality is higher 
and the variable-to-factor ratio is higher (Mundfrom 
et al., 2005).

The current study assumes two general factors under-
lying fourteen measures, a variable to factor ratio of 7:1. 
According to the Monte Carlo study conducted by Mac-
Callum et al. (1999), a sample size of 200 can achieve an 
excellent recovery when the communality is low, if the 
variable-to-factor ratio is 20:3 or greater. Inter-correla-
tions between measures that are assumed to load on to 
one factor are expected to be significant. We were able to 
estimate pairwise correlations among six of our fourteen 
measures from previous studies in the TestMyBrain data-
base. Some of these correlations were lower than 0.15. 
To detect a correlation of 0.15 with power of 0.80, the 
required sample size is 350. We therefore aimed to obtain 
350 participants.

Recruitment
We recruited participants from three sources: Visitors to 
TestMyBrain.org, an online cognitive testing platform, 
who clicked on a link titled “Cancer and Cognition”; 
Constant Contact (secure email marketing service) email 
blasts to participants signed up for the Citizen Science 
4 Brain Health community; advertisements shared with 
cancer-focused mailing lists including the National Can-
cer Institute’s email list, Cancer Carepoint, Gryt Health, 
Cancer Survivorship, and American Cancer Society’s 
network.  Recruitment invitations included a brief study 
description and informed participants that they would 
get feedback on their scores after completing the study.

Inclusion/exclusion criteria
We included only participants between the ages of 18 
and 89 at the time of recruitment. We excluded partici-
pants who had a disability that substantially interfered 
with their ability to complete neurocognitive tests and/
or were a current resident of the European Union or 
European Economic Area. To satisfy the General Data 

Protection Regulation, the consent form stated that resi-
dents from the European Union or European Economic 
Area were not allowed to participate. Additionally, since 
we are interested in determining whether our results will 
generalize to a population of cancer survivors, the exclu-
sion criteria for the current study included a current or 
past diagnosis of cancer. Data from participants with a 
current or past diagnosis of cancer will be reported in a 
separate paper.

Procedure
Participants began the study by clicking on a link that 
took them to a study information/online consent form. 
Once they had read the information and agreed to the 
consent form, they were then directed to the study and 
given a link with a coded ID that they could use to access 
the study at a future time, if needed. Participants were 
not required to complete the study in a single session. 
Coded IDs were not linked with email addresses or other 
personal identifying information.

When participants first clicked on the link to the study, 
they were taken to a page that asked for their age and the 
type of device they were using. Participants who reported 
an age younger than 18 or older than 89 were not allowed 
to continue the study. Next, participants were informed 
that they would receive the results of their assessments 
once they completed the study. They were then asked a 
series of questions to ascertain their demographics (age, 
gender, race, ethnicity, educational background) and can-
cer history (diagnosis and treatment), if any.

Once they had answered these questions, they began 
the cognitive testing battery. The battery took around 
90  min to complete. There were four possible testing 
orders, counterbalanced across participants. Time of 
completion of each test was captured in the data to allow 
for any performance differences that arose from partici-
pation across multiple sessions to be modeled in our data 
analysis.

After participants completed all measures, they were 
given a debriefing questionnaire which asked about any 
challenges or technical difficulties they may have experi-
enced during testing. Finally, participants were presented 
with results of their assessment, based on compar-
ing their scores to the scores of participants from the 
TestMyBrain normative database, along with links to 
resources to address any concerns they might have about 
their cognitive health, or any questions about cancer and 
cognition.

Measures
Measures were divided into those that were adapted from 
traditional tests of neuropsychological functioning and 
paradigms adapted from the experimental literature.
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Neuropsychological tests
Arithmetic  The Arithmetic test required participants to 
solve a series of 20 arithmetic word problems of increas-
ing difficulty (e.g., “How many hours will it take to walk 
24 miles at a rate of 3 miles per hour?”). For each trial, 
regardless of difficulty, the participant earned 1 point for 
a correct answer and 2 points for a correct answer given 
within 10 s. The primary outcome variable was total points 
earned across the test. The first 5 questions had a 15 s time 
limit, which increased to 30 s for questions 6–10, 60 s for 
questions 11–19, and 120  s for the final question. This 
test was modeled after the arithmetic test of the Wechsler 
Adult Intelligence Scale, 3rd Edition (Wechsler, 1997).

Trail making test, parts A and B  Participants were pre-
sented with a display of 25 circled alphanumeric char-
acters. The task was to draw lines, on the device screen, 
connecting the circles in the proper order. In Part A, 
the circles contained digits that had to be connected in 
ascending numerical order (i.e., “1”, “2”, “3”… “25”) start-
ing with “1”. In Part B, the circles contained both digits 
and letters that had to be connected in ascending numeri-
cal and alphabetical order, switching between digits and 
letters (i.e., “1”, “A”, “2”, “B”, “3”, “C”… “13”). Depending on 
the device (i.e., laptop/desktop or tablet/smartphone), 
participants could use either their mouse or their finger 
to connect the circles. As these two response types have 
different motor demands, we also corrected for device/
input type in all analyses (Germine et al., 2019). The pri-
mary outcome variable for each part was the total time to 
connect all circles. This test was modeled after the clas-
sic Trail Making Test (Partington & Leiter, 1949; Reitan, 
1971), adapted for digital administration.

Digit span, forward and backward  These tests required 
participants to recall sequences of digits of increasing 
length. Sequences were presented serially, one digit at a 
time. Each digit was presented at the center of the screen 
for 1 s. Then, the final digit was removed and the partici-
pant had to type in the sequence. For the Forward Digit 
Span, the sequence had to be typed in as it was originally 
presented. For the Backward Digit Span, the sequence 
had to be typed in reverse order. They had 4 s to respond. 
The test began with 2 digit sequences. There were two tri-
als for each sequence length. If the participant was cor-
rect on at least one of the two trials, the sequence length 
was increased for the next trial, up to 11 digits. The test 
ended when the participant missed two trials of the same 
length. The primary outcome measure for both tests was 
the length of the longest sequence where participants got 
at least one of two trials right. These tests were modeled 
after the Digit Span Forward and Digit Span Backward 
tests from the Wechsler Adult Intelligence Scale, 3rd Edi-

tion (Wechsler, 1997). For details, see Hartshorne and 
Germine (2015).

Digit symbol coding  In this test, participants had to 
match a target symbol with its corresponding digit. On 
each trial, participants were shown a novel symbol at the 
top of the screen. Underneath the symbol was a key map-
ping each of 9 novel symbols to one of the digits 1–3. The 
participant had to type in the digit that corresponded to 
the target symbol. Participants had 90  s to complete as 
many trials as possible. The primary outcome measure 
was the number of correct trials. This test was modeled 
after the Digit Symbol Coding test from the Wechsler 
Adult Intelligence Scale, 3rd Edition (Wechsler, 1997). For 
details, see Hartshorne and Germine (2015).

Letter cancellation  The Letter Cancellation test was a 
search test where the target was a conjunction of the let-
ter “d” and two line segments, and the distractors were 
the letter “d” with one, three, or four line segments, and 
the letter “p” with one to four line segments. The line seg-
ments could be above the letter, below the letter, or both. 
There were 57 letter + line segment items, arranged in a 
6 × 10 grid with the rightmost three spaces on the bot-
tom row blank. The task was to click on all instances of 
the target. Whenever the participant correctly clicked on 
a target, it turned red. There were 14 trials. Trials timed 
out after 20 s. The outcome variable was the total number 
of targets correctly detected. This test was modeled after 
the D2 Test (Brickenkamp & Zillmer, 1998).

Spatial span  In this test, participants saw an array of 
16 circles, arranged in concentric groups of four around 
a central point. Circles were progressively larger moving 
out from the center. At the start of a trial, all of the circles 
flashed briefly. Then, a sequence of circles was flashed, 
one by one, followed by all of the circles flashing again. At 
this point, the participant had to click on the previously 
flashed circles in the proper sequence. They had 12 s to 
respond. The test began with sequences of length 4. There 
were two trials for each sequence length. If the participant 
was correct on at least one of the two trials, the sequence 
length was increased for the next trial, up to length 7. 
The test ended when the participant missed two trials of 
the same length. The primary outcome measure was the 
length of sequence the participant could accurately recall 
before making two consecutive mistakes. This test was 
modeled after the Corsi Spatial Span test (Corsi, P, 1972; 
Della Sala et al., 1999).

Experimental paradigms
Approximate number sense dots test  On each trial, par-
ticipants were shown an array of blue and yellow dots for 
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200 ms. There were 5–20 dots of each color, and dot size 
varied. The participant’s task was to report whether there 
were more blue dots or more yellow dots. Participants had 
10 s to respond. There were 100 trials. The primary out-
come measure was accuracy, defined as the proportion of 
correct responses. For details, see Halberda et al. (2008, 
2012).

Flanker interference  The Flanker paradigm required 
participants to indicate the direction of a central arrow 
flanked by arrows facing either the same direction (con-
gruent) or the opposite direction (incongruent). The 
flanker arrows were displayed for 100  ms before target 
onset. The target and flankers were presented together for 
50 ms, and then, all arrows disappeared and were replaced 
by a fixation cross for 70 ms. Participants were instructed 
to press the “x” key on their keyboard to report a left-
pointing target or the “m” key to report a right-pointing 
target. Participants had three seconds to respond to each 
trial, and were instructed to respond as quickly as possible. 
On trials where a participant’s response time exceeded the 
85th percentile of their incongruent trial response time 
distribution, they were warned to go faster. There were 
96 trials. The primary outcome measure was the accuracy 
(proportion of correct trials) difference between congru-
ent trials and incongruent trials. For details, see Passell 
et al. (2019).

Gradual onset continuous performance task (Grad-
CPT)  In this task, the participant sees a series of 300 
outdoor scenes, comprised of 90% street scenes and 
10% mountain scenes, presented within a circular win-
dow. Images were presented for roughly 800  ms, and 
the transition between images was gradual. Participants 
were instructed to press a button when they saw a street 
scene, and to withhold response when they saw a moun-
tain scene (10% of images). The primary outcome variable 
was d’. To compute d’, we used the commission error (CE) 
rate and omission error (OE) rates. The hit rate (H) was 
defined as 1-CE rate, or the proportion of target moun-
tain scenes participants correctly withheld a response to. 
The false alarm rate (F) was the OE rate, or the number of 
non-target street scenes participants withheld responses 
to. We used the equation d’ = z(H) −  z(F). In the cases 
where no CEs (H = 1.0) or OEs (F = 0.0) were made, we 
used the standard procedure (Macmillan & Creelman, 
2005) of deducting or adding one-half error to each meas-
ure to prevent d’ from being undefined. For further meth-
odological details, see Fortenbaugh et al. (2015).

Multiple object tracking (MOT)  This paradigm presented 
participants with an array of 10 identical black disks. At 
the beginning of each trial, a subset of disks would blink, 

alternating between a black and a green smiley face for 
1000 ms to identify them as targets. All disks would then 
move randomly around the screen for 5  s. The partici-
pant’s task was to track the target disks. At the end of the 
trial, all disks stopped moving and the participant had 
15 s to click on all of the target disks. Correct responses 
were indicated by green smiley faces, incorrect responses 
by red frowning faces. There were 3 sets of 6 trials, for a 
total of 18 trials. The number of targets increased from 3 
in the first set to 4 in the second set to 5 in the third set. 
The primary outcome measure was accuracy, computed 
as the total number of correct responses divided by the 
total number of targets tracked. For details, see Passell 
et al. (2019) or Wilmer et al. (2016).

Spatial configuration visual search  This paradigm 
presented participants with an array of line segments 
arranged into “T” or “L” configurations. The participant’s 
task was to search for the target letter “T”, and report 
whether it was rotated 90° to the left or to the right. The 
letter “L” served as the distractor, and could appear in any 
of the four 90° rotations. There were two blocks of trials. 
In the first block, the total number of items (set size) was 
4, and in the second block the set size was 12. Each trial 
had one target; the remaining items were distractors. Par-
ticipants had 5  s to respond. There were 100 trials. The 
primary outcome measure was the slope of the reaction 
time (for correct trials only) by set size function.

Visual working memory (VWM)  In this test, participants 
were shown a memory array of four novel objects for 1 s. 
The objects then disappeared. After a 1000-ms retention 
interval, a single probe object was presented at one of the 
four locations, and participants were asked to make an 
unspeeded judgment as to whether or not the probe was 
the same object that was presented at that location in the 
original array. There were a total of six novel objects that 
were randomly sampled throughout the test. There were 
4 practice trials and 42 test trials. The primary outcome 
measure was the number of correct responses (max = 42).

Data analysis
The data were cleaned and formatted for a series of factor 
analyses to understand the latent characteristics across 
the 14 measures. Scores were considered outliers if they 
were three times the interquartile range below the 25th 
percentile or above the 75th percentile of the outcome 
distribution. Participants with outliers on more than one 
measure were identified and excluded from the factor 
analysis. We also log-transformed those measures with 
highly skewed distributions.

While we had a priori expectations about how the 
experimental tests would relate to one another (all except 
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perhaps GradCPT would load onto an a factor), the 
relationships among the neuropsychological tests and 
between the two classes of tests were left open. We there-
fore conducted an initial exploratory factor analysis, fol-
lowed by a set of confirmatory factor analyses. Since our 
power analysis indicated at least 350 participants for the 
exploratory factor analysis, we randomly selected 55% of 
the participants (training group, n = 357) to investigate 
the underlying factor structure. We held the remaining 
45% of the participants (testing group, n = 279) for the 
confirmatory factor analyses. The two groups showed no 
statistical difference on the performance of the 14 meas-
ures and on the demographic characteristics.

Exploratory factor analysis
We used several converging methods to determine how 
many factors to retain, beginning with a parallel analy-
sis. Developed by (Horn, 1965), parallel analysis com-
pares eigenvalues extracted from the analysis data against 
eigenvalues calculated from randomly generated correla-
tion matrices using the same number of observations and 
variables. The number of factors to retain is determined 
by the number of eigenvalues from the analysis data that 
are larger than those that were randomly generated. The 
models with various number of factors were then com-
pared in terms of the degree of fit assessed by three 
goodness-of-fit indices: Tucker–Lewis Index (TLI), root 
mean square of residuals (RMSR), and root mean square 
error of approximation (RMSEA), as well as the RMSEA 
90% confidence interval (CI). A good fit is defined by 
TLI > 0.95, RMSR < 0.05, and RMSEA < 0.06 with lower 
value of CI close to 0 and upper value no more than 0.08 
(Browne & Cudeck, 2016; Hu & Bentler, 1999). RMSR or 
RMSEA < 0.08 indicates an acceptable model fit.

Since all the measures are testing some aspects of cog-
nitive ability, it would not be realistic to assume that 
any extracted latent structure is truly independent from 
the others. Therefore, we used maximum likelihood for 
eigenvalue calculation, factor extraction, and oblimin 
rotation when extracting more than one factor, to allow 
the factors to correlate.

Confirmatory factor analysis
Confirmatory factor analysis was performed using the 
held-out testing sample to assess and compare goodness-
of-fit between the extracted factor structures and the 
other candidate structures. Based on prior literature, we 
hypothesized two factors, the general attention factor 
(a), and a sustained attention factor. We tested whether 
this hypothesis was supported by the observed data in 
terms of model fit indices such as comparative fit index 
(CFI, > 0.90 for acceptable fit, and > 0.95 for good fit) and 
standardized root mean square residual (SRMR, < 0.05 for 

good fit, and < 0.08 for acceptable fit, Hu & Bentler, 1999), 
in addition to TLI and RMSEA. Since the competing fac-
tor structures were not nested in nature, we followed 
the non-nested model comparison sequence as recom-
mended by Merkle et  al. (2016). We employed Vuong’s 
(1989) test to first determine whether the candidate mod-
els had equal fit to the same data, or whether the mod-
els were distinguishable. If they were distinguishable, we 
further tested whether one model fit significantly better 
than another using the non-nested likelihood ratio test 
(LRT). A final factor structure was distinguishable from 
the other candidate models and had acceptable model fit 
in both the exploratory factor analysis and confirmatory 
factor analysis.

Given the diverse sample and multiple ways to respond, 
we further assessed measurement invariance in the 
entire sample (n = 636) across demographic groups and 
response device groups (see Supplemental material in 
Thornton & Horowitz, 2020) using multigroup confirma-
tory factor analysis. The measurement invariance testing 
involves comparing models with increasing constraints. 
This begins with configural invariance, in which the same 
factorial structure is fitted to subgroups separately and 
factor loadings are allowed to vary freely (i.e., uncon-
strained model). Then, metric invariance (also called 
weak invariance) is tested by assessing the difference on 
goodness-of-fit indices of models imposing equality in 
factor loading across subgroups and the unconstrained 
models. If metric invariance holds, the next step is to test 
scalar invariance by further constraining intercepts to be 
equivalent across subgroups. The measurement invari-
ance is determined by the insignificant changes (Δ) in 
model fit indices such as ΔCFI (≤ 0.01) and ΔRMSEA 
(≤ 0.015) (Cheung & Rensvold, 2002), especially ΔCFI 
which is more robust to sample size than chi-square 
(Δχ2).

Data manipulation and analyses were all conducted 
using R 3.6.0 (R Core Team, 2020). Exploratory factor 
analyses were obtained using the psych package (v1.8.12, 
Revelle, 2018), the lavaan package (v0.6-5, Rosseel, 2012) 
for the confirmatory factor analyses, nonnest2 (0.5-4, 
Merkle & You, 2020) for the Vuong tests, and semTools 
(v0.5-2, Jorgenson et  al., 2019) to test for measurement 
invariance.

Results
Participants
Recruitment and retention
As depicted in Fig. 1, 4125 people completed the consent 
form and the demographic questionnaire (see below). Of 
those, 957 ended up completing the test battery, includ-
ing 643 who reported not having a diagnosis of cancer. 
The latter group comprised the sample for this study. 
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Seven people were found to have outliers on more than 
one measure and thus excluded from analysis. As a result, 
the analysis group contains 636 participants.

Demographics
The basic demographic characteristics of the participants 
are shown in Table 1. Participants were relatively young, 
but the majority were older than 25. A majority reported 
female gender. More than half had not finished college. 
Since the sample was web-based, we do not know partici-
pants’ geographic locations. Therefore, we cannot judge 
whether the racial/ethnic breakdown reflects larger pop-
ulations (i.e., USA, the continent of North America, etc.). 
However, the proportion reporting an Asian race was 
larger than one would expect from a purely US sample.

Measure performance and correlations
Table 2 summarizes the outcomes used for each measure 
and their descriptive statistics. The two Trail Making Test 
tests (TMT-A, TMT-B) showed highly skewed distribu-
tions. After log-transformation, the distribution of these 
two tests was close to normal.

Figure 2 presents the correlation matrix of the 14 meas-
ures. Since scores for the two Trail Making Test tests and 
Visual Search were based on time, higher scores indicate 
poorer performance. In contrast, scores for the remain-
ing measures were accuracy-based, and higher score 
indicates better performance. Therefore, we flipped the 
sign of the correlation coefficients for the time-based 

measures. While the most measures showed positive 
associations, the Flanker test, when measured by conflict 
accuracy, was weakly or even negatively correlated with 
the other tests.

Exploratory factor analysis
The exploratory factor analysis was conducted using the 
training group of 357 participants randomly selected 
from the full sample of 636. The parallel analysis shown in 
Fig. 3 suggested three factors. The first factor accounted 
for 34.5% of the total variance, and the first three factors 
together account for over 50% of the variance.

Next, we extracted one- to five-factor structures to 
compare goodness of fit. In addition to the three factor 
structure suggested by parallel analysis, the four- and 
five-factor structures also achieved good model fits (see 
Table 3).

Figure  4 shows the factor loadings of the five-factor 
structure, also depicted graphically in Fig. 5. We named 
the five factors (1) Attentional Capacity, (2) Search, (3) 
Digit Span, (4) Arithmetic, and (5) Sustained Atten-
tion. All but one measure loaded highly on at least one 
of the five factors, using a minimum factor loading of 

Completed 
consent/demographics survey 

(n = 4125)

Completed battery
No cancer diagnosis

(n = 643)

Excluded due to
outliers (n = 7)

Included in analysis
(n = 636)

Exploratory factor 
analysis (n = 357)

Confirmatory factor 
analysis (n = 279)

Completed battery
Cancer diagnosis 

(n = 314)

Did not complete test battery
(n = 3168) 

Fig. 1  Study participation flow chart

Table 1  Characteristics of participants

Characteristics Frequency (%) 
or mean (SD)

Age 30.89 (± 14.33)

18–24 292 (45.9%)

25+ 344 (54.1%)

Gender

Male 277 (43.6%)

Female 347 (54.6%)

Missing 12 (1.9%)

Ethnicity

Non-Hispanic 554 (87.1%)

Hispanic 40 (6.3%)

Missing 42 (6.6%)

Race

White 394 (61.9%)

Black 19 (3.0%)

Asian 134 (21.1%)

Other 34 (5.3%)

Missing 55 (8.6%)

Education

High school or less 179 (28.1%)

Some college 177 (27.8%)

College or above 267 (42.0%)

Missing 13 (2.0%)



Page 11 of 26Treviño et al. Cogn. Research            (2021) 6:51 	

0.3. Flanker Inference had low loading on all five fac-
tors, which was not surprising given the low correlations 
observed in the correlation matrix. Although Digit Sym-
bol Coding had a loading over 0.3 on the first (Capacity) 

Table 2  Descriptive statistics of individual measure performance

Outcome Mean SD Min P50 Max Skewness Kurtosis Internal 
Reliability

Traditional Clinical neuropsy-
chological tests

Letter cancellation Num. correct 92.247 21.809 8 91 152 0.010 3.108 0.95

Digit symbol coding n. correct trials 55.047 13.693 16 54 116 0.861 5.371 0.93

Backward digit span Length of longest 
sequence

6.102 2.031 1 6 11 0.385 2.747 0.68

Forward digit Span Length of longest 
sequence

6.929 1.665 1 7 11 0.252 2.819 0.73

Arithmetic Points 21.231 6.019 3 22 37  − 0.300 2.730 0.85

Spatial span Span 5.423 0.970 0 5 7  − 0.720 6.268 0.58

TMT-A Resp. Time (ms) 32,517.290 18,753.160 12,168 26,579 177,934 2.599 13.347 0.95

Log(TMT-A)  − 10.273 0.456  − 12.089  − 10.188  − 9.407  − 0.792 3.511

TMT-B Resp. Time (ms) 47,964.500 26,575.030 14,419 40,647.5 286,388 3.040 19.373 0.96

Log(TMT-B)  − 10.671 0.441  − 12.565  − 10.613  − 9.576  − 0.644 3.754

Cognitive Psychology/experi-
mental Paradigms

Approximate number 
sense

Accuracy 0.812 0.055 0.540 0.815 0.930  − 0.596 4.058 0.60

Multiple object tracking Accuracy 0.822 0.094 0.514 0.833 1.028  − 0.509 2.928 0.92

Visual working memory Number correct 34.421 4.031 20 35 42  − 0.668 3.334 0.67

Flanker interference Conflict Resp. time 0.108 0.149  − 0.833 0.083 0.917 0.760 9.334 0.85

Visual search Search slope (ms/item) 57.450 20.129  − 12.070 55.625 138.180 0.390 3.856 0.75

Gradual onset CPT d’ 2.744 0.808  − 1.356 2.832 4.653  − 0.845 4.942 0.88

Fig. 2  Correlation matrix. Note that TMT-A and TMT-B are 
log-transformed, and the sign of correlation coefficients was flipped 
for TMT-A, TMT-B, and Visual Search
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Fig. 3  Parallel analysis scree plot
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factor, its loading onto the second (Search) factor was 
close to 0.3. Three factors had only one or two meas-
ures with high loadings, including the Digit Span factor, 
the Arithmetic factor, and the Sustained Attention fac-
tor (GradCPT only). The factor loadings for the one- to 
four-factor structures are available in “Appendix B”. In 
the three-factor structure, GradCPT loaded onto the 
first factor and Arithmetic loaded onto the second fac-
tor, while Visual Search did not load onto any factor. (Its 

loading on the first factor was 0.246, not meeting out 
0.300 criterion.) In the four-factor structure, Arithmetic 
moved onto its own factor, while Visual Search loaded 
onto the second factor. Finally, the five-factor structure 
moved GradCPT onto the Sustained Attention factor. 
Table 4 shows the factor correlation matrix from the five-
factor solution. Next, we used confirmatory factor analy-
sis to compare model fit of the three exploratory factor 
structures and two other candidate structures.

Confirmatory factor analysis
Due to consistently low factor loadings on all the 
extracted factors, Flanker was excluded from the con-
firmatory factor analysis. We assessed the model fit for 
all factor solutions using the held out testing group of 
279 participants. These included a one-factor solution in 
which all tests would load onto a general attention factor, 
and a two-factor solution where experimental and neu-
ropsychological paradigms and tests clustered on inde-
pendent factors, as well as the three, four, and five factor 
structures derived from the exploratory factor analysis.

Table 3  Goodness of fit of the five exploratory factor structures

A good fit is defined by TLI > 0.95, RMSR < 0.05, and RMSEA < 0.06 with lower 
value of CI close to 0 and upper value no more than 0.08

TLI RMSEA (90% CI) RMSR BIC SABIC

One factor 0.836 0.082 (0.071, 0.092) 0.064  − 194.227 50.053

Two factors 0.905 0.063 (0.049, 0.075) 0.046  − 224.492  − 21.454

Three factors 0.979 0.030 (0.000, 0.047) 0.030  − 238.140  − 73.172

Four factors 1.008 0.000 (0.000, 0.029) 0.022  − 204.908  − 74.837

Five factors 1.014 0.000 (0.000, 0.027) 0.017  − 157.549  − 59.203

Fig. 4  Factor loadings from the five-factor exploratory factor analysis. Blue indicates positive loadings, red negative. The vertical line on each panel 
denotes the .30 threshold for inclusion of a measure in a given factor
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Because the model comparisons require all mod-
els to be specified on the same set of measures, we kept 
Visual Search in the three-factor structure even though 
its highest factor loading was only 0.246. As shown in 
Table 5, the three structures extracted from the explora-
tory factor analysis had much better model fit than the 
two a priori structures. The four-factor structure and the 
five-factor structure had slightly better model fit than 
the three-factor structure. The Vuong’s test indicated 
that the three-factor structure and the four-factor struc-
ture were distinguishable (p = 0.018), but they fitted the 
Testing group equally well based on the non-nested LRT 
(p = 0.060). The four-factor structure and the five-factor 
structure were indistinguishable (p = 0.375). The five-
factor structure, however, is more theoretically plausible, 
since sustained and selective attention measures should 
be independent (Parasuraman et al., 1998).

Given the positive correlations between the five factors 
derived from the exploratory factor analysis (see Table 4), 
we further tested a hierarchical factor model (see Fig. 6) 
where a general factor was imposed above the five fac-
tors. The model fit was similar to that of the five-factor 
solution without the general factor. The Chi-square 
test also showed no significant difference (p = 0.076 for 
Δχ2(Δdf = 5) = 9.972) in terms of model fit between the 
two models. The model comparison result supported the 
existence of a general cognitive factor. However, the poor 
model fit of the single-factor structure in both explora-
tory and confirmatory factor analyses suggested that 
the five more-specific factors measure unique aspects of 
cognitive ability. Therefore, the five-factor structure was 
selected as the final model.

Measurement invariance
We collected information about the type of device partic-
ipants used to respond for each measure. There were two 
general types of response mode, keyboard/mouse click 
and touchscreen. Participants were allowed to switch 

Fig. 5  Graphic depiction of five-factor exploratory factor analysis 
structure. Tests are disks on the outer circle, factors rectangles on 
the inner circle. Thickness of lines indicates factor loadings, green for 
positive, red for negative. Darker blue tests were cognitive paradigms 
predicted to load onto the a factor. The light blue test (GCP) was 
predicted to load onto sustained attention factor. Neuropsychological 
tests are depicted in green

Table 4  Factor correlation matrix from the five-factor 
exploratory factor analysis

Capacity Search Digit span Arithmetic Sustained

Capacity 1

Search 0.61 1

Digit span 0.45 0.35 1

Arithmetic 0.43 0.45 0.40 1

Sustained 0.44 0.25 0.30 0.29 1

Table 5  Goodness of fit of factor structures

CFI TLI RMSEA (90% CI) SRMR χ2 df AIC BIC

A priori structures

One Factor 0.871 0.845 0.078 (0.065, 0.092) 0.062 176.387 65 12,774.15 12,868.56

Two Factors 0.881 0.855 0.076 (0.062, 0.090) 0.061 166.579 64 12,766.34 12,864.38

Structures extracted from the exploratory 
factor analysis

Three factors 0.927 0.908 0.060 (0.045, 0.075) 0.053 124.657 62 12,728.42 12,833.73

Four factors 0.936 0.917 0.057 (0.041, 0.073) 0.050 114.744 60 12,722.51 12,835.08

Five factors 0.938 0.915 0.058 (0.042, 0.074) 0.049 110.770 57 12,724.53 12,847.99

Hierarchical factor model with five factors

0.932 0.914 0.058 (0.043, 0.074) 0.052 120.742 62 12,724.51 12,829.81
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response devices between measures. To analyze the pos-
sible effect of response mode on the final factor structure, 
we included only participants who used one device con-
sistently for all measures. There were 535 participants 
who used one device for all measures. Of these, 418 
participants used either keyboard or mouse to respond, 
while 117 participants used touchscreen only.

The results showed that the metric invariance did 
not hold between the two mode groups (ΔCFI = 0.01, 
ΔRMSEA = 0.003, and p < 0.01for Δχ2(Δdf = 8) = 25.694), 
indicating that individual factor loadings differed as a 
function of response mode.

Assessments of measurement invariance for demo-
graphic factors are reported in “Appendix C”—Measure-
ment invariance analysis by demographic characteristics.

Discussion
Both cognitive neuroscience and neuropsychology pur-
port to measure cognitive functions, using a largely 
overlapping terminology (“attention”, executive func-
tion”, working memory”, etc.). However, the two fields are 
largely separate, with different goals and different insti-
tutional bases, and we know very little about how well 
concepts and measures from the two fields overlap. Our 
goal in this paper is to start making connections between 
the two fields in order to improve both neuropsychologi-
cal assessment and our broader scientific understanding 
of cognition and the brain.

We hypothesized that the five selective experimental 
attention paradigms (ANS, MOT, VWM, Visual Search, 

and Flanker Interference) would load onto the a gen-
eral attention factor reported by Huang et al. (2012). We 
could then use the degree to which the neuropsycho-
logical tests loaded onto a as an index of how well they 
function as (selective) attention measures. Neuropsycho-
logical tests that did not load on to a might load on to a 
common factor with the GradCPT, suggesting that they 
measure sustained attention. Or the neuropsychological 
tests might not be related at all to the experimental para-
digms. The results that we actually observed were more 
complex than the scenarios we envisioned a priori. Our 
results are more consistent with a five-factor structure 
that can explain the observed correlations.

The five‑factor structure
We settled on a five-factor structure, based on converg-
ing evidence from the scree plot, goodness-of-fit metrics, 
and theoretical considerations. These comprise: (1) an 
attentional capacity factor, (2) a search factor; (3) a digit 
span factor; (4) an arithmetic factor, and (5) a sustained 
attention factor. Flanker Interference did not load on to 
any factor.

The first factor comprised three experimental para-
digms (MOT, VWM, and ANS), and two neuropsycho-
logical tests (Digit Symbol Coding and Spatial Span). 
Based on the nature of the three experimental paradigms, 
we tentatively label this the attentional capacity factor.

A second factor comprised the experimental Visual 
Search paradigm and three neuropsychological tests: 
Letter Cancellation, TMT-A, and TMT-B. All of the neu-
ropsychological tests have a visual search component: 
the Letter Cancellation test requires the participant to 
look for the letter “d” with 2 lines among “d” with one 
or three lines and the letter “p” with one to three lines. 
It thus closely resembles a conjunction foraging search 
task (Jóhannesson et al., 2017; Kristjánsson et al., 2020). 
Both versions of the Trail Making Test require sequential 
search for alphanumeric characters. Therefore, we think 
of this factor as picking up variance related to search 
or attentional shifting. An important caveat here is that 
the configural Visual Search paradigm itself loaded less 
strongly onto this factor than the neuropsychological 
tests.

One interesting finding is that Digit Symbol Coding 
loaded almost equally on the first two factors. This is not 
entirely surprising given that there is a clear search com-
ponent to the test. Participants need to find the target 
symbol in the key to find the correct response. Over the 
course of the test session, the key mappings will become 
automated and the search component will decrease in 

General 
cognitive

factor

Capacity

Sustained Arithmetic

Search

Digit Span

Capacity

Sustained Arithmetic

SearchDigit Span

Hierarchical factor model 

Inter-correlated factor model

Fig. 6  Graphic depiction of hierarchical factor model with five factors 
and the model with five inter-correlated factors
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importance. If the mappings were to shift from trial to 
trial, this test would probably load more strongly on the 
search factor.

The third factor is fairly easy to characterize, as it 
included both the Forward Digit and Backward Digit 
Span tests, and nothing else. The Arithmetic test formed 
the fourth factor. These findings are in line with previous 
factor analytic studies of neuropsychological tests (Mir-
sky et al., 1991; Schmidt et al., 1994).

The fifth factor included just the GradCPT. We had 
predicted that this paradigm would not load onto the 
same factor as the other experimental cognitive para-
digms, since it should measure sustained attention, 
rather than selective attention, and these faculties are 
known to be independent (Parasuraman et  al., 1998). 
However, we did expect to see some of the neuropsy-
chological tests to load onto this factor as well, which 
they did not.

A possible compromise between the single-factor and 
five-factor structures is the stratified model, where the 
five specific factors are nested under a general factor. 
The fit of this model was not statistically distinguishable 
from the five-factor model in our analyses, so it provides 
another way to look at the data. We assume that this 
general factor corresponds to something like the general 
intelligence g factor of the Cattell–Horn–Carroll model, 
rather than the general attention factor a proposed by 
Huang et al. (2012). In this context, it is worth noting that 
there was disagreement among the namesakes of the Cat-
tell–Horn–Carroll model as to whether the general stra-
tum was necessary (McGrew, 2009), and the recent work 
fitting the model to neuropsychological data eschew the 
general factor in favor of intercorrelated lower-order fac-
tors (Agelink van Rentergem et al., 2020; Jewsbury et al., 
2017).

Relationship to other factor analyses of attention tasks
We assumed that our five selective attention paradigms 
would load on to a single factor, corresponding to Huang 
et  al.’s (Huang et  al., 2012) a. This was not what we 
observed. Only three paradigms MOT and VWM (and, 
if we’re generous, ANS) loaded into the first factor. Vis-
ual Search loaded onto the second factor with several of 
the neuropsychological tests, and Flanker Interference 
did not load onto any factor. This difference from Huang 
et  al.’s analysis is not due to the fact that we found five 
factors, while Huang et  al. found only one. If we limit 
ourselves to a single factor, Visual Search and Flanker 
Interference still do not load onto this factor (though all 
of the other tests do, see Table 6).

It is important to note that our study was not 
intended as a replication of Huang et al. (Huang et al., 
2012). As we noted in the Introduction, there is no sin-
gle definitive version of an experimental paradigm. The 
tests that we employed to instantiate the five paradigms 
we selected to represent the a factor differed in ways 
large and small from those used in the original Huang 
et al. study. In the MOT test, whereas our participants 
tracked 3–5 out of 10 items, Huang et  al.’s tracked 4 
of 8. Huang et  al. measured VWM using a full-report 
technique, whereas we used a single-item probe tech-
nique. Our Visual Search paradigm was a search for a 
rotated T target among rotated Ls. Huang et al.’s Con-
figuration Search paradigm was a search for a square 
composed of a white rectangle above a black rectangle 
among squares with the opposite spatial configuration. 
Instead of the even/odd judgment used in Huang et al.’s 
Counting test, our ANS test requires participants to 
judge which of two sets visible on the screen is larger. 
The dependent measure for Counting was a reaction 
time slope, as opposed to accuracy for the ANS. Fur-
thermore, Huang et  al.’s Counting task spanned the 
subitizing (3–4) and estimation ranges (13–14) ranges, 
while the ANS samples only the estimation range. As 
we noted in the Introduction, the Flanker Interfer-
ence task is substantially different from Huang et  al.’s 
Response Selection test.

Furthermore, factor analysis is sensitive to the context 
of the battery. Our battery included only four of the nine 
“primary” paradigms and none of the nine “secondary” 
paradigms used in Huang et al.’s battery. We also included 
the GradCPT and eight neuropsychological tests that 
were not in Huang et al.’s battery. This certainly affected 
the factor structure.

In contrast to Huang et  al. (2012)’s single factor solu-
tion, Skogsberg et  al. (2015) obtained a four-factor 
structure for their battery: Global Attention, Sustained 
Attention, Transient Attention, and Spatiotemporal 
attention. Unfortunately, there are only two tasks in 
common between their battery and ours. Their Central 
Focusing Task corresponds to Flanker Interference, and 
both batteries included MOT. Furthermore, the reliabil-
ity of the Central Focusing task was too low for it to be 
included in the analysis.

In the Skogsberg et  al. (2015) data, MOT forms part 
of the Spatiotemporal Attention factor, so it is tempt-
ing to identify that with our Attentional Capacity factor. 
However, while MOT and the Spatial Span task fit that 
description, it is more difficult to see how VWM and 
Digit Symbol Coding can be thought of as spatiotemporal 
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tasks. Furthermore, the ANS, which weakly loads onto 
our Capacity factor, would seem to correspond more 
closely to Skogsberg et al.’s Global Attention factor, since 
it requires the observer to segregate by color across the 
visual field. Meanwhile, Skogsberg et al.’s Spatiotemporal 
Attention factor includes the Spatial Shifting task, which 
we would predict should load onto with our Attentional 
Shifting Factor. Thus, our factor structure does not neatly 
align with Skogsberg et al.’s, although both analyses agree 
on the existence of a Sustained Attention Factor.

Similarly, it is difficult to map Huang et al.’s (2012) gen-
eral factor to one of the four factors in Skogsberg et  al. 
(2015). Again, the only paradigm in common between 
the two datasets is MOT, which would identify Huang 
et  al.’s a with Skogsberg’s Spatiotemporal Attention 
factor, yet many of the paradigms in a do not fit that 
description (e.g., Visual Short-Term Memory, Response 
Selection, Counting). Perhaps it is our verbal descrip-
tions of the factors that are misleading us here. It would 
be an interesting project, beyond the scope of this paper, 
to take the correlation matrices from these three studies 
(our study; Huang et al., 2012; and Skogsberg et al., 2015), 
subject them to the same factoring or clustering rules, 
and attempt some sort of synthesis. Ultimately, however, 
we are going to need more such studies, ideally using 
overlapping batteries. The existence of only three factor 
analytic studies of attention, with only one paradigm in 
common, points to the severe neglect of individual differ-
ence work in this field.

We also think it important to consider the demo-
graphic and cultural differences between the three sam-
ples. Both of the previous studies used convenience 
samples of undergraduate students. Huang et  al. (2012) 
studied 257 students aged 17–22 at South China Normal 
University in Guangzhou, Guangdong, China. Skogs-
berg et al. (2015) studied 222 students, aged 18–26, from 
Northwestern University in Evanston, Illinois, USA. 
No demographic data were provided for participants in 
either study, though by definition they all possessed some 
college education.

Our study, in contrast, recruited a global internet sam-
ple of 636 people. Our participants ranged in age from 18 
to 81, with a mean age of 31. More than half of our sam-
ple was older than the participants in the undergraduate 
studies. We also had much more variation in educational 
level, with 28% of our sample reporting a high school 
education or less, and 42% reported having completed 
a college degree. Finally, while we do not know which 
countries our participants lived in, only 21.1% reported 
Asian ethnic background, while 61.1% reported white 
or European ethnic background. Overall, we have good 

reasons to believe that there was a lot more demographic 
heterogeneity in our sample than in the two undergradu-
ate samples.

Demographic characteristics seem likely to influ-
ence not only performance but also the observed fac-
tor structure. Our measurement invariance analysis (see 
“Appendix C”—Measurement invariance analysis by 
demographic characteristics) showed that metric invari-
ance held for age, gender, and education, indicating that 
factor loadings did not significantly vary as a function of 
these characteristics. Nevertheless, we suggest that the 
greater diversity of our sample contributed to differences 
between the factor structure we observed and those 
obtained by previous studies, possibly via other char-
acteristics that we did not consider here. Cultural vari-
ables may also influence the observed factor structures. 
Cross-cultural studies have indicated cultural differences 
in attention and perception between participants of East 
Asian and Western descent (Amer et al., 2017; Masuda & 
Nisbett, 2001). All of these issues need to be taken into 
account when comparing across studies or attempting 
theoretical generalizations. Now that remote testing plat-
forms have become more widespread, future factor ana-
lytic studies should aim to cast a wider net, in order to 
increase both generalizability and variability.

Relationship to the Cattell–Horn–Carroll model 
of cognitive abilities
As we have mentioned, the Cattell–Horn–Carroll model 
(McGrew, 2009) is an influential model of human cog-
nitive abilities, based in factor analysis. It arose out the 
field of intelligence measurement, and has recently been 
shown to fit well to neuropsychological batteries (Agelink 
van Rentergem et  al., 2020; Jewsbury et  al., 2017). The 
Cattell–Horn–Carroll model therefore provides a theo-
retically and empirically sound approach to classifying 
neuropsychological tests.

The relationship between Cattell–Horn–Carroll and 
the way cognition is thought of in cognitive psychology 
and cognitive science is not clear. Consider attention, the 
focus of this paper. Cattell–Horn–Carroll is a hierarchy 
of abilities, with narrow abilities (e.g., “quantitative rea-
soning”) organized under broad abilities (e.g., “fluid rea-
soning), with a general cognitive ability stratum at the top 
(McGrew & Schneider, 2018). There is no “broad ability” 
corresponding to attention in the Cattell–Horn–Car-
roll model. Attention is mentioned in many places in the 
hierarchy under fluid reasoning, working memory capac-
ity, and processing speed ability. In this view, attention 
is not a single function or ability, but a property of many 
different subsystems. Jewsbury et  al. (2017) proposed 
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a similar view of executive function. Reconciling this 
approach with the view of attention as an independent 
factor or factor on its own will require cross-disciplinary 
collaboration.

Implications for theories of attention
Our analysis suggests three subcomponents of attention 
(i.e., attention capacity, search, and sustained attention). 
For the attention capacity factor, it is not surprising the 
experimental paradigms of MOT, VWM, and ANS para-
digms comprised this factor. The relationship between 
visual working memory and multiple object tracking has 
been explored in some depth. It is important to keep in 
mind that spatial memory and visual working mem-
ory are distinct constructs (Klauer & Zhao, 2004; Oh & 
Kim, 2004; Vicari et al., 2003; Woodman & Luck, 2004). 
While the most intuitive model of multiple object track-
ing would involve storing the locations of targets in spa-
tial memory, then moving attention in turn as quickly as 
possible to each target to update its location, this class 
of model is unable to account for MOT performance 
(Pylyshyn & Storm, 1988; Vul et al., 2009), leading theo-
rists to propose additional cognitive structures or opera-
tions such as visual indexes (or “FINSTS” – “FINgers of 
INTsantiation”, Pylyshyn, 1989, 2001) or multifocal atten-
tion (Cavanagh & Alvarez, 2005). There is also some dis-
pute as to whether spatial working memory is involved. 
Allen, et  al. (2006) argued that MOT performance was 
closely linked to Baddeley and Hitch’s spatial working 
memory store, aka the visuo-spatial sketchpad (Baddeley 
& Hitch, 1974). However, several studies have shown dis-
sociations between MOT and spatial working memory 
(Bettencourt et  al., 2011; Carter et  al., 2005; O’Hearn 
et al., 2010). Furthermore, Trick et al. (2012) showed that 
visuospatial ability (including Corsi Blocks, a spatial span 
variant) but not working memory, predicts MOT.

The most striking link between the two paradigms is 
that they seem to have a similar capacity limit of around 
four items (Cowan, 2001). Vul et al. (2009) used an ideal 
observer model to show that the limit on the number of 
objects that can be tracked is not a property of the infor-
mation available in the paradigm and therefore must 
derive from a limitation in either memory or attention. 
This analysis does not conclusively link MOT and VWM, 
but it does raise the possibility that their common vari-
ance might derive from reliance on a common atten-
tional resource. Fougnie and Marois (2006) explicitly 
posited that the common capacity limit in the two par-
adigms (as well as rapid serial visual presentation para-
digms) derived from a common reliance on visuospatial 

attention. However, Souza and Oberauer (2017) argued 
that VWM and MOT use different attentional resources.

Electrophysiological studies also demonstrate close 
links between VWM and MOT. The contralateral delay 
activity, a sustained voltage decrease during the retention 
interval of a short-term memory test, indexes the number 
of items held in visual working memory (Luck & Vogel, 
1997; Luria et  al., 2016). The amplitude of this activity 
can also be used to measure the number of targets being 
tracked in an MOT experiment (Drew & Vogel, 2008; 
Drew et al., 2011, 2012). This suggests an overlap in the 
neural circuitry involved in the two paradigms.

While the relationship between ANS, on the one hand, 
and VWM and MOT, on the other, is not well stud-
ied, it is worth considering the theoretical relationship 
between enumeration and attention. Numerosity is just 
one of a set of summary or ensemble statistics that can 
be extracted by the visual system (Alvarez, 2011). There 
is some evidence these representations are derived inde-
pendently from one another (Khvostov & Utochkin, 
2019; Utochkin & Vostrikov, 2017). However, there may 
be some core faculty for computing statistics that is held 
in common, and is also useful for tracking and remem-
bering objects. Alternatively, it may be that there is some-
thing unique about numerosity or magnitude perception 
that makes it a probe for attention.

Meanwhile, what does it mean that Visual Search did 
not load onto the first factor? Visual search has long been 
identified as a core paradigm in the modern study of 
attention, dating back to Treisman and Gelade’s seminal 
work (1980), yet here it does not load with other com-
monly used attentional paradigms. These results may 
be telling us something about the fractionation of atten-
tion. Performing a difficult spatial-configuration search 
with little guiding information will rely on directing focal 
attention to each item in turn (Moran et al., 2016; Wood-
man & Luck, 1999), and therefore much of the variance 
may be due primarily to variations in the speed with 
which participants can shift attention. A paradigm like 
the ANS, on the other hand, requires a global distribu-
tion of attention across the display, with no shifting. 
Similarly, most accounts of MOT assume that attention 
is continuously distributed to all items in parallel, rather 
than shifting from one target to another in turn (Howe 
et al., 2010; Pylyshyn & Storm, 1988), unless target iden-
tities also must be tracked (Oksama & Hyönä, 2008). 
Attention also seems to be required for maintenance in 
visual working memory (Balestrieri et al., 2019; Heuer & 
Schubö, 2016). In some cases, this involves discrete shifts 
of spatial attention (Williams et al., 2013); it is not clear if 
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it is also possible to maintain attention to multiple items 
in parallel, as in MOT.

Implications for interpreting data from clinical research 
studies
The major impetus behind this project was our survey 
of meta-analyses of the neuropsychological research on 
cancer-related cognitive impairment (Horowitz et  al., 
2019). One of our findings was that there was a great deal 
of variability in how tests were assigned to domains. For 
example, the Digit Symbol Coding was classified as a test 
of processing speed 43.1% of the time, as an attention test 
32.3% of the time, and as an executive function test 24.6% 
of the time. Furthermore, many tests classified as atten-
tion tests, such as Digit Span, seemed to us to have little 
face validity. This project was conceived as a way to pro-
vide some empirical guidance for what should be classi-
fied as an attention test and what should not, an approach 
that we hope will be adopted for other domains as well.

One conclusion from this study is that, in line with 
our initial impressions, Digit Span and Arithmetic tests 
should not be classified as attention tests. This is not 
a novel finding. Mirsky et  al. (1991) conducted a factor 
analysis of putative neuropsychological attention tests, 
and found that Digit Span and Arithmetic tests did not 
load onto the same factor as Trail Making, Digit Symbol 
Coding, Letter Cancellation, Stroop and Continuous Per-
formance tests. Digit Span and Arithmetic are probably 
best thought of as Working Memory tests, as specified 
in the Wechsler Adult Intelligence Scale standard model 
(Reynolds et  al., 2013). Agelink ven Rentergen et  al.’s 
(2020) factor analysis of neuropsychological tests also 
found that in the best-fitting model the Digit Span tests 
formed their own “working memory” factor.

On the positive side, we found evidence Digit Symbol 
Coding and Spatial Span do seem to be tapping atten-
tional capacity, while Trail Making and Letter Cancella-
tion measure attentional shifting. These five tests could 
continue to be classified as attention tests, on the basis of 
these results, though reports should distinguish between 
Capacity and Search ability.

Implications for future clinical research studies
The connection between a subset of the neuropsycho-
logical tests and the cognitive attention paradigms is a 
two-way street. Not only does this finding validate that 
the neuropsychological tests have some connection to 
the construct of attention, it also suggests that certain 
experimental paradigms might be usefully adapted to 
serve clinical purposes.

The standard armamentarium of clinical neuropsychol-
ogy has a number of limitations (Marcopulos & Łojek, 
2019), including lack of sensitivity, lack of process-purity 
(Kessels, 2019), and lack of repeatability (Bilder & Reise, 
2019). Developing tests from cognitive neuroscience par-
adigms, which tend to be theoretically derived to be more 
process-pure, and designed for repeatability, is a poten-
tial solution (Kessels, 2019). Whether such tests would be 
more sensitive is an empirical question.

Experimental cognitive paradigms do have drawbacks 
as potential clinical tests (Kessels, 2019). Their psycho-
metric properties, including sensitivity and reliability, are 
generally not known. Most paradigms have been tested 
primarily on college undergraduates, meaning not only 
is their generalizability in question, but also that with-
out extensive norming studies, there is no way to adjust 
an individual’s score for factors like age, sex, and educa-
tion. Determining clinical utility will require normative 
data with clinical and nonclinical samples. Many para-
digms rely on response time, and may become unreliable 
when different populations adopt different speed-accu-
racy tradeoffs. Since each study adapts the paradigm to 
answer a specific question, there are innumerable vari-
ants of each paradigm, so there is no standard to adopt. 
And while they are typically not proprietary, by the same 
token they cannot simply be used off the shelf; some 
investment is necessary to produce a useful version.

We do not mean to minimize these problems. However, 
we do think that they can be overcome. The Cognitive 
Neuroscience Treatment Research to Improve Cognition 
in Schizophrenia initiative, for example, has been lever-
aging cognitive psychology and cognitive neuroscience 
paradigms to develop tests to improve our understand-
ing of schizophrenia (Barch et al., 2009; Carter & Barch, 
2007), and a similar initiative is underway for cognitive 
deficits associated with obesity and diabetes (d’Ardenne 
et al., 2019).

Our findings suggest that if a condition leads to deficits 
on the Digit Symbol Coding or Spatial Span tests, then a 
test based on MOT, for example, might be useful. Tullo 
et al. (2018) have begun developing MOT as a clinical test 
of attentional capacity. Similarly, if deficits are observed 
using the Trail Making Test, it might be worth using a 
visual search paradigm (Gold et al., 2007; Horowitz et al., 
2006) to determine whether the problem stems specifi-
cally from a problem in shifting attention, or whether it 
might be attributable to the other faculties tapped by the 
Trail Making Test.
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Limitations and caveats
There are a number of important limitations to this study. 
First, we are sampling from the population of people 
who are online and self-selected to participate in cogni-
tive studies for free. As noted above, we think that our 
sample is probably more representative than, say, under-
graduate university psychology students. However, it is 
better-educated, younger, and probably more affluent 
than the population as a whole. The majority of subjects 
were recruited through TestMyBrain.org. In past stud-
ies using TestMyBrain.org, the top sources for the site 
have been  www.​google.​com,  www.​stumb​leupon.​com, 
and  www.i-​am-​bored.​com, and frequently used search 
terms leading to TestMyBrain.org were “brain test” and 
“brain tests”, suggesting that many visitors arrive at the 
website because they are curious about their cognitive 
abilities (Germine et  al., 2012). Furthermore, we do not 
have a good idea of which countries our participants live 
in, and our demographic information does not line up 
with standard US racial/ethnic categories. Critically, we 
do not know how the factor structure might change for 
specific clinical populations. We are currently studying a 
population of cancer survivors, but interested research-
ers might want to carry out replications in their fields of 
interest.

Second, our analysis noted significant effects of 
response mode on the factor structure; whether partici-
pants used a keyboard and mouse or a touchscreen made 
a noticeable difference. We did not have enough partici-
pants who used only a touchscreen to fully characterize 
this effect, but since computing as a whole, and comput-
erized neuropsychological testing in particular, is mov-
ing toward touchscreen interfaces, this issue will become 
increasingly important.

Perhaps the most important limitation of our study is 
that our neuropsychological tests were not necessar-
ily identical to the tests currently being administered 
by clinical neuropsychologists. A challenge of the pre-
sent study was converting traditional paper-and-pencil 
tests to an online format while keeping the differences 
between the two to a minimum. Instructions for Test-
MyBrain measures were given visually, and practices 
were completed in order to ensure comprehension of 
instructions. In contrast, a neuropsychologist adminis-
ters the pencil-and-paper versions and instructions are 
given orally. The traditional Arithmetic and Digit Span 
tests require participants to verbally answer, the Trail 
Making Test, Digit Symbol Coding, and Letter Cancel-
lation necessitate the use of a pen or pencil, and Spatial 
Span requires finger pointing. Our online measures were 

modified so that participants could respond using either 
a keyboard or touchscreen. In “Appendix A”—Compari-
son of online and traditional, we detail the traditional 
pencil-paper tests and their modified online counter-
parts. In addition to administration and formatting dif-
ferences, digitizing pencil-and-pencil tests may alter the 
perceptional, cognitive and motor performances of tests 
and introduce measurement bias due to device variations 
(Germine et al., 2019).

Conclusions
The goal of this project is to provide a bridge between 
theory-driven cognitive research and clinically relevant 
neuropsychological research. We believe it is important 
to align neuropsychology with cognitive psychology and 
cognitive neuroscience to improve the precision and 
interpretability of cognitive assessments. Our results 
should provide guidance for which neuropsychological 
tests should be classified as attention tests, and hopefully 
provide inspiration for the development of new clinical 
assessments based on experimental attention paradigms. 
Furthermore, we hope we have provided a template for 
other researchers to explore the connections between 
cognitive paradigms and neuropsychological tests in 
domains beyond attention. By bringing these fields closer 
together, we can improve our scientific understanding of 
cognition, and ultimately improve the welfare of people 
who suffer from cognitive disorders and deficits.

Appendix A: Comparison of online and traditional 
tests
TMT-A & TMT-B were similar between the online and 
paper and pencil version except for the implement used 
for connecting circles. In our online TMT-A & TMT-B, 
participants had to connect a series of circles on their 
device screen, in ascending order. For Form A, 25 circles 
contained numbers and had to be connected in ascending 
numerical order (e.g., 1-2-3) by drawing a line between 
circles. For Form B, 25 circles contained letters and num-
bers, and had to be connected in ascending numerical 
and alphabetical order, alternating between numbers and 
letters (e.g., 1-A-2-B-3-C). Depending on the device (i.e., 
laptop/desktop or tablet/smartphone), participants could 
use either their mouse or their finger to connect the cir-
cles. In the traditional Trail Making Test, participants are 
given a pencil and are asked to connect the circles. The 
primary outcome variable for both versions is the time it 
takes to connect all the circles, calculated separately for 
Parts A and B.

http://www.google.com
http://www.stumbleupon.com
http://www.i-am-bored.com
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In the online Digit Symbol Coding test, participants 
had to choose which number matched a target sym-
bol shown on screen, using a given symbol-number key. 
Participants could use either a keyboard or touchscreen. 
Participants in the paper and pencil version are given a 
pencil and a sheet of paper with the key located at the top 
of the page and rows of numbers. Participant are tasked 
to copy the symbol below each number. The primary 
measure for both online and original versions was how 
many matches the participant correctly makes in 90 s.

The online and paper and pencil Letter Cancellation 
tests are comparable in asking participants to search an 
array of “d” and “p” letters for instances of the lowercase 
letter “d” flanked by various arrangements of 2 lines. 
Anytime the participant saw the target letter, they were 
then asked to cross the letter out (by clicking or touch-
ing the letter for the online test or striking through the 
target letter with a pencil for the original version) until 
all instances of the letter were found or 20 s passed. Par-
ticipants’ online score was the total number of correctly 
identified letters. Various calculations are derived from 
the traditional letter cancellation test but most notably, 
the sum of the number of target letters (Bates & Lemay, 
2004).

The Arithmetic test required participants to solve a 
series of arithmetic computation and word problems of 
increasing difficulty. The online version was modeled 
after the arithmetic test of the Wechsler Adult Intel-
ligence Scales III and was presented visually. For each 
online question, the participant could earn 1 point for a 
correct answer and 2 points for a correct answer given 
within 10 s, regardless of the time allowed or difficulty of 
the trial. The primary outcome variable was total points 
earned across the test. There was a total of 20 possible 
questions. Time limits were given for each question, 15 s 
for the first 5 questions, then 30  s for the next 5 ques-
tions, 60  s for the following 9 questions, and 120  s for 
the final question. For the traditional test, participants 
are orally presented with a series of word problems and 
are not supplied with a pencil or paper. Participants are 
timed beginning after each problem is read and partici-
pants must respond orally within a time limit. Time limits 
are 15 s for the first 6 questions, then 30 s for 7–11 ques-
tions, 60  s for 12 -19 questions, and 120  s for question 
20. If the participant gets 4 consecutive wrong answers, 
then the test is stopped. For questions 1–18, 1 point is 
obtained for a correct answer given within the time limit; 
and for questions 9- 20, 2 points are obtained if a correct 
answer was given within 10  s or 1 point if answer was 
given within the time limit.

Both online and traditional digit span tests required 
participants to recall strings of digits of increasing length. 
The forward digit span test required participants to recall 
digits in the order they were presented.  The backward 
digit span test required them to recall the digits in reverse 
order. The online tests were adapted from the Digit Span 
tests of the Wechsler Adult Intelligence Scales. For the 
online version, digit sequences are presented visually, 
and participants are asked to memorize the numbers and 
then either keyboard or finger press the digits. There are 
two trials for each sequence length presented and the test 
ends when the participant misses two trials of the same 
length. The longest possible sequence length is 11 digits. 
Participants have 4 s to respond before they are warned 
to keep responding with the remaining number of digits. 
Score for the digit span test is calculated as the highest 
number of digits participants were able to successfully 
recall at least once—in other words, the length of the 
longest sequence where participants got at least one of 
two trials right. For the traditional version, participants 
are orally presented the digit sequences and asked to ver-
bally recite the sequence. The test ends when the two tri-
als for the same sequence length is incorrect or when the 
maximal sequence length is reached (9 digits forward, 8 
backward). Each correct response is worth one point.

In the Spatial Span test, participants had to learn 
and recall sequences of visually presented spatial loca-
tions. For the online test, sequences were indicated by a 
shape that changed color. When clicking on each dot in 
a sequence, participants have 12 s to click on the next 
dot. If at any point they take more than 12  s to click 
the next dot, they timeout and the next trial begins. The 
sequences increased in length from 4 to 7. The primary 
outcome measure was the length of sequence the par-
ticipant could accurately recall before making two con-
secutive mistakes. For the traditional Spatial Span test, 
the administrator taps the spatial sequence on a board 
that contains an array of 10 blocks. Participants are 
then asked to reproduce the sequence by tapping the 
blocks in the same order they were presented. The test 
comprises eight sequence lengths, from 2 to 9, with two 
trials for each sequence length (Brown, 2016).

Appendix B: Factor loadings from the exploratory 
factor analysis
See Tables 6 and 7.
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Appendix C: Measurement invariance analysis 
by demographic characteristics
We assessed measurement invariance on three demo-
graphic characteristics. In addition to age group and gen-
der, we further collapsed education into two subgroups, 
“Less than college” and “College and above” so each 
group had over 250 participants.  As shown in Table  8, 
the results supported metric invariance for all three char-
acteristics where the changes in fit indices were smaller 
than the recommended cutoff values for CFI and RMSEA 
as defined in the Confirmatory Factor Analysis subsec-
tion of the Data Analysis section. The scalar invariance 
held for education only in terms of ΔCFI and ΔRMSEA.

Table 6  One-, two-, three-, and four-factor loadings

One factor Two factors Three factors Four factors

Model fit

TLI 0.836 0.905 0.979 1.008

RMSEA 0.082 0.063 0.030 0.000

(0.071, 0.092) (0.049, 0.075) (0.000, 0.047) (0.000, 0.029)

RMSR 0.064 0.046 0.030 0.022

BIC  − 194.227  − 224.492  − 238.140  − 204.908

SABIC 50.053  − 21.454  − 73.172  − 74.837

FA1 FA1 FA2 FA1 FA2 FA3 FA1 FA2 FA3 FA4

Factor loadings

MOT 0.704 0.644 0.096 0.706 0.06 0.013 0.702 0.08  − 0.002 0.011

VWM 0.603 0.54 0.098 0.731  − 0.066  − 0.004 0.743  − 0.017 0.003  − 0.076

S-Span 0.595 0.551 0.068 0.605 0.038 0.009 0.559 0.029 0.042 0.064

DSymbolCod-
ing

0.647 0.681  − 0.044 0.478 0.265  − 0.054 0.441 0.259  − 0.035 0.062

ANS 0.493 0.384 0.173 0.49  − 0.041 0.118 0.486  − 0.073 0.058 0.117

TMT-A 0.561 0.686  − 0.167 0.032 0.686  − 0.094  − 0.001 0.748  − 0.02  − 0.058

TMT-B 0.718 0.753  − 0.023  − 0.022 0.836 0.06 0.035 0.696 0.055 0.138

L-Cancel 0.724 0.715 0.034 0.256 0.484 0.084 0.252 0.446 0.083 0.101

Search 0.235 0.241 0.002  − 0.012 0.246 0.046  − 0.002 0.329 0.12  − 0.171

BDS 0.458  − 0.021 0.827 0.039  − 0.052 0.781 0.189  − 0.092 0.547 0.08

FDS 0.483 0.114 0.631  − 0.031 0.095 0.705  − 0.035 0.03 0.921  − 0.016

Arith 0.589 0.482 0.18 0.127 0.366 0.227  − 0.004 0.014 0.002 0.992

GradCPT 0.343 0.257 0.132 0.377  − 0.084 0.096 0.354  − 0.121 0.065 0.122

Flanker  − 0.094  − 0.058  − 0.06 0.021  − 0.077  − 0.075 0.007  − 0.044  − 0.066  − 0.04

Table 7  Factor loadings for the five-factor solution

FA1 FA2 FA3 FA4 FA5

Multiple object track-
ing

0.805 0.022 0.009 0.021  − 0.064

Visual working 
memory

0.614 0.030 0.023  − 0.078 0.141

Spatial span 0.506 0.047 0.041 0.066 0.076

Digit symbol coding 0.348 0.293  − 0.038 0.058 0.137

Approx number sense 0.324  − 0.018 0.065 0.096 0.234

TMT-A  − 0.031 0.768  − 0.030  − 0.059 0.038

TMT-B 0.073 0.676 0.066 0.148  − 0.063

Letter cancellation 0.205 0.458 0.092 0.099 0.059

Visual search 0.007 0.321 0.124  − 0.172  − 0.008

Backward digit span 0.158  − 0.100 0.619 0.062  − 0.011

Forward digit span  − 0.054 0.048 0.859  − 0.019 0.016

Arithmetic  − 0.008 0.010 0.003 0.991 0.012

Gradual onset CPT 0.009  − 0.006 0.040 0.063 0.566

Flanker interference  − 0.096 0.000  − 0.078  − 0.055 0.152
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Abbreviations

Task abbreviations
ANS: Approximate number sense; GradCPT: Gradual onset continuous perfor-
mance task; MOT: Multiple object tracking; TMT-A: Trail making test, version A; 
TMT-B: Trail making test, version B; VWM: Visual working memory.

Statistical abbreviations
CFI: Comparative fit index; LRT: Likelihood ratio test; RMSR: Root mean square 
of residuals; RMSEA: Root mean square error of approximation; TLI: Tucker–
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