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Abstract 

How do scientists generate and weight candidate queries for hypothesis testing, and how does learning from 
observations or experimental data impact query selection? Field sciences offer a compelling context to ask these 
questions because query selection and adaptation involves consideration of the spatiotemporal arrangement of data, 
and therefore closely parallels classic search and foraging behavior. Here we conduct a novel simulated data foraging 
study—and a complementary real-world case study—to determine how spatiotemporal data collection decisions 
are made in field sciences, and how search is adapted in response to in-situ data. Expert geoscientists evaluated a 
hypothesis by collecting environmental data using a mobile robot. At any point, participants were able to stop the 
robot and change their search strategy or make a conclusion about the hypothesis. We identified spatiotemporal rea-
soning heuristics, to which scientists strongly anchored, displaying limited adaptation to new data. We analyzed two 
key decision factors: variable-space coverage, and fitting error to the hypothesis. We found that, despite varied search 
strategies, the majority of scientists made a conclusion as the fitting error converged. Scientists who made premature 
conclusions, due to insufficient variable-space coverage or before the fitting error stabilized, were more prone to 
incorrect conclusions. We found that novice undergraduates used the same heuristics as expert geoscientists in a sim-
plified version of the scenario. We believe the findings from this study could be used to improve field science training 
in data foraging, and aid in the development of technologies to support data collection decisions.
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Introduction
Hypothesis testing is the engine of scientific progress. For 
discovering the undiscovered, there is no faster method 
(Platt, 1964). This is the traditional sequence of steps in 
experimental science, starting from a problem or situa-
tion that the scientist is attempting to understand:

1.	 A set of hypotheses are formed
2.	 A candidate set of queries (experiments, questions) 

are generated to assess the hypotheses
3.	 The scientist chooses which query to perform based 

on past experience

4.	 The query produces data which are compared to the 
hypotheses

In scientific practice, hypothesis testing is rarely linear. 
Queries can be developed before formal hypotheses, and 
learning from data or observations can lead to adapta-
tion of both query selection and hypothesis formation. 
Understanding dynamic hypothesis testing is critical for 
improving scientific practice, and it can serve as a proxy 
for understanding how ordinary people (non-scientists) 
ask questions, collect information, and explore their 
environments (Coenen et al., 2019).

In this paper, we address two specific aspects of 
hypothesis testing: how scientists generate and weight 
candidate queries, and how learning from observations 
or experimental data impacts query selection. We focus 
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on hypothesis testing in field sciences, using a sample of 
expert geoscientists. Field sciences, and geoscience espe-
cially, offer a compelling context to assess hypothesis 
testing because query selection and adaptation involves 
consideration of the spatiotemporal arrangement of 
data—i.e., what areas have the highest data value, and 
what are the costs required to find and extract data? This 
spatiotemporal element of hypothesis testing closely par-
allels classic search and foraging behavior, allowing us to 
draw from a rich body of work on foraging to inform our 
understanding of scientific query selection and adapta-
tion in response to new information (e.g., Fagan et  al., 
2013; Pagliara et al., 2018; Viswanathan et al., 2011). As 
field scientists are increasingly embracing technologies 
that provide in-situ data, such as mobile robots (Qian 
et al., 2017, 2019; Wei et al., 2020), it is critical to deter-
mine how the availability of new information influences 
adaptive data collection decisions.

The paper is organized as follows. First, we briefly 
review the foraging literature on location selection and 
adaptation, and use this information to form predictions 
about how geoscientists might select and adapt data col-
lection strategies, or data forage. Next, we describe a 
field case study of how one expert geoscientist selected 
and adapted data collection strategies using in-situ data 
from a mobile robot. Then, we present findings from our 
research using a simulated geologic decision scenario, 
in which participants must evaluate a given hypothesis 
by selecting an initial data sampling strategy and then 
adjusting that strategy in response to incoming data. We 
compare the strategies of expert geoscientist participants 
with novice undergraduate participants, drawing general 
conclusions about query selection and adaptation in sci-
ence and its implications for both scientists and ordinary 
populations.

This work anticipates a near future where humans and 
robots operate in coordination to explore, collect scien-
tific data and test hypotheses. If we want to build and 
deploy embodied intelligent agents that are capable of 
making successful science-driven decisions, then it is 
fair to say that models of how humans make such deci-
sions are a good place to start. The research and case 
study presented in this paper represent our interdiscipli-
nary teams’ first attempts at characterizing expert field 
scientist choice behavior. The combination of traditional 
“laboratory” research with naturalistic observation is 
unusual, but this approach is intentional—understand-
ing human decision making in the wild will require both 
the rigor and precision of lab-based techniques, and the 
open-ended potential of observational, naturalistic study.

Background and hypotheses
When foraging, it is unmanageable for human decision 
makers to generate and weigh all future outcomes or 
scenarios during initial location selection; instead, they 
must approximate the search space in a timely and com-
putationally efficient manner. In a familiar environment, 
where the value of different resources and their respec-
tive probability of occurring at a site are known, this can 
be accomplished via simple rate maximization1 (Pyke, 
1984). Yet, often site selection in foraging and field sci-
ence is characterized by a high degree of uncertainty: 
the search space may be large, and the probability of site 
value ambiguous or unknown, making it computationally 
difficult or impossible to weigh candidate sites for com-
parison and, ultimately, selection.

Human foraging under uncertainty has been studied 
via laboratory tests in simulated environments (often 
computer based: Ehinger & Wolfe, 2016; Hills et al., 2013; 
Wilke et al., 2015, but cf. Maya et al., 2019), and through 
naturalistic observation of hunter-gatherer populations 
(Berbesque et al., 2016; Pacheco-Cobos et al., 2019). The 
majority of this work has dealt with foraging from patchy 
distributions—resources (signals) that occur in clumps 
in the environment (noise). Patchiness occurs more fre-
quently in natural environments than randomness or dis-
persion (Taylor et  al., 1978), and as a result human and 
non-human animals have adapted successful rules-of-
thumb for continuing to exploit resource patches while 
they are still profitable (Charnov, 1976; Hutchinson et al., 
2008; Wilke et al., 2015).

In contrast to traditional foraging, scientific data collec-
tion (or data foraging) involves detection of an underlying 
pattern in the environment system (e.g. a signal gradient). 
A key insight is that, within an environment system, the 
underlying pattern is not necessarily uniformly distrib-
uted and data can be of varying value. Thus, field sci-
entists’ data foraging decisions aim to capture complex 
patterns in the natural system, where the distribution of 
information value is uncertain—this can be conceived 
of as detecting not just the presence of patches, but also 
the meaningful organization across patches in uncertain 
space. Successful data foraging strategies characterize 
the system without “cherry-picking” data and thus bias-
ing interpretation (e.g., focusing only on a subset of the 
observed data, such as observations that are consistent 
with a predicted pattern). The purpose of this paper is to 

1  Rate maximization optimizes the difference between the benefits and costs 
per unit time: i.e., given a choice between different sites, the decision maker 
should select the option with the most value (if everything else is equal), 
and, when the value of the sites are equal, they should select the option that 
requires the least number of resources to acquire it (taking time into account).
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ask how expert scientists make data foraging decisions 
when searching for a hypothesized signal gradient, where 
the expectation is that “resources” (data) will be distrib-
uted non-uniformly over the gradient and the goal is to 
collect data in an unbiased manner.

Under conditions of uncertainty, the foraging literature 
and the literature on judgment and decision making both 
suggest that humans will rely on learned rules-of-thumb 
(heuristics). Humans and other animals possess sophis-
ticated cognitive capabilities that allow them to learn 
from previous experience and form mental shortcuts to 
navigate their environments in a non-random way2 to 
optimize gains (Fagan et  al., 2013; Moser et  al., 2008). 
Experience and socialization impact the acquisition of 
foraging skills (Maya et  al., 2019; McElreath & Koster, 
2014; McElreath et  al., 2008), and in a similar fashion, 
field scientists can learn heuristic strategies for data col-
lection through experience with field work or via social 
transmission, from mentor to mentee or among mem-
bers of a sub-discipline.

In the field case study and research presented below, 
we sought to characterize the data foraging heuristics 
that expert scientists rely on when faced with uncer-
tainty about underlying spatial gradients in the environ-
ment. As field researchers tend to agree with each other 
on the appropriate methods for sampling data (e.g., 
Reverdy et  al., 2017) we anticipated that experts’ heu-
ristics would not be idiosyncratic; that is, experts would 
likely employ a constrained set of heuristics. Environ-
mental and geological sampling authorities recommend 
uniform sampling to avoid location bias (U.S. Environ-
mental Protection Agency, 2002; Wolman, 1954), as well 
as taking an equal number of measurements at each loca-
tion to handle measurement error and natural variability 
(Geboy & Engle, 2011; U.S. Geological Survey, 1987). Our 
aim was to determine (1) if practicing scientists actually 
follow these heuristics, (2) whether the heuristics make 
sense for the structure of environmental gradients, and 
(3) whether the heuristics are quantitatively better or 
worse at capturing high-value data than random strate-
gies or strategies used by novices. This has important 
implications for scientific training in data search—i.e., 

does scientific training promote data collection heuris-
tics that are efficient and effective?—as well as the use 
of robots for autonomous data collection—i.e., is sci-
ence best served by robots that collect data according to 
the principles of the human expert mind, or some other 
method, like random sampling? By using a novice sam-
ple (no geology experience), we can also begin to address 
the question of whether the data foraging heuristics sci-
entists apply are learned and domain-specific, or are rep-
resentative of a more general approach to spatiotemporal 
search problems.

We were also interested in exploring if and how experts 
updated their heuristics in response to new incom-
ing data. From the foraging literature, one possibility is 
that encounters with valuable resources in the environ-
ment will trigger adaptation of search strategy and local 
intensive search behavior (referred to as encounter-
conditional search or area-restricted search; Hills et  al., 
2013; Pacheco-Cobos et  al., 2019). In the simulated 
geologic decision scenario used in the current study, 
area-restricted search would present as abandoning ini-
tial foraging heuristics in response to measurement data 
from a new location, followed by intensive sampling at or 
around this “triggering” location. An alternative possibil-
ity is that experts rely too heavily (or “anchor”) on initial 
foraging heuristics and fail to appropriately adapt forag-
ing in response to incoming data. The cognitive literature 
on judgment and decision making shows that anchoring 
is a robust and pervasive effect in human decisions, both 
amongst novices (Furnham & Boo, 2011; Tversky & Kah-
neman, 1974), and discipline experts (Brewer et al., 2007; 
Enough & Mussweiler, 2001). Thus, in the field case study 
and research presented below, we consider both experts’ 
initial data collection strategies and how they alter strate-
gies as new data become available that are relevant to a 
hypothesis.

Field case study
The field case study was run with one geoscientist par-
ticipant at a location in the Wissahickon Valley Park, a 
forested hillslope environment in Philadelphia, Penn-
sylvania (see Fig. 1a). The geoscience goal was to assess 
how soil strength changed over a spatial gradient and the 
expert participant was assisted in hypothesis testing by 
the data-collection robot RHex.3 RHex, its capabilities 

2  Random search models have been a predominant, though highly contro-
versial, approach to describing foraging behavior in human and non-human 
animals (Benhamou & Collet, 2015; Viswanathan et  al., 2011). For example, 
many organisms display Lévy motion (Humphries, Weimerskirch, Queiroz, 
Southall, & Sims, 2012), where the length of move “steps” (distance traveled 
between two points) are drawn from a power law distribution with a heavy 
tail, resulting in clusters of short walks interspersed by long trajectories. 
However, the fact that random walks describe real-world movement patterns 
acceptably well should not be taken as evidence that the underlying mechanis-
tic processes are also always random (Boyer, Miramontes, & Larralde, 2009; 
Fronhofer, Hovestadt, & Poethke, 2013).

3  RHex was selected for the current task because, relative to other terrestrial 
robots our team has access to (e.g., Spirit platform, Vasilopoulos et al., 2020; 
Minitaur platform, Topping et  al., 2019), RHex has the longest established 
history of achieving robust and enduring locomotion in challenging terrains, 
like our wooded hillslope field site (Ilhan et  al., 2018). We controlled RHex 
remotely with a human operator, rather than using an autonomous planner 
(Ilhan et  al., 2018; Vasilopoulos et  al., 2020) that relies on sensors and algo-
rithms to find traversable open space and avoid unexpected contact or col-
lision. Because the goal of our field outings was to assess expert human data 
collection, we opted to use the simplest possible configuration of the robot 
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and geoscience applications, are discussed in greater 
detail in Sect. 4. The particular case study site within the 
Wissahickon Valley Park woods was selected because it 
was accessible, contained a transect from valley to ridge 
that could be traversed by both robot and human, and 
was broadly representative of the hillslopes in the region 
(elevation monotonically increasing from valley to ridge).

Hypotheses about soil strength in a forested environ-
ment are complex because forest soil is heterogeneous 
in chemical composition and particle size, with three 
distinct components: sand resulting from the break-
down of local rock, clay that accumulates gradually 

(over millennia) from chemical weathering of rock, and 
organic matter associated with vegetation. Moving from 
a ridge top to a river-valley bottom, the geoscientist gen-
erally expected soil would hold increasing moisture, and 
a gradual enrichment of clay and organic matter would 
make soil less strong (as measured via robotic leg intru-
sion), i.e., the moist porous aggregates at the bottom of 
the hill would compact under pressure making intrusion 
easier, while the dry sand at the crest would be hard to 
penetrate. However, the geoscientist noted that local var-
iations in bedrock exposure, tree-root density and drain-
age could be large enough to overwhelm the expected 
trend. Also, because soil moisture covaries with grain 
size (finer particles are more poorly drained), it may 
not be possible to isolate these two potential controlling 
variables.

To evaluate his hypothesis about soil strength over the 
hillslope, the geoscientist selected nine evenly spaced 
locations (approx. 40  m apart) with four soil strength, 

a b

c

Fig. 1  a Field site in Wissahickon Valley Park where expert geoscientist case study participant received surface-soil intrusion strength data and soil 
moisture data in situ. The yellow arrow, located at the bottom of the hill, points uphill to the SW along the hill transect where data was collected. 
b Aerial view of the hill transect, with the yellow arrow in the same position and pointing in the same direction as in A. The expert geoscientist 
had an initial strategy of taking four measurements each at nine evenly spaced locations. c After the expert saw the variability in the first four 
measurements (represented by red circles) at each location in situ, he opted to adjust his initial strategy and take four additional measurements 
(represented by yellow triangles)

Footnote 3 (continued)

to achieve our locomotion goals. See our recent work on advancing robot 
mobility in natural environments that uses collisions and disturbances as 
opportunities to improve robot locomotion in complex environments (Qian 
& Koditschek, 2020).
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soil moisture, and grain size measurements taken at each 
location (see Fig.  1b). Soil strength measurements were 
collected and reported in-situ by the robot RHex, driven 
by a human operator, while soil moisture measurements 
and soil samples were collected by a human field assis-
tant. Soil samples were used to determine grain size later 
in the laboratory, so only soil moisture and soil strength 
information was available in-situ. The geoscientist was 
presented with the data one location at a time. At each 
location, after seeing the initial four measurements for 
moisture and soil strength plotted by distance on the 
transect, the geoscientist opted to take an additional four 
measurements of each. This continued until location 
eight, at which point inclement weather forced an early 
conclusion of the field day.

The reason the geoscientist took additional measure-
ments was because he was unsatisfied that the initial 
four were sufficient to capture variability at a particular 
location (seeFig. 1c). Ultimately, denser sampling at each 
location revealed a clear moisture trend that supported 
the geoscientist’s expectations, i.e., steady decline in 
moisture moving from the bottom of the hill towards the 
crest. Denser sampling also revealed large variability in 
soil strength measurements within location—locations 
towards the bottom of the hill produced noisy low aver-
age soil strength measurements, and locations towards 
the top produced less noisy and relatively higher aver-
age strength measurements. This pattern of soil strength 
results provides general support for the hypothesis that 
soil strength would increase from the bottom of the 
hill to the crest. However, the geoscientist indicated he 
would want to collect additional data on the same tran-
sect before reaching a conclusion about the hypothesis—
focusing data collection on the transition zone of the hill 
slope, where soil strength appears to make the jump from 
low to high, and moving perpendicular to the transect to 
get a high density of measurements in this area of rapid 
change. These data collection strategies were executed in 
subsequent field outings with RHex to the same location, 
ultimately resulting in a high spatiotemporal resolution 
dataset of soil dynamics that served as “ground-truth” 
for this particular hillslope.4 The dataset revealed that 
the data collection strategy initially used by the geosci-
entist in the case study, choosing evenly spaced loca-
tions and taking a consistent number of samples at each 
location, produced data that were representative of the 

overall pattern of soil strength and soil moisture across 
the hillslope (as defined by ground-truth).

Simulated geologic decision scenario
Inspired by the case study, we created a simulated geo-
logic data collection scenario, where the aim was to test 
the generality of the query selection and adaption strate-
gies used by the expert geoscientist in the field. We opted 
to stage our simulated scenario in a different environ-
ment—White Sands National Monument, New Mexico 
(see Fig.  2a)—where previous field work with the semi-
autonomous hexapedal robot RHex revealed an unex-
pected discovery of a more complex relationship between 
soil moisture and soil strength, made possible by the abil-
ity to adjust data collection in situ.

The aim of the field trip to White Sands, led by authors 
Jerolmack and Qian, was to use RHex to examine wind-
blown sand transport, the dominant geologic process in 
this landscape (Qian et al., 2017). In this field site there 
are sharp spatial gradients in soil moisture and plant 
density across dunes. Moisture and plants change a 
dune’s susceptibility to wind erosion, termed erodibility, 
by binding sand grains together. Previous research by 
McKenna-Neuman and Nickling (1989) found that the 
threshold wind speed for sand erosion increased with 
increasing soil moisture from 0 to 1%, and that this effect 
leveled off at approximately 2% soil moisture.

Dunes at White Sands present a natural soil mois-
ture gradient (see Fig. 2C); a shallow groundwater table 
(orange dotted line) means that low-elevation inter-
dune areas have relatively high soil moisture, and this 
moisture decreases as one traverses up a dune to the 
top crest (Jerolmack et al., 2012). The robot, RHex, per-
formed a "plowing" test of surface-soil shear strength 
(see Fig.  2B). For each test, the robot leg penetrated a 
few millimeters into the sand, and then dragged a thin 
layer of grains across the surface while measuring the 
mechanical shear strength of the sand (see Additional 
file  1 for a video of RHex performing the shear test). 
The data from RHex showed shear strength was lowest 
on the dune crest where the soil was driest, as expected. 
Shear strength increased along the stoss towards the 
interdune as soil moisture increased from 0 to 3%, also 
as expected. Beyond 3% soil moisture, however, shear 
strength decreased slightly as soil became more satu-
rated nearing the interdune area. This last result was not 
expected based on previous research (McKenna-Neuman 
& Nickling, 1989)—on Fig. 2C, the expected (blue) versus 
observed (green) erodibility gradient is shown. Impor-
tantly, the discovery of a more complex relationship 
between soil moisture and soil strength was only made 
possible by the ability to make multiple measurements 
of the strength of complex soils in  situ, using a custom 

4  Field data from the Wissahickon Valley Park, including the case study data 
and subsequent data collected using different sampling strategies, are viewable 
online in Notebook format: https://​nbvie​wer.​jupyt​er.​org/​github/​crist​inagw​
ilson/​data-​forag​ing-​in-​human-​robot-​teams/​blob/​master/​Field%​20Work/​
Wissa​hicko​nSoil.​ipynb

https://nbviewer.jupyter.org/github/cristinagwilson/data-foraging-in-human-robot-teams/blob/master/Field%20Work/WissahickonSoil.ipynb
https://nbviewer.jupyter.org/github/cristinagwilson/data-foraging-in-human-robot-teams/blob/master/Field%20Work/WissahickonSoil.ipynb
https://nbviewer.jupyter.org/github/cristinagwilson/data-foraging-in-human-robot-teams/blob/master/Field%20Work/WissahickonSoil.ipynb


Page 6 of 16Wilson et al. Cogn. Research            (2021) 6:29 

instrument with much more measurement sensitivity 
than previous approaches (Qian et al., 2019).

Procedure
In the decision scenario, participants were asked to 
imagine they were studying the relationship between 
sediment moisture and shear resistance at White Sands. 
The shear resistance "plowing" test executed by RHex 
was described. The provided hypothesis was that mois-
ture and shear resistance increase until sand is saturated, 
at which point shear resistance is constant as mois-
ture increases; i.e., the McKenna-Neuman and Nickling 
(1989) hypothesis described above and shown in Fig. 2c 
in blue. We gave participants this hypothesis because 
it represents a common-sense view of the relationship 
between moisture and sediment strength.5 Because the 

goal of our research was to determine how scientists 
select and adapt data collection strategies during hypoth-
esis testing, it was important that all participants start 
with the same initial hypothesis; individual differences in 
hypothesis generation could have a downstream effect on 
query generation, selection, and adaption. Participants 
were instructed to collect data only to evaluate the pro-
vided hypothesis, and were not asked to generate or test 
alternative hypotheses.

Participants evaluated the hypothesis by collecting data 
along a single dune transect. The scenario user interface 
is shown in Fig. 3. First, participants were asked to report 

Fig. 2  a Sample field site in White Sands, NM where geoscientists used the robot RHex (Qian et al., 2017) to measure surface-soil shear strength 
(inversely related to and hence a proxy for erodibility) along dunes with sharp moisture gradients. b For each shear test, the leg penetrated a 
few millimeters into the sand, and then dragged a thin layer of grains across the surface while measuring the mechanical shear strength of the 
sand. See Additional file 1 for a video of RHex performing the shear test. c Transect (black line) of a dune where measurement data were collected 
(picture from Qian et al., 2019). At the crest of the dune, where soil was driest because of its distance from the groundwater table (orange line), 
shear strength was expected to be low. As moisture increased on the stoss face moving towards the interdune, shear strength was expected to also 
increase before leveling off at the point of moisture saturation. This pattern of expected results is displayed in blue. Instead, geoscientists observed 
that shear strength decreased slightly as soil became more saturated nearing the interdune area just before levelling off (green line)

5  At the time of participant recruitment, the new relationship between sand 
moisture and strength discovered by Qian et al. (2019) was not yet published. 
Still, to account for differences in initial knowledge we asked participants at 

the end of the task if they had any familiarity with the hypotheses or field 
setting. Although some participants were familiar with these features, they 
showed no consistent difference in performance from those who were unfa-
miliar.

Footnote 5 (continued)
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an initial sampling strategy by (a) identifying all sample 
locations on the diagram of a dune cross-section, and (b) 
indicating the number of measurements they wished to 
take at each location. There were 22 locations to choose 
from, with up to 10 measurements at each location. Par-
ticipants were allowed to sample in any spatial order, but 
were instructed to be efficient and select a strategy that 
reflected how they would behave in similar situations in 
the real-world. Participants’ sampling strategy was then 
“executed” by RHex, with the raw measurement data for 
each location being plotted on screen for the participant 
one location at a time, in the selected order. At any point, 
participants were allowed to quit their initial sampling 
strategy and make a conclusion about the hypothesis, or 
change their initial strategy and collect additional data 
(either at a new or previously visited location). Partici-
pants were also allowed to collect additional data at the 
conclusion of their initial sampling strategy.

Unbeknownst to participants, they were randomly 
assigned to either receive data from an underlying 

distribution that supported the McKenna-Neuman and 
Nickling (1989) hypothesis, or receive data from a dis-
tribution that mimicked the results of the Qian et  al. 
(2019) study (see Fig.  2c, blue and green patterns of 
erodibility, respectively). For each hypothesis, we cre-
ated a dataset of soil strength versus moisture content 
for 22 locations along the transect, with 10 measure-
ments available per location. We generated the 10 
measurements at each location with a truncated nor-
mal distribution around the average soil erodibility and 
moisture. For erodibility, we used a standard devia-
tion of ± 2 with truncating a bound of ± 2, whereas for 
moisture we used a standard deviation of ± 0.5 with a 
truncating bound of ± 1. The gaussian distributions 
were truncated to reduce variability in the experiences 
among observers by removing chance encounters with 
low probability outliers. See Additional file 1 for a more 
complete description of how each dataset was com-
putationally generated. The full datasets are shown in 
Fig. 4.

Fig. 3  Decision-making scenario MATLAB user interface. After reporting an initial sampling strategy to the experimenter using the diagram of 
the dune cross-Sect. (22 possible locations, up to 10 measurements at each location), participants plotted their measurement data one location 
at a time by pressing the “Continue” button. Data points appeared in black on the moisture-strength scatterplot (lower left), and visited locations 
were recorded in text just above the scatterplot along with the number of measurements taken, e.g., Loc1 (× 5). Participants could quit their initial 
strategy at any point by pressing the “Deviate” button and reporting a new location to the experimenter—data from this location were plotted 
immediately (in blue). When participants were ready to make a conclusion about the hypothesis they pressed the “Stop” button. The user interface 
code is available online: https://​osf.​io/​yhpxs/

https://osf.io/yhpxs/


Page 8 of 16Wilson et al. Cogn. Research            (2021) 6:29 

The participants were asked to make a judgment to 
either accept or reject the given hypothesis once they felt 
they had enough data to make a conclusion. Participants 
provided a rating of judgment confidence (the options 
were: very confident in my conclusion, moderately con-
fident, slightly confident, not at all confident) and were 
asked to report their familiarity with the hypotheses or 
field setting, and what future steps, if any, they would 
take to improve confidence in their conclusion. Partici-
pants also completed a brief demographic questionnaire.

Participants
We recruited 41 expert geoscientists (11 women) and 
84 novice undergraduates (75 women) as participants 
for this study. Participants had to be at least 18 years of 
age. Expert geoscientists were recruited at the 2018 Fall 
meeting of the American Geophysical Union or through 
personal contact with the authors. An expert status in 
geoscience was defined as completion of a bachelor 
degree in a geoscience-related field; two participants 
were removed prior to analysis because they had not yet 
completed their bachelor degree. Geoscientist partici-
pants completed the decision scenario exactly as outlined 
in the preceding section. Twenty experts (4 women) were 
randomly assigned to sample data from a distribution 
supporting the given hypothesis (i.e., McKenna-Neuman 
& Nickling, 1989), and the other 19 experts (8 women) 
sampled from a distribution supporting the Qian et  al. 
(2019) finding (see Table  1). Experts ranged in age 

(Min = 22, Max = 81, Med = 34, SD = 12.47), and in their 
years of experience post-bachelors (Min = 0.5, Max = 60, 
Med = 10, SD = 12.3).

Novice undergraduates were recruited through the 
Temple University Psychology Subject Pool. Most under-
graduates were between the ages of 18 and 21 (Min = 18, 
Max = 49, Med = 19, SD = 3.59) and were social science 
or health science majors (see Table  1). Undergraduate 
participants completed a simplified version of the deci-
sion scenario, where they were given the same hypothesis 
and only asked to form an initial data collection strat-
egy. Undergraduates were provided with the exact same 
image of the dune cross-section and instructed to use 
the image to select a sampling strategy to evaluate the 
given hypothesis. No measurement data were provided 
and participants were not given the opportunity to revise 
their strategy. Approximately one third of undergraduates 
(n = 29) completed a version of the scenario where they 
were limited to taking measurements at specific labeled 
locations and limited to 10 measurements at each loca-
tion (akin to initial strategy selection constraints placed 
on expert geoscientists). One third (n = 29) completed a 
version of the scenario with no limitations on the number 
of measurements, and the final third (n = 26) completed 
a version with no limitations on measurements or loca-
tions. We wanted to know whether undergraduates who 
completed a scenario with the same constraints as the 
geoscience experts (labeled locations, maximum meas-
urements) would choose similar strategies to undergrad-
uates who completed a scenario with no constraints on 
location or measurement. This allows us to better judge 
the extent to which constraints on measurement and 
location may have influenced expert decisions.

Results
First, we examined whether geoscientists’ initial data 
collection strategies were heuristic-driven. As expected, 
we found strong evidence of heuristic strategies in the 
selection of location and number of measurements. 

Fig. 4  Datasets corresponding to the given hypothesis (blue circles) 
and the alternative-unknown hypothesis (green diamonds). For each 
dataset, 220 measurements are plotted reflecting the maximum of 
10 measurements at 22 locations. Participants only saw a subset of 
the complete dataset—data were randomly selected and presented 
from the larger distribution based on each participants’ strategy. See 
Additional file 1 for a more complete description of how each dataset 
was computationally generated

Table 1  Random assignment of geoscience expert and novice 
undergraduate participants to task conditions

N

Geoscience experts 39

Sampled from data supporting given hypothesis 20

Sampled from data supporting alternative-unknown hypothesis 19

Novice undergraduates 84

Limits on both location selection and number of measurements 29

Limits on location selection, but not number of measurements 29

No limits on location selection, nor number of measurements 26
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Approximately 87% of geoscientists (34 of 39) selected 
locations with roughly uniform intervals, andall geosci-
entists selected a constant number of measurements to 
take at each location. From here on out, we refer to these 
as the equal spacing heuristic and the magic number heu-
ristic,6 respectively.

The expert distribution of magic numbers is shown 
in Fig.  5a. Most geoscientists selected a magic num-
ber between three and five.7 The expert distribution of 
spacing strategies, characterized by the average inter-
val discrepancy, is shown in Fig. 5b. An average interval 
discrepancy of zero indicates perfectly uniform location 
intervals, and a threshold of one was used to identify par-
ticipants who selected non-uniform intervals. Amongst 

Fig. 5  Number of measurements taken at each location during initial strategy selection (magic number heuristic, right column) and average 
location interval discrepancy (equal spacing heuristic, left column) in expert geoscientist (top row) and novice undergraduate participants 
(bottom row). Average location interval discrepancy was computed by ordering interval sizes smallest to largest and taking the mean difference 
of intervals—a score of zero indicates perfectly uniform location intervals, and a threshold of one (dotted vertical line in plots B and D) was used 
to identify participants who selected non-uniform intervals. Novice undergraduates were randomly assigned to complete either bounded or 
unbounded versions of the task—participants were limited to 10 measurements per location and selecting from pre-labeled locations, or the 
number of measurements and location selection was unconstrained. Bounded versus unbounded conditions were included to test the extent to 
which constraints on measurement and location may have impacted sampling strategy

6  The term “magic number” arose from discussions in the field with an expert 
geoscientist who, when observed taking the same number of measurements at 
each data collection site, was asked, “Is there a magic number of samples?”, to 
which the expert replied, “Yes! It’s four.”.

7  When we presented these results to a group of robotic engineers, they were 
shocked that more experts did not take the maximum data available, given 
there was no real cost to doing so in the simulated scenario. We believe this 
shows that experts were treating the scenario as akin to real field data collec-
tion, where there would be a cost associated with each data point (e.g., time, 
opportunity loss, sample analysis fee, etc.).



Page 10 of 16Wilson et al. Cogn. Research            (2021) 6:29 

those who went against the equal spacing heuristic and 
opted for non-uniform intervals, there was no consistent 
background, experience level, or specialization.

Novice undergraduates also showed reliance on the 
equal spacing and magic number heuristics during initial 
strategy selection, but to a lesser degree than expert geo-
scientists. Approximately 63% of undergraduates (53 of 
84) selected locations at roughly uniform intervals, and 
60% (51 of 84) maintained a consistent number of meas-
urements at each location. Among those undergradu-
ates who relied on a magic number, the distribution was 
roughly similar to expert geoscientists, with most nov-
ices selecting a magic number between three and five, 
as shown in Fig.  5c. This suggests that the magic num-
ber and equal spacing heuristics (adhered to by almost all 
experts, but only a subset of novices) might be behavioral 
tendencies that are reinforced in field science practice, 
through either experience or cultural transmission.

Note also in Fig.  5c and d that the distributions of 
magic numbers and equal spacing are similar between 
novice undergraduates in the bounded versus unbounded 
conditions. Undergraduates who were told they could 
take as many measurements as they wished (unbounded 
measurement) ended up taking a similar range of meas-
urements as those who were told they could take a 
maximum of 10 per location (bounded measurement). 
Undergraduates who were allowed free choice of loca-
tions along the transect (unbounded location) ended 
up equally spacing their locations in a similar fashion to 
those who were instructed to take measurements at pre-
labeled locations (bounded location). From these results 
we infer that constraints on labeled locations and maxi-
mum measurements in the expert scenario likely had 
minimal impact on the expert distributions of magic 
numbers and equal spacing.

Next, we were interested in determining whether the 
magic number and equal spacing heuristics employed 
by expert geoscientists and (some) novice undergradu-
ates led to increased likelihood of collecting high value 
data relative to random sampling strategies. To accom-
plish this, we ran 100 iterations of 2 popular heuristic 
strategies (3 measurements at 8 evenly spaced locations, 
3 measurements at 11 evenly spaced locations), and 2 
corresponding random strategies (3 measurements at 8 
randomly selected locations, 3 measurements at 11 ran-
domly selected locations). Iterations were run on both 
datasets (corresponding to the given hypothesis and the 
alternative-unknown hypothesis), and for each of the 
resulting generated datasets the hypothesis fitting error 
was determined. To compute the fitting error, the given 
relationship between erodibility 

(

y
)

 and moisture (x) was 
represented as a piecewise linear function:

where a represents the stabilized erodibility, b represents 
the saturation moisture content, and k represents the 
slope of erodibility versus moisture before saturation. The 
fitting error between the data and the given hypothesis 
was computed as the root mean squared error (RMSE) of 
this linear regression.

The generated final fitting error distributions for the 
heuristic versus random sampling strategies are shown in 
Fig.  6. Heuristics strategies in the present study offered 
a clear advantage in capturing data that were broadly 
representative of the overall statistical pattern of fit. On 
Fig. 6, this is evidenced by better convergence of the final 
fitting error to representative fit (marked by the vertical 
colored lines) with a heuristic strategy (A) relative to a 
random strategy (B)—it is particularly evident when loca-
tions are sampled at higher density (11 versus 8). Repre-
sentative fit for each dataset is defined by the fitting error 
value if all possible (220) measurements were collected.

We also looked at the trajectory of hypothesis fitting 
error for each expert geoscientist participant based on 
whether they drew from a dataset that supported the 
given hypothesis or the alternative-unknown hypoth-
esis. Fitting error was computed at each sampling step 
using the data the participant actually received. Figure 7a 
shows the trajectory of experts fitting error by percent 
effective coverage of the variable space, i.e., the ratio of 
intervals sampled in moisture content range.8 Experts’ 
strategies provide data that begins to converge on the 
representative fitting error (marked by the horizontal 
colored lines) around 60% effective coverage. This dem-
onstrates that the sampling strategies expert geoscientists 
relied on allowed for efficient collection of high value 
data—a representative fitting error was reached by sam-
pling just over half of the available variable-space.

Figure  7b shows the distributions of expert geosci-
entists’ final fitting error, based on whether they drew 
from a dataset that supported the given hypothesis or 
the alternative-unknown hypothesis. Again, we see good 
convergence of each expert distribution towards the rep-
resentative fitting error (marked by the vertical colored 
lines). Note that geoscientists were not provided informa-
tion on statistical convergence, but still had an intuitive 
understanding of convergence from the graphical data. 
This suggests that experts had a sense of when they had 
collected sufficient data to evaluate the given hypothesis; 

y = {kx, x < ba, x ≥ b

8  Variable-space coverage describes the volume of variable space filled out by 
the accumulated data relative to the possible range of variable values. Effective 
coverage was determined by splitting the range of possible variable values (for 
moisture) into 16 intervals and computing the ratio of intervals sampled.
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Fig. 6  Generated distributions of final fitting error using heuristic (top row) versus random (bottom row) sampling strategies. Each distribution 
is the result of 100 iterations, with (a) 3 measurements at 8 evenly spaced locations; (b) 3 measurements at 11 evenly spaced locations; (c) 
3 measurements at 8 randomly selected locations; (d) 3 measurements at 11 randomly selected locations. Iterations were run on datasets 
corresponding to the given hypothesis (blue) and the alternative-unknown hypothesis (green), and for each of the resulting generated datasets 
the final hypothesis fitting error was computed. The blue and green dashed vertical lines show the representative fitting error for the null and 
alternative dataset respectively, i.e., the fitting error if all possible (220) measurements in that dataset were collected

Fig. 7  Expert geoscientists’ (a) fitting error by effective coverage, and (b) distribution of final fitting error. Fitting error was computed using the data 
each participant actually received, drawn from datasets corresponding to the given hypothesis (blue) and the alternative-unknown hypothesis 
(green). The dashed lines of the corresponding colors show the representative fitting error for each dataset, i.e., the fitting error if all possible (220) 
measurements in that dataset were collected
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i.e., most geoscientists stopped collecting data when their 
fitting error reached a value that was representative.

Finally, we examined the degree to which expert geo-
scientists adapted their initial data collection strategies 
in response to incoming data. We were particularly inter-
ested in whether geoscientists would be susceptible to 
anchoring bias and rely too heavily on their initial strate-
gies when given the opportunity to adjust data collection. 
Consistent with this, we found approximately 23% of 
geoscientists (9 of 39) did not adjust their initial strategy 
at all. Of these, 6 were assigned to receive data support-
ing the given hypothesis and 3 received data supporting 
the alternative-unknown hypothesis. Even among those 
who did adjust their strategies, there was still evidence 
of anchoring to initial location selections and the magic 
number. Approximately 77% of those who adjusted (23 of 
30) waited until their initial strategy was complete before 
collecting additional data–12 from the given hypothesis 
condition and 11 from the alternative-unknown hypoth-
esis condition. The other 23% deviated from their initial 
strategy before it was complete, showing behavior con-
sistent with encounter-conditional search heuristics or 
area-restricted search (Hills et al., 2013; Pacheco-Cobos 
et al., 2019). But of those who deviated part-way through, 
the majority (5 of 7) ended up visiting all the locations 
in their initial strategy eventually. Approximately 67% of 
those who adjusted their initial strategy (20 of 30) kept 
using the same magic number–9 from the given hypoth-
esis condition and 11 from the alternative-unknown 
hypothesis condition. Among those who did change their 
magic number, the overall frequency of changes was pro-
portionally small—of all locations sampled, across all 
experts, only 16% (32 of 206) involved a change in magic 
number.

The fact that nearly all expert geoscientist partici-
pants showed some form of anchoring to initial heuris-
tic strategies is neither surprising nor unreasonable given 
the general success of their heuristics at capturing high 
value data (as shown in Fig. 6). With continued reliance 
on heuristic strategies, the majority of experts (31 of 39) 
made the correct conclusion about the hypothesis for the 
dataset they sampled from, and all experts reported being 
either very confident or moderately confident in their 
conclusion. Although the number of experts who made 
an incorrect conclusion about the hypothesis is small, 
there are recurring similarities amongst their decision 
strategy that are worth brief discussion.

Amongst those who made the incorrect conclusion, 
all but one made a Type 1 error; i.e., experts sampled 
from the dataset that supported the given hypothesis, 
but made the conclusion to reject that hypothesis. Half 
(four of eight) relied on magic numbers of two or fewer 
(see Fig.  8a), which increased the likelihood of under-
sampling and obtaining a statistical pattern of fitting 
error that was not representative of the source dataset. 
Also, half (four of eight) of the participants who made the 
wrong conclusion had insufficient coverage of the vari-
able space (< 60%; see Fig. 8b), again reducing the prob-
ability of fitting error converging to the representative 
value. Taken together, these findings highlight the impor-
tance, for field scientists, of considering the variability at 
each site (i.e., the statistical distribution of noise) and the 
nature of spatial gradients (i.e., variable-space coverage).

In summary, the findings from our simulated geologic 
decision scenario suggest expert scientists are likely to 
use simple heuristics when making decisions about both 
where to collect data, and how much to collect—and the 
same heuristics are used, to a lesser degree, by novice 
undergraduates making data collection decisions. For the 

Fig. 8  Characterization of expert sampling strategies that were associated with a Type I error. a Frequency of expert magic numbers plotted by 
experts who made correct (yellow) and incorrect (red) conclusions. b Expert fitting error computed at the conclusion step. Blue circles represent 
individuals who received data supporting the given hypothesis and green diamonds represent individuals who received data supporting the 
alternative-unknown hypothesis. Filled markers represent individuals who made the wrong conclusion. The dashed lines of the corresponding 
colors show the representative fitting error for each dataset
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hypothesis and datasets used in the current experiment 
(based on real-world sediment dynamics), the heuristics 
experts relied on were efficient and effective at captur-
ing high value data. Consequently, experts anchoring to 
their initial heuristics and only making small adaptations 
to their research strategy were not problematic. We dis-
cuss the scenario findings further in Sect.  5, including 
implications for scientific training and the use of mobile 
robotic platforms in field research.

Discussion and conclusions
The findings from the case study and the simulated geo-
logic decision scenario highlight the robust impact that 
heuristics can have on spatiotemporal data collection 
decisions. The equal spacing and magic number heu-
ristics were generally successful, in both simulated and 
real-world field scenarios, at yielding data that allowed 
expert scientists to efficiently evaluate the hypothesis. 
This is good news for field scientists who rely on these 
heuristics – and we know many do, since there are rec-
ommended quality control practices for environmental 
and geological sampling that specify sampling at uniform 
intervals (U.S. Environmental Protection Agency, 2002), 
and taking an equal number of measurements at each 
location (Geboy & Engle, 2011; U.S. Geological Survey, 
1987). Past work has shown that expert geologists sam-
pling heuristics can be unsuccessful, however, failing to 
produce data that are representative of actual field con-
ditions due to under-sampling (Gonzalez & Pasternack, 
2015). Failure in data foraging has consequences, though 
blessedly not as severe as the life-or-death consequences 
associated with traditional foraging. The inadequate or 
incorrect application of data collection heuristics feeds 
forward into natural science interpretations, at best slow-
ing scientific progress (e.g., the re-litigation of field meth-
ods and associated scientific conclusions based on larger 
datasets), and at worse impeding progress entirely (e.g., 
pre-paradigm shift intransigence; Kuhn, 2012).

Notably, the heuristics were successful in the current 
study because the environmental variables being assessed 
were normally distributed and had a gradual spatial gra-
dient. One could imagine that if variables had a power 
law distribution (where a heavy tail makes large meas-
urements more likely), or if a spatial gradient was highly 
non-linear, then the heuristics would be much less effec-
tive. Perhaps the fact that experts relied heavily on the 
heuristics reveals their underlying expectations about the 
typical nature of noise and spatial gradients in the natu-
ral world, i.e., noise is typically normally distributed and 
gradients are typically linear or gradual. Or it might be 
evidence of cultural transmission of foraging strategy, 
consistent with previous naturalistic data (McElreath & 
Koster, 2014) and laboratory research (Maya et al., 2019). 

Since novice undergraduates relied on the same heuris-
tics (though to a lesser degree), this would suggest some 
combination of both, i.e., that expectations of normality 
and gradual spatial trends in the natural world are funda-
mental, but reinforced via cultural transmission in disci-
plinary geoscience.9 If so, this has strong implications for 
field science training—namely, that field scientists should 
be taught (a) to select data collection strategies based on 
the known properties of the variables of interest, and (b) 
to recognize the possible danger in using data collection 
strategies that are a poor fit for the environment. Training 
with simulated field scenarios that have known statistical 
properties offers a variety of pedagogical opportunities, 
including training scientists using a wide range of data 
conditions unconstrained by the need to find field sites or 
data with the desired statistical properties. Therefore, we 
believe simulated field scenarios, like the one used in the 
present study, have strong potential as tools for training 
scientists (novice and expert) about data collection deci-
sion making.

In both the case study and simulated scenario, geosci-
ence experts demonstrated only limited adaptation of 
heuristic strategies in response to in-situ data. This form 
of “anchoring” to heuristics would be problematic in 
environments where the heuristics are a poor fit. How-
ever, as detailed in the preceding paragraph, the heu-
ristics were broadly successful at assessing the variables 
of interest in the current study. Future research should 
examine the conditions under which expert scientists 
adapt data collection heuristics during dynamic hypoth-
esis testing. One possibility is that heuristics only char-
acterize the preliminary exploratory phase of hypothesis 
testing (where field scientists are seeking some minimum 
level of data required to test a plausible working hypoth-
esis), but in the subsequent verification phase (where the 
aim of data collection is to improve confidence in the 
hypothesis to a desired level), heuristics are adapted or 
abandoned.

This distinction between exploratory and verification 
phases (Kartik et  al., 2018) can be represented as sepa-
rate inner-loop iterations of a dynamic hypothesis test-
ing sequence. For example, in the case study, the expert 
geoscientist relied on heuristics during initial data col-
lection (with little adaptation) to test the hypothesis, i.e., 
exploration phase—but once the general hypothesis was 

9  An alternative possibility we considered is that expectations of normality 
and gradual/linear spatial trends in the natural world are a product of statis-
tical training. However, amongst novice undergraduates, we found no dif-
ference in adherence to heuristics between those who had taken a statistics 
course and those who had not. Also, statistics curriculum is rare in geoscience 
programs (Manduca et al., 2008), making it unlikely that greater adherence to 
heuristics in experts versus novices is a product of greater statistical acumen.
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confirmed, the geoscientist indicated he would adapt 
their sampling strategy (abandoning the equal spacing 
heuristic) to provide a more precise test of the hypoth-
esis, i.e., verification phase. In the simulated scenario, 
expert geoscientists were instructed to engage only in 
the exploration phase; however, when asked what future 
steps they would take to improve confidence in their con-
clusion, the majority responded that they would collect 
data along additional dune transects.10 Whether experts 
would continue relying on the same heuristics at new 
transects, or adapt their sampling strategy based on in-
situ data (as occurred in the case study), is a question ripe 
for further study. Answering this question will not only 
require expansion of the environment (e.g., from single 
to multi-transect), but also a well-defined cost function 
for data collection. In the current study, the cost-function 
was subjective; participants were simply asked to make 
data collection decisions similar to how they would in the 
real-world (taking into account typical field constraints 
like time, opportunity loss, etc.). Moving forward, it is 
important that the cost function be objective to bet-
ter evaluate different cognitive theories of search and 
foraging.

The current research focused on data collection deci-
sion making when scientists had a single working 
hypothesis. Yet, in geology, and other field sciences, sci-
entists may approach a field area with multiple paral-
lel or competing hypotheses, or without any specific 
well-defined hypothesis. In the latter case, field scien-
tists instead use general strategies to guide data collec-
tion (e.g., equal space sampling; Reverdy et al., 2017) or 
make observations along paths that are parallel and per-
pendicular to regional geological gradients. It is an open 
question whether the heuristics observed in the current 
research will apply to such field conditions. Thus, an 
important area for future research on in-situ data collec-
tion decision making is contrasting data-driven and sin-
gle-hypothesis versus multi-hypothesis-driven decisions.

The increasing use of technologies that offer in-situ 
data for field research, e.g., mobile robotic platforms, 

have the potential to transform and advance data col-
lection practices beyond existing expert capabilities (Gil 
et al., 2018; Kimball et al., 2020; Shipley & Tikoff, 2019). 
In-situ data not only provide scientists the opportunity to 
make real-time adjustments to data collection strategies, 
but technologies may also be leveraged as decision sup-
port systems that (a) package and present data to users in 
a manner that improves processing fluency, and (b) pro-
vide guidance in the form of behavioral nudges (Wilson 
et  al., 2019). For example, AI endowed with an a-priori 
hypothesis and data collection strategy could provide 
users with real-time statistical information on hypoth-
esis fit while collecting data, and suggest revisions to 
the collection strategy based on accumulated data (e.g., 
“variability at this location is significantly higher than 
previous locations, would you like to collect more data 
before proceeding?”). We believe this type of collabora-
tive and coordinated decision making in human–agent 
teams represents a possible future of field data collection 
and reasoning with data (cf. Alvard & Carlson, 2020). As 
technology grows, the structure of science, and what is 
required of the human scientist, will undoubtedly change. 
Understanding the cognitive underpinnings of adaptive 
data collection decisions will help inform the design of 
new technologies or workflows that promote optimal 
data foraging, and ultimately improve field science by 
better supporting scientists’ most important tools: their 
minds.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s41235-​021-​00296-z.

Additional file 1. Description of dataset generation for simulated 
scenario.

Acknowledgements
Special thanks to Rob Fetell, Nakul Deshpande, and Kieran Dunne from the 
Penn SeD lab group for their assistance with the geoscience field work com-
ponents of this research. Thanks to Anmol Kathail, Weiyi Tang, Shivangi Misra, 
Chun Chang, Divya Ramesh, Julia Messick, Abriana Stewart-Height, Shrich-
arana Puthige, Dan Guralnik, and Diedra Krieger from the Kod* lab at Penn for 
their assistance with field deployment of the mobile robot RHex.

Authors’ contributions
CGW conceived the study, collected data from experts, helped with data 
analysis, and made the primary writing contribution. FQ assisted with study 
conception, ran primary data analysis, and made a significant writing contri-
bution. DJJ, TFS, SR, and DK assisted with study conception and made signifi-
cant writing contributions. JH collected data from undergraduates, helped 
with data analysis, and made a moderate writing contribution. All authors read 
and approved the final manuscript.

Funding
This research was supported by a National Science Foundation, National 
Robotics Initiative Grant (Award Number 1734365).

10  It is standard practice for geoscientists to collect data at multiple envi-
ronmental transects before drawing a conclusion about the variables under 
study. In field work at White Sands with the robot RHex and four dedicated 
researchers (Qian et  al., 2019), it took an entire day (eight to ten hours) to 
sample a single transect from crest to interdunce (approximately 100 m), tak-
ing soil moisture and strength measurements at uniformly spaced intervals 
(every 10 m) with 4 measurements per location. In subsequent field outings in 
the Wissahickon with a smaller team and a better-refined workflow, we have 
been able to take more than twice the amount of data across a similarly sized 
space in almost half the time (five to six hours). Future simulated human–
robot teaming data collection tasks should take into account the real-world 
constraints associated with using a mobile robot; however, one benefit of 
using such tasks is the flexibility to remove or lessen constraints, in anticipa-
tion of technological improvements that will allow for faster data collection.

https://doi.org/10.1186/s41235-021-00296-z
https://doi.org/10.1186/s41235-021-00296-z


Page 15 of 16Wilson et al. Cogn. Research            (2021) 6:29 	

Availability of data and materials
The materials and datasets used during the current study are available in the 
OSF repository, https://​osf.​io/​yhpxs/.

Declarations

Ethics approval and consent to participate
Informed consent was obtained from each individual prior to their participa-
tion. The consent procedure and all study materials and procedures were 
approved by the Temple University and the University of Pennsylvania Institu-
tional Review Boards.

Consent for publication
Not applicable.

Competing interests
The authors declare they have no competing interests.

Author details
1 Department of Psychology, Temple University, Philadelphia, PA, USA. 
2 Department of Electrical and Systems Engineering, University of Pennsylva-
nia, Philadelphia, PA, USA. 3 Department of Earth and Environmental Science, 
University of Pennsylvania, Philadelphia, PA, USA. 4 Mechanical Engineering 
and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA. 

Received: 12 August 2020   Accepted: 27 March 2021

References
Alvard, M., & Carlson, D. (2020). Identifying patch types using movement data 

from artisanal fishers from the commonwealth of dominica. Current 
Anthropology, 61(3), 380–387. https://​doi.​org/​10.​1086/​708720.

Benhamou, S., & Collet, J. (2015). Ultimate failure of the Lévy Foraging 
Hypothesis: Two-scale searching strategies outperform scale-free ones 
even when prey are scarce and cryptic. Journal of Theoretical Biology, 387, 
221–227. https://​doi.​org/​10.​1016/j.​jtbi.​2015.​09.​034.

Berbesque, J. C., Wood, B. M., Crittenden, A. N., Mabulla, A., & Marlowe, F. W. 
(2016). Eat first, share later: Hadza hunter–gatherer men consume more 
while foraging than in central places. Evolution and Human Behavior, 
37(4), 281–286. https://​doi.​org/​10.​1016/j.​evolh​umbeh​av.​2016.​01.​003.

Brewer, N. T., Chapman, G. B., Schwartz, J. A., & Bergus, G. R. (2007). The influ-
ence of irrelevant anchors on the judgments and choices of doctors 
and patients. Medical Decision Making, 27(2), 203–211. https://​doi.​org/​10.​
1177/​02729​89X06​298595.

Boyer, D., Miramontes, O., & Larralde, H. (2009). Lévy-like behaviour in deter-
ministic models of intelligent agents exploring heterogeneous environ-
ments. Journal of Physics A: Mathematical and Theoretical, 42(43), 434015. 
https://​doi.​org/​10.​1088/​1751-​8113/​42/​43/​434015.

Charnov, E. L. (1976). Optimal foraging, the marginal value theorem. Theoretical 
Population Biology, 9(2), 129–136. https://​doi.​org/​10.​1016/​0040-​5809(76)​
90040-x.

Coenen, A., Nelson, J. D., & Gureckis, T. M. (2019). Asking the right ques-
tions about the psychology of human inquiry: Nine open challenges. 
Psychonomic Bulletin & Review, 26, 1548–1587. https://​doi.​org/​10.​3758/​
s13423-​018-​1470-5.

Ehinger, K. A., & Wolfe, J. M. (2016). When is it time to move to the next map? 
Optimal foraging in guided visual search. Attention, Perception, & Psycho-
physics, 78, 2135–2151. https://​doi.​org/​10.​3758/​s13414-​016-​1128-1.

Enough, B., & Mussweiler, T. (2001). Sentencing under uncertainty: Anchoring 
effects in the courtroom 1. Journal of Applied Social Psychology, 31(7), 
1535–1551. https://​doi.​org/​10.​1111/j.​1559-​1816.​2001.​tb026​87.x.

Fagan, W. F., Lewis, M. A., Auger-Méthé, M., Avgar, T., Benhamou, S., Breed, G., 
LaDage, L., Schlägel, U. E., Tang, W. W., Papastamatiou, Y. P., & Forester, J. 
(2013). Spatial memory and animal movement. Ecology letters, 16(10), 
1316–1329. https://​doi.​org/​10.​1111/​ele.​12165.

Fronhofer, E. A., Hovestadt, T., & Poethke, H. J. (2013). From random walks to 
informed movement. Oikos, 122(6), 857–866. https://​doi.​org/​10.​1111/j.​
1600-​0706.​2012.​21021.x.

Furnham, A., & Boo, H. C. (2011). A literature review of the anchoring effect. The 
Journal of Socio-Economics, 40(1), 35–42. https://​doi.​org/​10.​1016/j.​socec.​
2010.​10.​008.

Geboy, N.J. & Engle, M.A. (2011). Quality assurance and quality control of geo-
chemical data: A primer for the research scientist: U.S. Geological Survey 
Open-File Report 2011–1187.

Gil, Y., Pierce, S. A., Babaie, H., Banerjee, A., Borne, K., Bust, G., Cheatham, M., 
Ebert-Uphoff, I., Gomes, C., Hill, M., & Horel, J. (2018). Intelligent systems 
for geosciences: an essential research agenda. Communications of the 
ACM, 62(1), 76–84. https://​doi.​org/​10.​1145/​31923​35.

Gonzalez, R. L., & Pasternack, G. B. (2015). Reenvisioning cross-sectional at-a-
station hydraulic geometry as spatially explicit hydraulic topography. 
Geomorphology, 246, 394–406. https://​doi.​org/​10.​1016/j.​geomo​rph.​2015.​
06.​024.

Hills, T. T., Kalff, C., & Wiener, J. M. (2013). Adaptive Lévy processes and area-
restricted search in human foraging. PLoS ONE, 8(4), e60488. https://​doi.​
org/​10.​1371/​journ​al.​pone.​00604​88.

Humphries, N. E., Weimerskirch, H., Queiroz, N., Southall, E. J., & Sims, D. W. 
(2012). Foraging success of biological Lévy flights recorded in situ. Pro-
ceedings of the National Academy of Sciences, 109(19), 7169–7174. https://​
doi.​org/​10.​1073/​pnas.​11212​01109.

Hutchinson, J. M., Wilke, A., & Todd, P. M. (2008). Patch leaving in humans: Can 
a generalist adapt its rules to dispersal of items across patches? Animal 
Behaviour, 75(4), 1331–1349. https://​doi.​org/​10.​1016/j.​anbeh​av.​2007.​09.​
006.

Ilhan, B. D., Johnson, A. M., & Koditschek, D. E. (2018). Autonomous legged hill 
ascent. Journal of Field Robotics, 35(5), 802–832. https://​doi.​org/​10.​1002/​
rob.​21779.

Jerolmack, D. J., Ewing, R. C., Falcini, F., Martin, R. L., Masteller, C., Phillips, C., 
Reitz, M. D., & Buynevich, I. (2012). Internal boundary layer model for the 
evolution of desert dune fields. Nature Geoscience, 5(3), 206–209. https://​
doi.​org/​10.​1038/​ngeo1​381.

Kartik, D., Nayyar, A., & Mitra, U. (2018). Sequential experiment design for 
hypothesis verification. In 2018 52nd Asilomar conference on signals, sys-
tems, and computers (pp. 631–635). IEEE. https://doi.org/https://​doi.​org/​
10.​1109/​ACSSC.​2018.​86453​57.

Kimball, S., Goldhaber, M., Baron, J., & Labson, V. (2020). The modern geological 
survey: a model for research, innovation, synthesis. A USGS perspective. 
Geological Society, London, Special Publications, 499(1), 203–211. https://​
doi.​org/​10.​1144/​SP499-​2019-​250.

Kuhn, T. S. (2012). The structure of scientific revolutions. . University of Chicago 
press.

Manduca, C. A., Baer, E., Hancock, G., Macdonald, R. H., Patterson, S., Savina, M., 
& Wenner, J. (2008). Making undergraduate geoscience quantitative. Eos, 
Transactions American Geophysical Union, 89(16), 149–150. https://​doi.​org/​
10.​1029/​2008E​O1600​01.

Maya, C., Rosetti, M. F., Pacheco-Cobos, L., & Hudson, R. (2019). Human foragers: 
Searchers by nature and experience. Evolutionary Psychology, 20(9), 1–9. 
https://​doi.​org/​10.​1177/​14747​04919​839729.

McElreath, R., Bell, A. V., Efferson, C., Lubell, M., Richerson, P. J., & Waring, T. 
(2008). Beyond existence and aiming outside the laboratory: Estimating 
frequency-dependent and pay-off-biased social learning strategies. Philo-
sophical Transactions of the Royal Society B: Biological Sciences, 363(1509), 
3515–3528. https://​doi.​org/​10.​1098/​rstb.​2008.​0131.

McElreath, R., & Koster, J. (2014). Using multilevel models to estimate variation 
in foraging returns. Human Nature, 25(1), 100–120. https://​doi.​org/​10.​
1007/​s12110-​014-​9193-4.

McKenna-Neuman, C., & Nickling, W. G. (1989). A theoretical and wind tunnel 
investigation of the effect of capillary water on the entrainment of sedi-
ment by wind. Canadian Journal of Soil Science, 69(1), 79–96. https://​doi.​
org/​10.​4141/​cjss89-​008.​\.

Moser, E. I., Kropff, E., & Moser, M. B. (2008). Place cells, grid cells, and the brain’s 
spatial representation system. Annual Review of Neuroscience, 31, 69–89. 
https://​doi.​org/​10.​1146/​annur​ev.​neuro.​31.​061307.​090723.

Pacheco-Cobos, L., Winterhalder, B., Cuatianquiz-Lima, C., Rosetti, M. F., 
Hudson, R., & Ross, C. T. (2019). Nahua mushroom gatherers use area-
restricted search strategies that conform to marginal value theorem 
predictions. Proceedings of the National Academy of Sciences, 116(21), 
10339–10347. https://​doi.​org/​10.​1073/​pnas.​18144​76116.

https://osf.io/yhpxs/
https://doi.org/10.1086/708720
https://doi.org/10.1016/j.jtbi.2015.09.034
https://doi.org/10.1016/j.evolhumbehav.2016.01.003
https://doi.org/10.1177/0272989X06298595
https://doi.org/10.1177/0272989X06298595
https://doi.org/10.1088/1751-8113/42/43/434015
https://doi.org/10.1016/0040-5809(76)90040-x
https://doi.org/10.1016/0040-5809(76)90040-x
https://doi.org/10.3758/s13423-018-1470-5
https://doi.org/10.3758/s13423-018-1470-5
https://doi.org/10.3758/s13414-016-1128-1
https://doi.org/10.1111/j.1559-1816.2001.tb02687.x
https://doi.org/10.1111/ele.12165
https://doi.org/10.1111/j.1600-0706.2012.21021.x
https://doi.org/10.1111/j.1600-0706.2012.21021.x
https://doi.org/10.1016/j.socec.2010.10.008
https://doi.org/10.1016/j.socec.2010.10.008
https://doi.org/10.1145/3192335
https://doi.org/10.1016/j.geomorph.2015.06.024
https://doi.org/10.1016/j.geomorph.2015.06.024
https://doi.org/10.1371/journal.pone.0060488
https://doi.org/10.1371/journal.pone.0060488
https://doi.org/10.1073/pnas.1121201109
https://doi.org/10.1073/pnas.1121201109
https://doi.org/10.1016/j.anbehav.2007.09.006
https://doi.org/10.1016/j.anbehav.2007.09.006
https://doi.org/10.1002/rob.21779
https://doi.org/10.1002/rob.21779
https://doi.org/10.1038/ngeo1381
https://doi.org/10.1038/ngeo1381
https://doi.org/10.1109/ACSSC.2018.8645357
https://doi.org/10.1109/ACSSC.2018.8645357
https://doi.org/10.1144/SP499-2019-250
https://doi.org/10.1144/SP499-2019-250
https://doi.org/10.1029/2008EO160001
https://doi.org/10.1029/2008EO160001
https://doi.org/10.1177/1474704919839729
https://doi.org/10.1098/rstb.2008.0131
https://doi.org/10.1007/s12110-014-9193-4
https://doi.org/10.1007/s12110-014-9193-4
https://doi.org/10.4141/cjss89-008.\
https://doi.org/10.4141/cjss89-008.\
https://doi.org/10.1146/annurev.neuro.31.061307.090723
https://doi.org/10.1073/pnas.1814476116


Page 16 of 16Wilson et al. Cogn. Research            (2021) 6:29 

Pagliara, R., Gordon, D. M., & Leonard, N. E. (2018). Regulation of harvester ant 
foraging as a closed-loop excitable system. PLoS Computational Biology, 
14(12), e1006200. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10062​00.

Platt, J. R. (1964). Strong inference. Science, 146(3642), 347–353. https://​doi.​org/​
10.​1126/​scien​ce.​146.​3642.​347.

Pyke, G. H. (1984). Optimal foraging theory: A critical review. Annual Review of 
Ecology and Systematics, 15(1), 523–575.

Qian, F., Jerolmack, D., Lancaster, N., Nikolich, G., Reverdy, P., Roberts, S., Shipley, 
T., Van Pelt, R. S., Zobek, T. M., & Koditschek, D. E. (2017). Ground robotic 
measurement of aeolian processes. Aeolian research, 27, 1–11. https://​doi.​
org/​10.​1016/j.​aeolia.​2017.​04.​004.

Qian, F., & Koditschek, D. E. (2020). An obstacle disturbance selection 
framework: Emergent robot steady states under repeated collisions. The 
International Journal of Robotics Research, 39(13), 1549–1566. https://​doi.​
org/​10.​1177/​02783​64920​935514.

Qian, F., Lee, D., Nikolich, G., Koditschek, D., & Jerolmack, D. (2019). Rapid in situ 
characterization of soil erodibility with a field deployable robot. Journal of 
Geophysical Research: Earth Surface, 124(5), 1261–1280. https://​doi.​org/​10.​
1029/​2018J​F0048​87.

Reverdy, P. B., Shipley, T. F., & Koditschek, D. E. (2017). Spatial Sampling Strate-
gies with Multiple Scientific Frames of Reference. In The 3rd multidiscipli-
nary conference on reinforcement learning and decision making (pp. M65). 
Scholarly Commons. https://​repos​itory.​upenn.​edu/​ese_​papers/​784/.

Shipley, T. F., & Tikoff, B. (2019). Collaboration, cyberinfrastructure, and cognitive 
science: The role of databases and dataguides in 21st century structural 
geology. Journal of Structural Geology., 125, 48–54. https://​doi.​org/​10.​
1016/j.​jsg.​2018.​05.​007.

Taylor, L. R., Woiwod, I. P., & Perry, J. N. (1978). The density-dependence of spa-
tial behaviour and the rarity of randomness. The Journal of Animal Ecology, 
47(2), 383–406. https://​doi.​org/​10.​2307/​3790.

Topping, T. T., Vasilopoulos, V., De, A., & Koditschek, D. E. (2019). Composition of 
templates for transitional pedipulation behaviors. In International sympo-
sium on robotics research (ISSR’19).

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics 
and biases. Science, 185(4157), 1124–1131. https://​doi.​org/​10.​1126/​scien​
ce.​185.​4157.​1124.

U.S. Environmental Protection Agency (2002). Guidance on choosing a sampling 
design for environmental data collection: for use in developing a quality 
assurance project plan. Washington, DC.

U.S. Geological Survey (1987). Methods for Geochemical analysis: Analytical 
methods used in geological division laboratories of the U.S. geological survey 
for the inorganic chemical analysis of rock and mineral samples. Denver, CO.

Vasilopoulos, V., Pavlakos, G., Bowman, S. L., Caporale, J. D., Daniilidis, K., Pappas, 
G. J., & Koditschek, D. E. (2020). Reactive semantic planning in unexplored 
semantic environments using deep perceptual feedback. IEEE Robotics 
and Automation Letters, 5(3), 4455–4462. https://​doi.​org/​10.​1109/​LRA.​
2020.​30014​96.

Wei, C., Tanner, H. G., & Hsieh, M. A. (2020, May). Nonlinear synchronization 
control for short-range mobile sensors drifting in geophysical flows. In 
2020 IEEE international conference on robotics and automation (ICRA) (pp. 
907–913). https://​doi.​org/​10.​1109/​ICRA4​0945.​2020.​91967​01.

Wilke, A., Minich, S., Panis, M., Langen, T. A., Skufca, J. D., & Todd, P. M. (2015). A 
game of hide and seek: Expectations of clumpy resources influence hid-
ing and searching patterns. PLoS ONE, 10(7), e0130976. https://​doi.​org/​10.​
1371/​journ​al.​pone.​01309​76.

Wilson, C. G., Bond, C. E., & Shipley, T. F. (2019). How can geologic decision mak-
ing under uncertainty be improved? Solid Earth, 10, 1469–1488. https://​
doi.​org/​10.​5194/​se-​10-​1469-​2019.

Wolman, M. G. (1954). A method of sampling coarse river-bed material. EOS, 
Transactions American Geophysical Union, 35(6), 951–956. https://​doi.​org/​
10.​1029/​TR035​i006p​00951.

Viswanathan, G. M., Da Luz, M. G., Raposo, E. P., & Stanley, H. E. (2011). The 
physics of foraging: An introduction to random searches and biological 
encounters. . Cambridge University Press.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1371/journal.pcbi.1006200
https://doi.org/10.1126/science.146.3642.347
https://doi.org/10.1126/science.146.3642.347
https://doi.org/10.1016/j.aeolia.2017.04.004
https://doi.org/10.1016/j.aeolia.2017.04.004
https://doi.org/10.1177/0278364920935514
https://doi.org/10.1177/0278364920935514
https://doi.org/10.1029/2018JF004887
https://doi.org/10.1029/2018JF004887
https://repository.upenn.edu/ese_papers/784/
https://doi.org/10.1016/j.jsg.2018.05.007
https://doi.org/10.1016/j.jsg.2018.05.007
https://doi.org/10.2307/3790
https://doi.org/10.1126/science.185.4157.1124
https://doi.org/10.1126/science.185.4157.1124
https://doi.org/10.1109/LRA.2020.3001496
https://doi.org/10.1109/LRA.2020.3001496
https://doi.org/10.1109/ICRA40945.2020.9196701
https://doi.org/10.1371/journal.pone.0130976
https://doi.org/10.1371/journal.pone.0130976
https://doi.org/10.5194/se-10-1469-2019
https://doi.org/10.5194/se-10-1469-2019
https://doi.org/10.1029/TR035i006p00951
https://doi.org/10.1029/TR035i006p00951

	Spatially and temporally distributed data foraging decisions in disciplinary field science
	Abstract 
	Introduction
	Background and hypotheses
	Field case study
	Simulated geologic decision scenario
	Procedure
	Participants
	Results

	Discussion and conclusions
	Acknowledgements
	References


