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Do sequential lineups impair
underlying discriminability?
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Abstract

Debate regarding the best way to test and measure eyewitness memory has dominated the eyewitness literature
for more than 30 years. We argue that resolution of this debate requires the development and application of
appropriate measurement models. In this study we developed models of simultaneous and sequential lineup
presentations and used these to compare these procedures in terms of underlying discriminability and response
bias, thereby testing a key prediction of diagnostic feature detection theory, that underlying discriminability should
be greater for simultaneous than for stopping-rule sequential lineups. We fit the models to the corpus of studies
originally described by Palmer and Brewer (2012, Law and Human Behavior, 36(3), 247–255), to data from a new
experiment and to eight recent studies comparing simultaneous and sequential lineups. We found that although
responses tended to be more conservative for sequential lineups there was little or no difference in underlying
discriminability between the two procedures. We discuss the implications of these results for the diagnostic feature
detection theory and other kinds of sequential lineups used in current jurisdictions.
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Significance statement
Sequential lineups are currently used by police jurisdic-
tions in the USA, Canada and the United Kingdom.
Contrary to prior consensus, recent research employing
signal detection measures has reported that simultan-
eous lineups may be superior to sequential lineups. This
is consistent with diagnostic feature detection theory
(DFDT), which attributes this difference to the greater
ability of witnesses presented with a simultaneous lineup
to compare different items and to isolate features that
are uniquely shared by the perpetrator and the target
item. If the sequential lineup is inferior, this has import-
ant implications for procedural fairness in those jurisdic-
tions that currently rely on it. In addition, to the degree
that this supports theories such as DFDT, these can be
used to develop improved lineup procedures that
maximize performance. We developed a set of formal
models based on signal detection theory and applied

them to comparative data drawn from historic and con-
temporary studies in order to compare underlying mem-
ory performance between simultaneous and sequential
lineups. Our results revealed little to no simultaneous
advantage in underlying discriminability, although the
effect may be smaller than our study could detect, and a
substantial shift in response bias in that eyewitnesses
given sequential lineups require more evidence to iden-
tify an item. We show that the reason our results differ
from some that have been published previously is due to
the way in which eyewitness performance is measured in
those studies where they are susceptible to distortion by
structural features of the procedures. We also provide
supplemental materials for fitting a signal detection
model to simultaneous lineup data.

Overview
A major goal of eyewitness research is to develop proce-
dures that maximize correct identifications and
minimize incorrect identifications by eyewitnesses. The
sequential lineup has been proposed as one such proced-
ure (Lindsay & Wells, 1985). In contrast to the more
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traditional simultaneous lineup, in which all items are
presented to the eyewitness at the same time, items in
the sequential lineup are presented one at a time. Past
research had suggested that the sequential lineup is su-
perior to the simultaneous lineup because it leads to a
reduced number of incorrect identifications without af-
fecting the number of correct identifications (e.g. Wells,
Memon, & Penrod, 2006), suggesting that memory for
the perpetrator is expressed more efficiently in the se-
quential lineup. However, recent studies have drawn the
opposite conclusion, finding that simultaneous presenta-
tion is superior (e.g., Clark, 2012; Mickes, Flowe, &
Wixted, 2012). This raises the question of whether
memory for the perpetrator is greater in the sequential
lineup compared to the simultaneous lineup or vice
versa. In order to answer this question, we argue that it
is necessary to apply formal models specific to each pro-
cedure in order to measure underlying memory strength
and response bias. Our aim in this paper is to develop
such models and to apply them to both existing and new
data to answer the question of whether memory is the
same or different between simultaneous and sequential
lineups.

The sequential lineup
Lineups are typically presented simultaneously, with all
lineup items shown at the same time in a single array. A
witness may either identify an item as the target (i.e.,
corresponding to their memory of the perpetrator) or re-
ject the lineup, indicating that no item is a suitable
match. In a sequential lineup, as originally proposed by
Lindsay and Wells (1985), each lineup item is presented
one at a time and, for each item, the witness is asked to
judge if it matches their memory of the target by making
a “yes/no” judgement. If the witness responds “yes”, the
procedure terminates and the remaining lineup items (if
any) are not shown. If they respond “no”, they are shown
the next lineup item if there is one. The lineup is impli-
citly rejected if the witness responds “no” to all available
lineup members. Variations of this procedure have also
been proposed, which do not enforce the immediate
stopping rule. These alternatives may permit witnesses
to see remaining lineup members after an identification
is made (Wilson, Donnelly, Christenfeld, & Wixted,
2019), require witnesses to view all lineup members be-
fore making an identification, or allow (or require) wit-
nesses to lap through the procedure a second time
(Horry, Brewer, Weber, & Palmer, 2015; Seale-Carlisle,
Wetmore, Flowe, & Mickes, 2019).
Lindsay and Wells (1985) originally proposed the se-

quential lineup based on a theoretical distinction be-
tween absolute and relative judgement strategies (Wells,
1984). A relative judgement is said to occur when a wit-
ness selects the lineup item most similar to their

memory of the target relative to the other items. Such a
strategy would tend to lead to a high false positive rate
because there is a basis for identification even when
memory of the perpetrator is poor or the target is not a
member of the lineup. An absolute judgement is said to
occur when an identification judgement does not depend
on the similarity of other lineup items to the witness’
memory of the target. Such a strategy would tend to lead
to lower false positive rates because witnesses have a
basis to reject the lineup when memory of the target is
poor or if the target is not present. Lindsay and Wells
(1985) suggested that the sequential lineup would en-
courage an absolute decision strategy by removing the
opportunity to compare lineup items. Consistent with
this, Lindsay and Wells (1985) found that sequential
presentation led to significantly fewer innocent suspect
identifications than simultaneous presentation, accom-
panied by a relatively small reduction in target identifica-
tions. This pattern of results, termed the sequential
superiority effect, has been identified in many subse-
quent studies and in two meta-analyses (Steblay, Dysart,
Fulero, & Lindsay, 2001; Steblay, Dysart, & Wells, 2011).
Based on this evidence, researchers have successfully ad-
vocated a policy shift toward sequential presentation,
which has led to its adoption in various forms in 30% of
US jurisdictions and in Canada and the United Kingdom
(Police Executive Research Forum, 2013; Seale-Carlisle
& Mickes, 2016).

Diagnostic feature detection theory
The interpretation of the sequential superiority effect
has recently been challenged by Wixted and Mickes
(2014). They have proposed the diagnostic feature detec-
tion theory (DFDT) of lineup identification, which pre-
dicts a memory advantage for simultaneous lineups
compared to sequential lineups. According to this the-
ory, correct identification (and rejection) of a lineup is
based on identifying diagnostic features of the different
lineup items. A diagnostic feature is one that is uniquely
shared by a lineup item and the witness’ memory of the
target which, if identified, would support a correct iden-
tification. A non-diagnostic feature is one that is shared
by all lineup items (e.g. hair colour) which, even if it
matches the witness’ memory of the target, cannot sup-
port a correct identification. Wixted and Mickes (2014)
argued that because a witness is better able to compare
the features of different lineup items in a simultaneous
lineup, they are better able to identify features that are
diagnostic and to discount those that are not.
The distinction between absolute and relative identifi-

cation strategies proposed by Lindsay and Wells (1985)
and DFDT make opposite predictions on the relative
merits of simultaneous and sequential lineups - both
cannot be correct. This has led to a re-evaluation of the

Kaesler et al. Cognitive Research: Principles and Implications            (2020) 5:35 Page 2 of 21



sequential superiority effect and a re-examination of
how eyewitness performance is measured. Specifically,
researchers have argued that much of the early research
on the sequential lineup has obscured potential short-
comings of the sequential procedure by treating the ac-
companying small reduction in perpetrator identifications
as inconsequential (Clark, 2012; Moreland & Clark, 2016).
In addition, recent research, employing receiver operating
characteristic (ROC) analysis derived from signal detection
theory, has found evidence that simultaneous presentation
may, in fact, outperform sequential presentation (e.g. Carl-
son & Carlson, 2014; Dobolyi & Dodson, 2013). We dis-
cuss each of these issues in turn.

Measuring identification performance
In many earlier studies of the sequential superiority ef-
fect, eyewitness performance was measured using the
diagnosticity ratio statistic, defined as the ratio of the
proportion of correct target identifications (TIDs) (the
TID rate) to the proportion of incorrect innocent suspect
identifications (SIDs) (or the false positive rate). A TID
is made when the witness correctly identifies the target
in the lineup. An SID is made when the target is not a
member of the lineup and the witness incorrectly identi-
fies the innocent suspect. On this measure of perform-
ance, an identification made from a lineup procedure
that reliably generates a higher diagnosticity ratio is to
be preferred to one that does not.
An alternative performance measure is based on signal

detection theory (Wixted & Mickes, 2012, 2015a, 2015b)
and proposes that performance should be judged in
terms of the level of correct identifications that can be
obtained for a given level of incorrect suspect identifica-
tions. This is termed empirical discriminability and it
minimizes the two kinds of identification error discussed
previously (Wixted & Mickes, 2018). Empirical discrim-
inability can be measured by constructing an ROC curve.
In the context of lineup tasks, this is a plot of TID rates
against SID rates at different levels of response bias - the
general willingness of a decision-maker to make an iden-
tification. In perceptual research, different levels of re-
sponse bias are achieved by varying payoffs that
differentially weight correct and false positive responses,
leading decision-makers to be biased towards one kind
of response over another. Post-decision confidence esti-
mates are used as a proxy for different levels of response
bias in many recognition memory experiments. These
may be recorded on a Likert scale or a 0–100% scale
with the number of bins set by the researcher.
Figure 1 displays ROCs for two hypothetical show-up

procedures. A show up is a lineup consisting of only one
item. These ROC curves have the same form as found in
laboratory-based yes-no recognition memory tasks, ex-
tending from the extreme lower left to the extreme

upper right. The two curves in Fig. 1 differ in empirical
discriminability, which is greater for the curve that is
closer to the top-left corner. This curve, corresponding
to Procedure B in this example, always has a higher cor-
rect identification rate for any given incorrect identifica-
tion rate. If empirical discriminability is zero, the ROC
curve falls on the main diagonal indicating chance per-
formance. Following this logic, empirical discriminability
can be measured by calculating the area under the ROC
curve (AUC). The greater the AUC, the greater the em-
pirical discriminability. The AUC measure is independ-
ent of response bias because any combination of correct
and incorrect identification rates on the same ROC
curve is associated with the same AUC. Accordingly, be-
cause Procedure B has greater AUC than Procedure A, it
has greater empirical discriminability.
Each point on the ROC curve corresponds to a differ-

ent response bias and is associated with a given diagnos-
ticity ratio. It is here that the contrast between empirical
discriminability and the diagnosticity ratio becomes ap-
parent - the same ratio can be found on different ROC
curves corresponding to different levels of discriminabil-
ity (Gronlund, Wixted, & Mickes, 2014; Rotello, Heit, &
Dubé, 2015). This feature is shown in Fig. 1 by the set of
dashed lines each of which corresponds to a different
diagnosticity ratio (1.0, 1.5, 2.5, 5.0, or 10.0). As can be
seen, these lines intersect each of the two ROC curves at
different points showing that, all else being equal, the
more conservative the response bias (associated with
lower false positive rates), the larger the diagnosticity ra-
tio. It is clear from this that the diagnosticity ratio is
simply a measure of response bias, independent of em-
pirical discriminability.

Fig. 1 Hypothetical ROC curves for two memory test procedures.
Procedure B has higher empirical discriminability (AUC) than
Procedure A. The dashed lines represent different diagnosticity ratios
taking the values 1, 1.5, 2.5, 5 and 10. Each point on each ROC curve
that intersects with a line has the corresponding diagnosticity ratio
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Task dependence of ROC curves
Empirical discriminability provides an objective criterion
against which different lineup procedures may be com-
pared. On this view, any procedure that leads to a higher
correct identification rate for any given false positive rate
is to be preferred (Wixted & Mickes, 2012). However,
DFDT is concerned with underlying discriminability, i.e.
memory strength (Wixted & Mickes, 2018). It proposes
that the feature detection mechanism facilitated by sim-
ultaneous presentation leads to greater underlying dis-
criminability compared to sequential presentation, and
that this explains the superior empirical discriminability
of simultaneous presentation observed in some studies
using ROC analysis (e.g. Carlson & Carlson, 2014). ROC
analysis may be uninformative with respect to under-
lying discriminability when the procedures being com-
pared have different structural characteristics. In this
case, the shapes of the ROC curves and the resulting
empirical discriminability associated with each proced-
ure may differ substantially even when underlying dis-
criminability is the same (Rotello & Chen, 2016;
Stephens, Dunn, & Hayes, 2019).
A dissociation between empirical and underlying dis-

criminability due to structural features of a task is illus-
trated in Fig. 2a. This shows a family of hypothetical
ROC curves derived from lineups of different sizes.
These curves were generated using the simultaneous
lineup model signal detection theory (SDT)-MAX, which
we define later (the relevant formulas are given in
Additional file 1). This model is based on a signal detection
framework in which there is a normal distribution of famil-
iarity values for the target item and another normal distri-
bution for foil items, including the innocent suspect. For

each lineup size, although underlying discriminability (i.e.
the difference between the familiarity distributions of the
target and foils) is the same, the shape and termination
point of each ROC curve is different. Each curve termi-
nates at a different point because, under the most lenient
response bias (i.e. always select a lineup member) there is
a 1/n chance of choosing the innocent suspect, where n is
the lineup size. Thus, because n differs between the
curves, each must terminate at a different point corre-
sponding to a false positive rate of 1/n.
Because the ROC curves in Fig. 2a were all generated

from the same underlying signal detection model, the
differences are due to a structural characteristic of the
lineup task - specifically the lineup size. This means that
differences in empirical discriminability between these
tasks do not indicate differences in underlying discrimin-
ability (which is the same for each curve).
From the foregoing, it should come as no surprise that

structural characteristics of the sequential lineup also
change the shape of the ROC curve. In this case, it is
not the size of the lineup that is critical, but the mini-
mum level of evidence required to make an identifica-
tion. Figure 2b shows a set of ROC curves for a
sequential lineup of size 6, each constructed with a dif-
ferent minimum level of evidence. The ROC curves
shown by thin solid lines in Fig. 2b illustrate different
choices for the minimum level of evidence expressed in
terms of a decision criterion on the familiarity axis. The
value of this criterion is indicated at the end of each cor-
responding ROC curve. A large value indicates a conser-
vative response bias for which a relatively high level of
familiarity is required for a lineup item to trigger identi-
fication. A small value indicates a lenient response bias

Fig. 2 The effect of task characteristics on the shapes of ROC curves. a The set of ROC curves for simultaneous lineups of sizes 1 (show up) to 6
as indicated on the figure. Each curve is associated with the same underlying dt = 1. b The set of ROC curves for simultaneous and sequential
lineups of size 6 and dt = 1. The dashed line is the ROC curve for a simultaneous lineup, identical to curve 6 in panel a. The thin solid lines are
the ROC curves for a sequential lineup associated with different minimum criteria to choose, ranging from conservative (2) to lenient (−3). The
thick solid line is the ROC curve for a sequential lineup in which response bias is manipulated between participants and ranges from most
conservative to most lenient
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for which a relatively low level of familiarity is sufficient
to trigger identification. Each of these ROC curves
terminates at a different point. In the limit, when the
minimum evidence is very low, the ROC curve termi-
nates on the main diagonal (indicated by the dotted line
in Fig. 2b). The ROC curve shown by the thick solid line
corresponds to the situation in which each witness has a
different level of minimum evidence. It encloses the set
of confidence-based ROC curves and is clearly non-
monotonic. Rotello and Chen (2016) observed a similar
shaped curve in their simulations of the sequential
lineup, as did Wilson et al. (2019) in empirical sequential
lineup data.
Figure 2b also shows the ROC curve generated from a

simultaneous lineup of size 6 as shown in Fig. 2a (by the
curve labelled 6). Altogether, these curves show that
even when underlying discriminability is held constant,
the shapes of ROCs and the corresponding empirical
discriminability values differ to a considerable degree. It
is therefore important to distinguish two research ques-
tions. One question is about empirical discriminability -
for any given false identification rate, which procedure
leads to higher correct identification rates? The ROC
curves shown in Fig. 2a and b suggest that simultaneous
lineups are preferred to sequential lineups and, within
the class of simultaneous lineups, smaller lineup sizes
are preferred to larger lineup sizes. Empirical research
also supports this conclusion, at least with respect to
simultaneous, as compared to sequential lineups
(Carlson & Carlson, 2014; Dobolyi & Dodson, 2013;
Experiment 1a Mickes et al., 2012; Neuschatz et al.,
2016), although this has not always been found (Flowe,
Smith, Karoglu, Onwuegbusi, & Rai, 2016; Gronlund
et al., 2012; Experiment 1b and 2 Mickes et al., 2012;
Sučić, Tokić, & Ivešić, 2015).
The second question bears on DFDT and concerns

underlying discriminability - which eyewitness test pro-
cedure reveals higher levels of memory strength? ROC
curves and the AUC cannot be used to answer this ques-
tion. As shown above, they may not reflect underlying
discriminability across different lineup procedures. In
order to measure underlying discriminability, it is neces-
sary to use a formal model to measure the parameter of
interest. In this section we outline two models of the
simultaneous lineup task based on signal detection the-
ory (SDT-MAX and SDT-INT) and develop a compar-
able model of the simple stopping rule version of the
sequential lineup task (SDT-SEQ). We then apply these
models to extant and new data to estimate memory
strength across the two procedures.

Unequal variance signal detection model
The starting point for all the lineup models we consider
is the unequal variance signal detection (UVSD) model.

The UVSD model accounts well for data in laboratory-
based recognition memory tests (Jang, Wixted, & Huber,
2009; Mickes, Wixted, & Wais, 2007) and can be ex-
tended to account for lineup tasks. In a typical eyewit-
ness experiment, a participant views a simulated crime
conducted by a perpetrator and is subsequently shown
an n-item lineup. In a target present (TP) lineup, one
item is the target (a picture of the perpetrator) and the
remaining items are foils or fillers (pictures of other
people). In a target absent (TA) lineup, one item may be
designated as the innocent suspect with the remaining
items being foils. The participant is required to judge
whether the lineup contains the target and, if they believe
it does, to identify the corresponding item. We assume
that each lineup item is associated with a familiarity value
that reflects its similarity to the participant’s memory of
the perpetrator. Each familiarity value is considered a ran-
dom draw from one of several distributions - a target dis-
tribution if the item is a target, an innocent suspect
distribution if it is an innocent suspect1, and a foil distri-
bution if it is a foil. In order for the models to be testable
we assume that each distribution is Gaussian. Consistent
with most signal detection models, the foil distribution is
assigned a mean of zero and a standard deviation of one.
The target distribution has mean dt and standard devi-
ation st, both of which can be estimated from the data. Be-
cause st may not equal one the model is called the
unequal variance signal detection model. In addition, be-
cause the innocent suspect may be distinct from the
remaining foils, the suspect distribution has mean ds and
standard deviation ss.
A lineup can be considered as a combination of a de-

tection question, “Is the target present?”, and an identifi-
cation, “If so, which item is the target?” (Duncan, 2006).
While the answer to the identification question is rela-
tively straightforward - always choose the lineup mem-
ber associated with the greatest familiarity - the answer
to the detection question is less clear-cut. This leads to
different models based on different decision rules. Al-
though there is a wide range of possible decision rules,
we consider two in particular, which we call SDT-MAX
and SDT-INT. In the SDT-MAX model, the decision
rule is to compare the familiarity value of the most fa-
miliar lineup item (the maximum) to a response criter-
ion. In the SDT-INT model, the decision rule is to
compare the sum of the familiarity values of the lineup
items to a response criterion. For both of these models,
if the relevant value exceeds the criterion, the most fa-
miliar item is identified as the target. We also developed

1We differentiate innocent suspects from known-innocent foils here
because, in some studies, innocent suspects are selected to bear a
closer resemblance to the target than the foils. This means that inno-
cent suspect should be modelled as being drawn from a distribution
with a different mean to that of the foil distribution.

Kaesler et al. Cognitive Research: Principles and Implications            (2020) 5:35 Page 5 of 21



a model of the sequential lineup. In this case, because
the witness does not see all the lineup items until the
end, and may not see all items if they choose before
reaching the end, it not possible before that point to
identify either the maximum or the sum, or any other
function of the familiarity values of the entire lineup. For
this reason, we developed a model of the sequential
lineup, here called SDT-SEQ.

SDT-MAX
SDT-MAX, also known as the independent observations
model (Duncan, 2006; Wixted, Vul, Mickes, & Wilson,
2018), is perhaps the simplest model of the simultaneous
lineup. In this model, identification decisions are made
with respect to a set of k decision criteria, C = {c1,…, ck}
such that c1 < c2 <… < ck, that define a set of k + 1 confi-
dence levels. Let X = {x1,…, xn} be the set of familiarity
values associated with each of n lineup items. Let xm =
max(X) be the maximum familiarity value associated
with item m. The decision rule is this: if xm < c1 then re-
ject the lineup, otherwise choose lineup item m with
confidence level l where cl is the largest element of the
set, {ci ∈C : xm ≥ ci}.
As detailed in Additional file 1, we derive general for-

mulas for the probability of a correct identification and
the probability of a false identification under the SDT-
MAX model. We summarize these below under the as-
sumption that all the underlying distributions are Gauss-
ian. Let ϕ(x;μ,σ) be the normal probability density
function and let Φ(x;μ,σ) be the normal cumulative dis-
tribution function evaluated at x ∈ ℝ. Recall that the foil
distribution takes the form of the standard normal distri-
bution with µ = 0 and σ = 1. In this case, we write ϕ(x;0,
1) = ϕ(x) and ϕ(x;0,1) = ϕ(x). Let c ∈ C be a decision cri-
terion and let PTID(c) be the probability of a correct tar-
get identification with confidence greater than or equal
to c. Then

PTIDðcÞ ¼
Z ∞

c
ϕ x; dt ; stð ÞΦðxÞn−1dx:

Similarly, let PSID(c) be the probability of an incorrect
suspect identification with confidence greater than or
equal to c. Then, if there is a designated innocent
suspect,

PSIDðcÞ ¼
Z ∞

c
ϕðx; ds; ssÞΦðxÞn−1dx;

otherwise,

PSIDðcÞ ¼ 1
n
ð1−ΦðcÞnÞ:

SDT-INT
Let sumðXÞ be the sum of familiarity values of all the
lineup items. The decision rule is this: If sum(X) < c1

then reject the lineup, otherwise choose lineup member
m with confidence level l where cl is the largest element
of the set, {c ∈C : sum(X) ≥ c}
The equations for the probability of a correct identifi-

cation and probability of a false identification under the
SDT-INT model are summarized below (see Additional
file 1 for details).

PTIDðcÞ ¼ PrðsumðXÞ≥c j m ¼ tÞ � Prðm ¼ tÞ
≈

Z ∞

−∞
1−Φ c−x; n−1ð Þμx;

ffiffiffiffiffiffiffiffiffiffiffiffi
ðn−1Þ

p
σx

� �� �
ϕðx; dt; stÞΦðxÞn−1dx

where t is the position of the target item and μx and σx
are the mean and standard deviation, respectively, of the
standard normal distribution truncated at the upper
limit of x. The equation is not exact because it assumes
that the sum of truncated distributions is approximately
normal (by the Central Limit Theorem). Similarly, if
there is a designated innocent suspect, then

PSIDðcÞ ≈
Z ∞

−∞
1−Φ c−x; n−1ð Þμx;

ffiffiffiffiffiffiffiffiffiffiffiffi
n−1ð Þ

p
σx

� �� �
ϕ x; ds; ssð ÞΦðxÞn−1dx;

otherwise,

PSIDðcÞ ¼ 1
n

1−Φ c; 0;
ffiffiffi
n

p� �� �
:

SDT-SEQ
Our model for sequential presentation is also based on
the UVSD framework and incorporates the “first-above-
criterion” decision rule where presentation of the lineup
items is terminated as soon as an identification is made.
As detailed in Additional file 1, we derive the following
equations for the probability of a correct identification
and probability of a false identification under the SDT-
SEQ model. Let pi be the probability that the item in
lineup position i is a target. Then

PTIDðcÞ ¼ ð1−Φðc; dt ; stÞÞ
Xn
i¼1

piΦðc1Þi−1:

If there is a designated innocent suspect, let qi be the
probability that the lineup item at position i is the sus-
pect. Then,

PSIDðcÞ ¼ ð1−Φðc; ds; ssÞÞ
Xn
i¼1

qiΦðc1Þi−1:

otherwise,

PSIDðcÞ ¼ 1
n
ð1−ΦðcÞÞ

Xn
i¼1

Φðc1Þi−1:
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Palmer and Brewer (2012) database
Palmer and Brewer (2012) conducted an extensive ana-
lysis of previously published studies that compared sim-
ultaneous and stopping-rule sequential lineups under
the same conditions. They fit a signal detection model
equivalent to the SDT-INT model described previously,
to data from 22 previous studies. Their aim was to de-
termine if either underlying discriminability and/or re-
sponse bias differs between sequential and simultaneous
lineups. Their analysis revealed that, across the datasets,
the two presentation methods did not differ in terms of
underlying discriminability but that the sequential pro-
cedure was associated with more conservative
responding.
While the finding of equal underlying discriminability

is not consistent with DFDT, the difference in response
criteria was consistent with the view that a sequential
lineup produces a higher diagnosticity ratio. It is now
widely accepted that sequential presentation leads to
more conservative responding than simultaneous pres-
entation (Clark, 2012; Clark, Moreland, & Gronlund,
2014; Wells, 2014; Wixted & Mickes, 2014). The appar-
ent success of the modelling approach employed by
Palmer and Brewer (2012) has also led researchers to
use SDT-INT to examine other aspects of the sequential
lineup (Carlson, Carlson, Weatherford, Tucker, & Bed-
narz, 2016; Horry et al., 2015; Horry, Palmer, & Brewer,
2012).
However, there are aspects of the Palmer and Brewer

(2012) approach that challenge the validity of their con-
clusions. First, and most critically, the SDT-INT model
was fit to data from both simultaneous and sequential
lineups. No attempt was made to model the unique task
demands of sequential presentation. It is therefore un-
known whether the same results would be found if a
more appropriate model were used, such as SDT-SEQ as
described previously. Second, the SDT-INT model does
not exhaust the set of decision rules for simultaneous
lineups (Wixted et al., 2018). A different decision rule,
such as SDT-MAX, may lead to different results. Third,
Palmer and Brewer (2012) fit the SDT-INT model using
an inefficient and potentially inaccurate manual grid
search of parameter space. Finally, because confidence
judgements were not available, it was only possible to fit
an equal variance signal detection model in which st =
ss = 1. If this is not an appropriate model of their data,
the results may be distorted.

Summary and aims
The aim of the present paper was to compare simultan-
eous and sequential lineups in order to test the central
prediction of DFDT that simultaneous presentation is
associated with greater underlying discriminability than
sequential presentation. To do this, we first re-analysed

the corpus of simultaneous and sequential data from
Palmer and Brewer (2012), addressing the previously de-
scribed problems in their analysis. Principally, we fit a
model of the sequential lineup, SDT-SEQ, specifically
developed for this task, and two models of the simultan-
eous lineup - the SDT-INT model as used by Palmer
and Brewer (2012) and the alternative SDT-MAX model.
Third, we fit each model using an efficient optimisation
procedure that leads to more accurate solutions. Second,
we conducted a new experiment from which we ob-
tained confidence judgements enabling us to fit models
based on the assumption of unequal variances.

Predictions
Predictions were preregistered on the Open Science
Framework, available at https://osf.io/xwp9d/. DFDT
predicts that simultaneous presentation should lead to
greater underlying discriminability than sequential pres-
entation. Specifically, this means that the estimate of dt
(or the difference dt – ds if there is a designated suspect)
should be greater for simultaneous lineups. Based on the
conclusions reached by Palmer and Brewer (2012), se-
quential presentation is predicted to lead to more con-
servative responding than simultaneous presentation.
This means that the estimate of c1 (and possibly other
criteria) should be greater for sequential lineups.

Model cross fit
We have described three models that we propose to fit
to data. This is motivated in part by the idea that there
are differences between the models that determine how
well they fit different kinds of data. This means that if
data are simulated from a model, while this model
should fit the data well, other models should fit relatively
poorly. In order to investigate this question, we con-
ducted a cross fitting and parameter recovery analysis.
First, we randomly generated 100 sets of parameter
values for a 6-item lineup and then used each of these to
generate 100 simulated datasets from each model. To
avoid issues with low cell counts, we set the number of
TP and TA lineups to 10,000, giving 20,000 simulated
observations for each dataset. We then fit each model to
its own sets of data and to those generated by the other
models, recording the χ2 value, p value and parameter
estimates from each fit. Further detail on the simulation
process and expanded results are available in Additional
file 2.
Figure 3 shows the proportion of datasets where the

model could be rejected at p < .05. It shows that when a
model is fit to data generated by any other model, it is
highly likely to be rejected. In other words, the models
are, in principle, distinct - given sufficient statistical
power, if the data are consistent with one model then
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they should be poorly fit by any of the remaining
models.

Parameter recovery
We measured parameter recovery by examining the cor-
relation between generating and recovered parameter
values for each model fit. Scatterplots and tables of cor-
relations are available in Additional file 2. We were in-
terested in two aspects of this analysis. First, it is
desirable for the correlation value to be close to 1 when
the models are fit to their own data. Second, it is also
important to understand how well the models recover
the correct parameter values when fit to data they did
not generate as, in some cases, they may fit well but re-
cover incorrect parameter estimates.
When fit to their own data, the models generally re-

cover their own parameters well, with r > = .90 for gen-
erating versus recovered parameter values. SDT-MAX
recovers the generating parameters perfectly when fit to
its own data, but both SDT-SEQ and, to a lesser extent,
SDT-INT, recover a small number of outliers, affecting
the correlation coefficients. These are most likely due to
the presence of local minima, which can be avoided by
starting parameter search from different initial values. It
is evident from the scatterplots in Additional file 2 that
recovery is close to perfect once these outliers are
excluded.
When SDT-MAX and SDT-INT are fit to data gener-

ated by SDT-SEQ, recovery of dt is poor. This suggests
that if SDT-SEQ is a good representation of the sequen-
tial lineup task, then fitting SDT-MAX or SDT-INT to

sequential lineup data may lead to inaccurate estimates
of dt. Recovery of st was poor for all models when fit to
data they did not generate, while recovery of the deci-
sion criteria (c1, …, c5) was generally good for all fits,
with r > = .80.

Re-analysis of the Palmer and Brewer (2012)
dataset
Palmer and Brewer (2012) selected a corpus of 22 stud-
ies (total N = 3871, simultaneous n = 1952, sequential
n = 1919) that compared simultaneous and stopping-rule
sequential presentation procedures using the “full diag-
nostic design” inclusion criteria described in Steblay
et al. (2011). That is, each study manipulated both pres-
entation format (simultaneous versus sequential) and
target presence (present versus absent), reported above-
chance identification performance, defined as PTID −
PSID > 0.1, in at least one of the four experimental condi-
tions, and included only adult participants.
The simultaneous lineup data from each study were fit

by both SDT-INT (as undertaken by Palmer and Brewer)
and SDT-MAX. The corresponding sequential lineup
data were fit by SDT-INT (as undertaken by Palmer and
Brewer) and SDT-SEQ. Each model was fit using the
Matlab® fmincon function. Because each study required
participants to make a single choose-no choose decision,
there are not enough degrees of freedom to fit all of the
model parameters, specifically c, dt, ds, st, and ss, without
the model becoming saturated (i.e., having no remaining
degrees of freedom). Accordingly, we specified that st =
ss = 1, as was also assumed by Palmer and Brewer.
Some studies designated an innocent suspect while

others did not. When a suspect had been designated, we
estimated ds, the mean of the suspect distribution, other-
wise we stipulated that ds = 0, the same as the mean of
the foil distribution. In addition, studies differed in the
probability of a target (and suspect if relevant) appearing
at different sequential lineup positions. When specified,
this information was used in fitting the SDT-SEQ model
(see Additional file 1 for details), otherwise it was as-
sumed that the target/suspect had the same probability
of appearing at each lineup position.

Results and discussion
Model fit performance
Table 1 presents the χ2 goodness-of-fit values for each
dataset and each fitted model. Each χ2 test has one de-
gree of freedom and we set α = .01 to control the type I
error rate across the large number of tests conducted.
We fit the SDT-MAX and SDT-INT models to the sim-
ultaneous lineup data and SDT-SEQ and SDT-INT to
sequential lineup data. SDT-MAX fit 20 of 22 simultan-
eous datasets, as indicated by non-significant χ2 values.
The model did not fit data from two studies - Carlson

Fig. 3 Proportion of p < .05 for models cross fit to simulated data.
Each model was fit to its own 100 simulated datasets and cross fit
to the 100 datasets generated by the other models. The bars show
the proportion of datasets for which the models could be rejected
at α = .05
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et al. (2008) experiment (Exp) 2 and Greathouse and
Kovera (2009). SDT-INT performed similarly, also failing
to fit the two studies above, in addition to Lindsay and
Wells (1985). For the sequential lineups, SDT-SEQ fit 19
of 22 data sets, failing to fit data from Kneller et al.
(2001), Lindsay and Wells (1985) and Pozzulo and Mar-
ciniak (2006). SDT-INT failed to fit the three datasets
above, in addition to experiment one and two from Carl-
son et al. (2008). In all, SDT-MAX and SDT-SEQ per-
formed better than SDT-INT when fit to data from
simultaneous and sequential lineups respectively. Similar
results with respect to simultaneous lineup data were
found by Wixted et al. (2018), who examined the per-
formance of SDT-MAX and SDT-INT by fitting these
models to a number of previous lineup datasets.
We examined the datasets that were not fit by one or

more models. Our first observation was that each of
these contained a limited number of observations, al-
though this was also true for other datasets that were fit
well. Second, in the case of Carlson et al. (2008, Exp 2),
Greathouse and Kovera (2009) and Palmer and Brewer
(2012), Pozzulo and Marciniak (2006) had collapsed the
relevant data across different experimental conditions. In

addition to presentation format, Carlson et al. (2008,
Exp 2) manipulated lineup fairness, Greathouse and
Kovera (2009) manipulated administrator bias and
lineup fairness, and Pozzulo and Marciniak (2006) ma-
nipulated appearance change from encoding to test.
Given that these manipulations may have affected the
underlying signal detection parameters and that collaps-
ing across these conditions may have caused the models
to perform poorly, we disaggregated each dataset in to
its original experimental conditions and re-fit the models
to these datasets. The resulting χ2 values are shown in
Table 2, revealing improved model fits in 10 of 18 ex-
perimental conditions.

Parameter estimates
In order to compare our results with Palmer and Brewer
(2012), we report parameter values recovered from fit-
ting the models to the same 22-dataset corpus, rather
than disaggregating each study in to its original experi-
mental conditions. A full table of parameter estimates is
available in Table S1, Additional file 3. Table 3 shows
the mean estimates of the model parameters and their
standard deviations for each presentation format,

Table 1 χ2 goodness-of-fit values for each dataset, presentation format and model

Dataset Simultaneous lineup Sequential lineup

SDT-MAX SDT-INT SDT-SEQ SDT-INT

Carlson, Gronlund, and Clark (2008, Exp 1) .01 2.29 2.01 11.48*

Carlson et al. (2008, Exp 2) 20.81* 36.53* .23 30.04*

Clark & Davey (2005, Exp 1) .39 .08 .06 .05

Clark & Davey (2005, Exp 2) .30 .03 1.14 .51

Greathouse and Kovera (2009) 9.23* 10.28* 2.91 .01

Kneller, Memon, and Stevenage (2001) 2.68 3.20 10.91* 13.17*

Levi (2006) .08 .72 .17 .10

Lindsay, Lea, & Fulford (1991) 1.24 1.39 .17 4.99

Lindsay and Wells (1985) 5.99 11.86* 6.74* 22.25*

MacLin & Phelan (2007) .37 .21 .02 .00

MacLin et al. (2005, Exp 1) .25 .22 1.41 1.39

MacLin et al. (2005, Exp 2) .61 .46 .00 .03

Melara et al. (1989) 1.14 1.18 .07 .01

Memon & Gabbert (2003) .31 .48 .05 .34

Parker & Ryan (1993) 1.38 4.33 .00 .27

Pozzulo et al. (2008) .03 .00 .00 .06

Pozzulo and Marciniak (2006) .09 .03 12.18* 13.75*

Rose et al. (2005) .49 1.62 .01 0.10

Sporer (1993) .66 .63 .63 .44

Steblay et al. (2011) .72 1.24 .00 .07

Wells & Pozzulo (2006) .47 .24 .59 .73

Wilcock et al. (2005) 5.34 5.56 .02 .17

*Non-fitting datasets: asterisks indicate a significant difference from zero, α = 0.01 (critical value = 6.63)

Kaesler et al. Cognitive Research: Principles and Implications            (2020) 5:35 Page 9 of 21



weighted by sample size. The parameters are underlying
discriminability, decision criterion, c, and a derived deci-
sion parameter C, which Palmer and Brewer (2012) used
in their original analysis. C is defined as, C = c − dt/2 ,
with zero indicating an “unbiased” criterion set at the
midpoint between the target and foil distributions. Nega-
tive values indicate a lenient response criterion while
positive values indicate a conservative criterion. This
metric is only relevant in the equal variance case, as a
change in target distribution variance will shift the point
at which choosing would be truly unbiased. Our hypoth-
esis tests are based on the estimated parameters from fit-
ting SDT-MAX fit to the simultaneous data and SDT-
SEQ fit to the sequential data. Mean weighted parameter
values from fitting SDT-INT to both data types and as
calculated from the original Palmer and Brewer (2012)
fits are presented for comparison.

Underlying discriminability Figure 4 shows underlying
discriminability plotted against criterion c estimated by
SDT-MAX and SDT-SEQ fit to simultaneous and se-
quential lineups, respectively. For studies that specified a
designated innocent suspect, underlying discriminability
was calculated as dt – ds. Visual examination of Fig. 4

reveals no particular relationship between underlying
discriminability and presentation format. Mean weighted
underlying discriminability shown in Table 3 does not
differ between simultaneous and sequential presentation,
as indicated by a Welch two-sample weighted t test, t
(40.33) = .40, p =.69. We re-ran the analysis, excluding
datasets that the models failed to fit, but this did not
change the result. This result is consistent with the con-
clusion reached by Palmer and Brewer (2012) and fails
to support our hypothesis that underlying discriminabil-
ity is greater for simultaneous presentation.
Table 3 shows that the mean-weighted estimates of

underlying discriminability recovered by SDT-INT for
each presentation format are similar to those recovered
by SDT-MAX and SDT-SEQ when fit to their respective
data types. The Welch two-sample weighted t test indi-
cated that there is no significant difference for simultan-
eous, t (37.53) = .08, p = .94, or sequential presentation, t
(35.22) = -.26, p = .79.
Our estimates of mean weighted underlying discrimin-

ability shown in Table 3 are lower than those calculated
from the original Palmer and Brewer (2012) analyses
and those reported in our preliminary analysis of this
corpus (Kaesler, Semmler, & Dunn, 2017). This is

Table 2 Chi-square fit values for previously non-fitting datasets, disaggregated in to original experimental conditions

Dataset Simultaneous lineup Sequential lineup

SDT-MAX SDT-INT SDT-SEQ SDT-INT

Carlson et al. (2008, Exp 2) – biased 19.68* 19.66* 1.94 22.76*

Carlson et al. (2008, Exp 2) – intermediate .81 3.02 .42 10.23*

Carlson et al. (2008, Exp 2) – fair 10.00* 16.88* .85 2.61

Greathouse and Kovera (2009) – biased, single-blind .15 .38 .78 .15

Greathouse and Kovera (2009) – biased, double-blind .57 .38 4.08 2.17

Greathouse and Kovera (2009) – fair, single-blind 5.44 6.29 4.06 .44

Greathouse and Kovera (2009) – fair, double-blind 3.83 4.09 .25 .15

Pozzulo and Marciniak (2006) – no appearance change .89 .09 1.82 3.81

Pozzulo and Marciniak (2006) –appearance changed .21 .06 12.60* 11.58*

*Non-fitting datasets: asterisks indicate a significant difference from zero, α = 0.01 (critical value = 6.63)

Table 3 Mean parameter values weighted by sample size calculated from the estimates reported in Palmer and Brewer (2012) and
our reanalysis

Format Source Parameter

Discriminability c C

μw σw μw σw μw σw
Simultaneous Palmer and Brewer (2012) 1.64 .50 −.07 .37 −.89 .33

SDT-MAX .91 .72 1.24 .24 .58 .25

SDT-INT .94 1.02 −.17 .82 −1.01 .72

Sequential Palmer and Brewer (2012) 1.75 .62 .48 .59 −.38 .49

SDT-SEQ .99 .58 1.61 .37 .92 .39

SDT-INT .93 .93 1.07 1.37 0.18 1.25
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because we estimated ds for studies that employed a des-
ignated innocent suspect selected to resemble the per-
petrator more closely than foils, where previous analyses
assumed that the innocent suspect and the foils were
drawn from the same distribution with a mean of zero
and standard deviation of one. In the case where ds is
greater than zero, DFDT does not predict a strong sim-
ultaneous advantage, because the features uniquely
shared by the innocent suspect and the perpetrator will
cause the innocent suspect to be identified at a higher
rate in the simultaneous procedure compared to the se-
quential procedure. For this reason, we examined
whether there was a simultaneous advantage in the sub-
set of studies that did not use an innocent suspect. We
found that the mean weighted difference in underlying
discriminability between simultaneous and sequential
presentation as estimated by SDT-MAX and SDT-SEQ
respectively was less for the 8 studies that used an inno-
cent suspect (M = −.23) compared to the 14 that did
not (M = .09). However, the Welch two-sample
weighted t test indicated that the difference between
these means is not significant, t (9.78) = − 1.61, p = .14.

Response bias Visual examination of Fig. 4 shows an
apparent difference between sequential and simultan-
eous datasets for values of the decision criterion, c. Ana-
lysis of mean weighted c values show that these are
greater (indicating more conservative responding) for se-
quential than for simultaneous lineups, Welch two-
sample weighted t test, t (35.83) = − 3.88, p < .01. Once
again, excluding the datasets that the models failed to fit
did not change the result.

Summary
The re-analysis of the Palmer and Brewer (2012) corpus
of data reaffirmed their original finding of no significant
difference in underlying discriminability between se-
quential and simultaneous presentation. SDT-MAX and
SDT-SEQ performed similarly and recovered similar
parameter estimates to SDT-INT when fit to their re-
spective data types. This is in contrast to simulations we
conducted that showed that the models behave differ-
ently over the entire parameter space. Both of these re-
sults may be attributable to low statistical power since
each study on average had fewer than 100 participants.
It is possible that, because of the relatively small number
of participants in each study, each individual analysis
lacked the statistical power to detect both differences in
the fits of models and differences in underlying discrim-
inability between simultaneous and sequential lineups.
In addition to a lack of statistical power, two other

methodological issues limit the utility of the corpus for
investigating differences in underlying discriminability.
First, a designated innocent suspect was selected to re-
semble the perpetrator in some studies, which may at-
tenuate any simultaneous advantage in underlying
discriminability. Second, the target was fixed to appear
in certain positions in many of the sequential lineup
studies. While our modelling approach accounted for
fixed target positions, there is some evidence to suggest
that underlying discriminability may increase with target
position (Wilson et al., 2019). As a result, those studies
in which the target was fixed to appear late in the lineup
may have overestimated underlying discriminability
compared to studies in which the target position was

Fig. 4 Criterion (c) vs discriminability for each dataset in the Palmer and Brewer (2012) corpus. Simultaneous and sequential underlying
discriminability and c as estimated by SDT-MAX and SDT-SEQ, respectively
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randomised. In addition, because each study either re-
corded or reported only a binary (yes/no) decision, it
was necessary to assume an underlying equal variance
signal detection model. Although the resulting model fits
were good, it is possible that the parameter estimates
may have been systematically affected. For these reasons,
we conducted a new experiment that sought to address
each of these limitations.

Experiment 1
The aim of experiment 1 is to compare a simultaneous
lineup and a stopping-rule sequential lineup, extending
the studies examined by Palmer and Brewer (2012), by
increasing statistical power using a large sample size,
collecting confidence judgements, and avoiding using a
designated innocent suspect.

Design
We employed a 2 × 2 between-participants factorial de-
sign, manipulating presentation format (simultaneous
versus sequential) and target presence (TP versus TA).

Participants
Participants were 600 Amazon Mechanical Turk (AMT)
workers who were compensated US$1.00 for the 5–10-
min experiment. There were 11 participants excluded
for failing attention-check questions relating to the con-
tent of the stimulus video, leaving 589 participants (sim-
ultaneous TP = 139, simultaneous TA = 141, sequential
TP = 161, sequential TA = 148) for the eventual analysis.

Materials
This study employed a pool of 16 female lineup mem-
bers, drawn from the Adelaide Lineup Database. This
consists of a video and accompanying head-and-
shoulders photographs taken front-on, at 90° side-on,
and approximately at 45° for each of 194 persons. Only
front-on photos were used in this study. In each video,
the actor wears a black shirt T-shirt with a white Uni-
versity of Adelaide logo to remove the identifying poten-
tial of coloured clothing in the lineup phase. The scene
opens with an actor (each of the 194 persons in turn)
seated at a computer with their back to the camera.
After a few seconds during which they type on the com-
puter keyboard, the actor picks up a mobile phone
placed on the table to their left and turns to face the
camera while looking at the phone. The actor then
stands and walks towards the camera while looking at
the phone, glancing up briefly to the camera as they pass
by. Each video is approximately 10–15 s in duration. An
example video can be found at https://osf.io/p2hck/.

Stimulus pool selection process
In order to minimise the potential for stimulus effects,
rather than a single target and set of foils, we used a
pool of lineup members that could all act as both targets
and foils. The starting point for selecting the pool mem-
bers was similarity ratings previously collected for front-
on photographs of 90 female faces in the Adelaide
Lineup Database. AMT workers (n = 76) were compen-
sated US$1.30 to rate 45 pairs of faces on a Likert scale
from 0 (most similar) to 10 (least similar). Each partici-
pant rated a different subset of the possible face pairs to
reduce participant burden and ensure timely collection
of the data. The average number of ratings per similarity
pair was 5.92, minimum 1, maximum 10. This resulted
in a similarity matrix with each cell containing the mean
rating of similarity between each pair of faces.
We first summed across each row of the similarity

matrix, giving the mean similarity of a face relative to all
other faces. Faces were then sorted from most similar to
all others to least similar to all others. While this order-
ing served as a guide, we also identified a set of feature-
based exclusion criteria, some of which related to dis-
tinctive non-biological features that appear in the photo-
graphs and others that related to constraints in terms of
isolating a suitably large feature-matched subset from
within the corpus. We excluded participants with nose
rings or other obvious piercings, those wearing glasses,
those who were not Caucasian in appearance, those with
“unnaturally” dyed hair, e.g. blue hair, those with hair
shorter than shoulder length and those with their hair
pulled back. This resulted in a pool of 16 lineup female
members of a similar ethnicity, skin tone, hair colour
and hairstyle. One of the stimulus photographs required
some editing to remove distinctive clothing features that
were not obscured by the black T-shirt worn by all
actors.

Procedure
The entire procedure took place within AMT, with the
experiment rendered on the participants’ web browsers.
Participants were allocated to one of the four conditions
on a round-robin basis. They were first questioned on
their understanding of the task, being directed back to
the instruction page if incorrect responses were re-
corded. They were then shown a video of a target ran-
domly selected from the 16-member pool, before
completing a visual search distractor task, similar in na-
ture to a “Where’s Waldo/Wally”. Participants were then
shown pre-lineup instructions corresponding to those in
the U.S. National Deparment of Justice (1999) guidelines
before viewing either a target present (TP) or target ab-
sent (TA) lineup presented simultaneously or sequen-
tially, with the appropriate number of foils (5 for TP, 6
for TA) randomly selected from the remaining 15
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members of the stimulus pool. The position of the target
on TP lineups and the order of the foils on both TP and
TA lineups was randomised.
In the simultaneous condition, participants could ei-

ther identify a lineup item or choose a black silhouette
to indicate that the target was not present in the lineup,
after which they provided a confidence rating for their
choice by typing a number from 0 to 100, where 0 was
lowest confidence and 100 was highest confidence. In
the sequential condition, participants were shown each
lineup item individually with an option either to identify
or to reject it. If the item was rejected, the next item in
the sequence was shown. If a lineup item was identified,
the procedure terminated and the participant was asked
to provide a typed confidence estimate for their identifi-
cation. If all lineup items were rejected, participants
were informed that the lineup had been exhausted, indi-
cating a rejection decision, and were asked for a typed
confidence rating. Participants then answered follow-up
questions about the clarity of the instructions and the
difficulty of the task, and were given the opportunity to
provide feedback.

Analyses
We fit SDT-MAX and SDT-INT to the simultaneous
data and SDT-SEQ to the sequential data, estimating
seven parameters, dt, st, and c1, …, c5, for each dataset.
In Supplement 1 we provide annotated R code for fitting
a multi-criteria, unequal variance version of SDT-MAX
to simultaneous lineup data.
We tested our hypotheses using likelihood-ratio tests,

comparing an unconstrained model to seven nested
models where an equality constraint across the simultan-
eous and sequential data was imposed for one or the
other parameter. We fit both conditions simultaneously,
minimising χ2 for the overall fit. This allowed us to spe-
cify equality constraints across both conditions.

Results and discussion
Table 4 shows the decision outcome frequencies for sim-
ultaneous and sequential lineups. The bin widths were
set by collapsing over all conditions and partitioning the
confidence judgements in to even-as-possible frequency
quintiles. We used an alpha level of .05 for the model fits
and hypothesis tests.

Model fit performance and parameter estimates
Table 5 shows the recovered parameter values and fit
statistics for SDT-MAX and SDT-INT fit to the simul-
taneous data and SDT-SEQ fit to the sequential data.
For the simultaneous condition, both SDT-MAX and
SDT-INT fit the data well. For the sequential condition,
SDT-SEQ provided an adequate fit to the data. Table 5
shows that simultaneous and sequential st are similar

when SDT-MAX is the simultaneous lineup model. This
means that the dt values for each presentation format
are comparable estimates of underlying discriminability.
In contrast, st is twice as large for simultaneous presen-
tation compared to sequential presentation when SDT-
INT is the simultaneous lineup model. In this case, the
dt values for each presentation format cannot be inter-
preted as directly comparable estimates of underlying
discriminability. This is because, holding all else equal,
increasing st increases the area of overlap between the
target and foil distributions, reducing underlying discri-
minability.It is also evident from Table 5 that the deci-
sion criteria (c) estimated by SDT-INT are spread wider
than those estimated by both SDT-MAX and SDT-SEQ.
This is because they are scaled according to the detec-
tion decision variable for SDT-INT, the sum of the fa-
miliarity of all lineup items. Consequently, the decision
criteria estimated by SDT-INT are not directly compar-
able to those estimated by SDT-SEQ (or SDT-MAX). In

Table 4 Decision outcomes frequencies for simultaneous and
sequential presentation

Simultaneous

Confidence 100–91 90–81 80–66 65–51 50–0 Reject

TP – target ID 24 25 30 9 11 19

TP – foil ID 0 1 5 4 11

TA – foil ID 4 11 25 16 24 61

Sequential

Confidence 100–91 90–81 80–66 65–51 50–0 Reject

TP – target ID 32 22 21 13 6 41

TP – foil ID 0 3 7 9 7

TA – foil ID 3 5 31 11 14 84

TP target present, TA target absent

Table 5 Parameter estimates from fitting SDT-MAX and SDT-INT
to the simultaneous data and SDT-SEQ to the sequential data
from experiment 1

Simultaneous Sequential

SDT-MAX SDT-INT SDT-SEQ

dt 1.83 2.56 1.89

st .94 2.02 1.12

c5 2.72 5.17 2.74

c4 2.20 3.41 2.27

c3 1.69 1.56 1.74

c2 1.49 .79 1.54

c1 1.16 −.54 1.41

χ2 13.44 12.19 15.39

df 8 8 8

p .10 .14 .05
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contrast, the decision variables of SDT-SEQ and SDT-
MAX are both based on “untransformed” signal strengths
and are therefore directly comparable.These difficulties in
comparing the parameter estimates of SDT-INT to SDT-
SEQ mean that SDT-INT is not well suited to testing our
hypothesis. As a result, we employ SDT-MAX as the sim-
ultaneous lineup model and SDT-SEQ as the sequential
lineup model in all subsequent analyses.

Underlying discriminability
Table 6 shows the results of the likelihood-ratio tests of
the equality of each parameter between the simultaneous
and sequential conditions as estimated by the SDT-
MAX and SDT-SEQ models, respectively. The estimates
of dt and st did not differ significantly between the sim-
ultaneous and sequential conditions.
The lack of a significant difference in underlying dis-

criminability between simultaneous and sequential
lineups is consistent with our previous re-analysis of the
Palmer-Brewer database. It suggests that this result is not
easily attributable to non-random target position in se-
quential lineups or the use of a designated innocent sus-
pect selected to resemble the target to a greater extent
than the foils. We also attempted to address the lack of
statistical power in many of the studies in the Palmer-
Brewer database. Despite increasing the number of partici-
pants compared, we did not observe a statistically signifi-
cant difference in underlying discriminability. This
suggests that if there is a simultaneous advantage, it is
small and therefore difficult to detect. The effect size as
measured by Hedge’s g for the difference between simul-
taneous and sequential underlying dt is small, g = .06.
Additionally, our conclusion rests on the assumption

that the SDT-MAX model is an appropriate model of

the simultaneous lineup data. Recently, Wixted et al.
(2018) proposed the ensemble model based on the idea
of comparing diagnostic features.2 In this model, the
item with the maximum familiarity (and potential target)
is compared to the average familiarity of the remaining
items. If this difference exceeds an evidential criterion,
the potential target is identified, otherwise the lineup is
rejected. We also fit this model to data from the simul-
taneous condition of experiment 1 and found that it pro-
vided an excellent fit, χ2(8) = 6.96, p = 0.54. However, we
again found no statistically significant difference between
its estimate of dt and the estimate from the SDT-SEQ
model, χ2(1) = 0.29, p = 0.59.

Response bias
Table 5 shows that estimates of decision criteria (c2, …,
c5) are comparable between simultaneous and sequential
lineups for each criterion except c1, which separates
lineup identification and rejection decisions (the choose/
no choose threshold). Table 5 shows that c1 was signifi-
cantly larger in the sequential condition, supporting our
hypothesis and conforming to previous literature (Carl-
son et al., 2016; Clark, 2012; Dobolyi & Dodson, 2013;
Gronlund, Carlson, Dailey, & Goodsell, 2009; Meissner,
Tredoux, Parker, & MacLin, 2005). Interestingly, having
made this decision, the assignment of additional confi-
dence levels did not differ between the two procedures.

Target distribution variance
Table 6 shows that estimates of target distribution vari-
ance (st) did not differ between simultaneous and se-
quential presentation. The st values displayed in Table 5
are also close to 1 for both presentation formats, imply-
ing that equal-variance models may account for these
data. Constraining the models so that st = ss = 1 did not
significantly worsen the fit for SDT-MAX, χ2(1) = .28,
p = .60, or SDT-SEQ, χ2(1) = .61, p = .43. This indicates
that equal-variance models adequately capture these
data, in contrast to long-standing findings of unequal
target and lure distribution variance reported in the lit-
erature on basic recognition memory (Egan, 1958;
Mickes et al., 2007) and in recent lineup research (Wil-
son et al., 2019; Wixted et al., 2018).

Sequential position 1 compared to the simultaneous
lineup
In addition to greater underlying discriminability in the
simultaneous lineup, DFDT also predicts that underlying
discriminability should increase over the course of the se-
quential lineup (Wixted & Mickes, 2014). The presenta-
tion of each new sequential lineup item provides an
additional opportunity to isolate distinctive features

Table 6 Likelihood ratio tests comparing fits of unconstrained
models to a series of constrained models where equality for
each parameter is imposed across the simultaneous and
sequential conditions

χ2(1) p

dt .15 .70

st .87 .35

c5 .01 .91

c4 .28 .60

c3 .28 .60

c2 .48 .48

c1 10.54 < .01

Significant p values indicate that model fit significantly worsened when a
parameter was constrained to be equal across the simultaneous and
sequential conditions. For each unconstrained model, we fit SDT-SEQ to the
sequential data and SDT-MAX to the simultaneous data. The unconstrained
models had 16 degrees of freedom, fixing one parameter increases the
degrees of freedom to 17, χ2(17) - χ2(16) = χ2(1), thus the χ2 tests above have
one degree of freedom 2Full details of the ensemble model available in (Wixted et al., 2018).

Kaesler et al. Cognitive Research: Principles and Implications            (2020) 5:35 Page 14 of 21



uniquely shared by the target and the lineup items. Con-
sistent with this, Wilson et al. (2019) identified greater
underlying discriminability at sequential target positions
2–6 compared to position 1. This suggests that the differ-
ence in discriminability between sequential and simultan-
eous presentation should be greatest at sequential position
1 and should reduce over the course of the lineup. Be-
cause position 1 in a sequential lineup is equivalent to a
single-item show up, this result is also consistent with the
robust finding that the simultaneous lineup outperforms
the single-suspect show up (Gronlund et al., 2012;
Neuschatz et al., 2016; Wooten et al., 2020).
When comparing underlying discriminability between

simultaneous and sequential presentation, differences
between the simultaneous lineup and each sequential
position are aggregated. Fully randomising the position
of the target, as in our experiment, may have reduced
the average simultaneous advantage, which may explain
why we failed to find one. To investigate this possibility,
we compared underlying discriminability between se-
quential position 1 and the simultaneous lineup.

Data
Table 7 shows the frequency counts for sequential serial
position 1 (i.e. show up) data and the simultaneous lineup.
Because of the comparatively small number of TP trials in
sequential position 1, it was not possible to classify the data
further by confidence level. In order to treat responses to
sequential position 1 as a show up, we reclassified partici-
pants’ responses as follows. A TP1 show-up trial occurred
when the first sequential lineup item was the target. A TA1

show-up trial occurred when the first sequential lineup
item was a foil. Note that this includes those participants
who encountered the target at a later serial position in the
lineup as well as those who never saw a target.

Model fits and results
We used an equal variance (EVSD) model of the yes/no
task to estimate show up dt and c and SDT-MAX to

estimate simultaneous dt and c. As previously, we con-
ducted likelihood ratio tests comparing the overall fit of
an unconstrained model fit to each dataset simultan-
eously, to various constrained models where one param-
eter was set to be equal across the two sets of data.
We fit the EVSD model to the show-up data. In this

case, it has an analytic solution given by, dt =Φ− 1(H) –
Φ− 1(F) and c =Φ− 1(1 – F), where H is the Target ID
rate, F is the TA Foil ID rate and Φ− 1 is the inverse nor-
mal cumulative distribution function. Because there are
no degrees of freedom, this model necessarily fits per-
fectly. The estimated parameter values were, dt = 1.58
and c = 1.49. We fit the SDT-MAX to the simultaneous
data with the constraint that st = 1. It fit these data well,
χ2(1) = 2.54, p = .11, with estimated parameter values,
dt = 1.98 and c = 1.18. Although underlying discrimin-
ability appeared to be greater for the simultaneous
lineup, this difference was not significant, χ2(1) = 1.87,
p = .17. Responding was significantly more conservative
for sequential position 1, χ2(1) = 5.79, p < .05, consistent
with previous findings at the aggregate level.
Despite previous studies that have reported a simul-

taneous advantage in underlying discriminability over
show ups (e.g. Neuschatz et al., 2016) we failed to
observe a similar effect in our data. Because the ex-
periment was not designed with this analysis in mind,
the number of participants in the TP1 was relatively
small (N = 28) which means that the analysis may not
have sufficient statistical power. Nevertheless, it is
possible to conclude that if there is an advantage for
simultaneous presentation it is likely to be a relatively
small effect.

Re-analysis of simultaneous versus sequential
studies conducted since Palmer and Brewer
(2012)
We failed to find an underlying discriminability advan-
tage for the simultaneous lineup compared to the se-
quential lineup in a corpus of studies published prior to
Steblay and Phillips (2011) and in our own experimental
data. However, it is possible that such an effect occurs in
studies published after Steblay and Phillips (2011), par-
ticularly those that report an empirical discriminability
advantage for simultaneous presentation (e.g. Mickes
et al., 2012). We conducted a literature search for stud-
ies published since 2011 that compared photographic
simultaneous and stopping-rule sequential lineups. We
isolated studies that reported results in such a way that
we could extract the cell frequencies required to fit the
SDT-MAX and SDT-SEQ models. Seven simultaneous
versus stopping-rule sequential lineup studies published
since 2011 met our criteria; Carlson and Carlson (2014),
Carlson et al. (2016), Flowe et al. (2016), Pica and Poz-
zulo (2017), Pozzulo, Dempsey, and Pettalia (2013),

Table 7 Decision outcomes frequencies for sequential serial
position one, treated as a showup, and the simultaneous lineup

Showup (Sequential Serial Position One)

Identify Reject

TP1 – Target ID 15 13

TA1 – Foil ID 19 262

Simultaneous Lineup

Identify Reject

TP – Target ID 99 19

TP – Foil ID 21

TA – Foil ID 80 61
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Pozzulo, Reed, Pettalia, and Dempsey (2016) and Sučić
et al. (2015). Additionally, we requested the data from
Mickes et al. (2012), from which we were able to extract
the required cell frequencies for experiment 1a, but not
experiments 1b or 2. This new corpus of eight studies
(total N = 6453, simultaneous n = 2803, sequential n =
3650) provides more power to detect a simultaneous ad-
vantage in underlying discriminability than the Palmer
and Brewer corpus (total N = 3871, simultaneous n =
1952, sequential n = 1919).

Method
As per our analysis of the Palmer and Brewer corpus, we
estimated dt, c and, where relevant, ds for each study by fit-
ting SDT-MAX to the simultaneous data and SDT-SEQ to
the sequential data. We then calculated mean discrimin-
ability (dt – ds) and response bias (c) weighted by sample
size for simultaneous and sequential presentation. For
most of the studies, we estimated parameters separately for
each experimental condition, rather than collapsing over
conditions other than presentation format. This led to thir-
teen simultaneous versus sequential datasets from the eight
studies. For Carlson and Carlson (2014) and Carlson et al.
(2016), we collapsed the sequential target position-2 and
target position-5 conditions, specifying that the target
could only appear at these two positions when fitting SDT-
SEQ. For Pozzulo et al. (2013) we collapsed the adolescent
and adult age conditions because the original study re-
ported no effect of age on decision performance.

Results
Model-fit statistics and parameter values for each dataset
are available in Table S2. SDT-MAX fit 12 of 13 simul-
taneous datasets at α = .05, failing to fit the backloaded
simultaneous condition of Carlson et al. (2016). SDT-
SEQ fit 10 of 13 sequential datasets at α = .05, failing to
fit the sequential data from Sučić et al. (2015), the se-
quential weapon present plus distinctive feature condi-
tion from Carlson and Carlson (2014) and the sequential
data from Pozzulo et al. (2013). Table 8 shows the mean
and standard deviations for discriminability and re-
sponse bias (c) for simultaneous and sequential

presentation, weighted by sample size. The Welch two-
sample weighted t test indicated no significant difference
in mean weighted discriminability, t (21.43) = 1.14,
p = .27 or mean weighted response bias, t (20.72) = 0.08,
p = .94, between presentation formats. As for the Palmer
and Brewer corpus and our experiment, this does not
support the hypothesis that underlying discriminability
is greater for simultaneous presentation. Unlike our pre-
vious analyses, the hypothesis that responses are more
conservative in the sequential procedure was not
supported.

General discussion
The present study sought to compare performance be-
tween the simultaneous lineup and sequential stopping-
rule lineup in order to test the central prediction of the
diagnostic feature detection hypothesis; that underlying
discriminability is greater when lineups are administered
simultaneously rather than sequentially (Wixted &
Mickes, 2014). As structural differences between the
procedures affect the shape of the corresponding ROCs,
a difference in empirical discriminability between simul-
taneous and sequential presentation does not necessarily
indicate a difference in underlying discriminability. In
order to measure underlying discriminability, it is neces-
sary to characterise the data in terms of an appropriate
model. Accordingly, we developed a novel signal detec-
tion model that captures the structure of the sequential
lineup task, SDT-SEQ, and contrasted this with models
of the simultaneous lineup task, SDT-MAX and SDT-
INT (as well as the ensemble model).
We first fit SDT-MAX, SDT-INT and SDT-SEQ to

the Palmer and Brewer (2012) database comprising a set
of earlier studies that directly compared simultaneous
and sequential stopping-rule presentations. While we
identified and corrected a number of methodological
shortcomings in the original study, the conclusions that
we reached were the same. First, we found no systematic
difference in underlying discriminability between the
two kinds of lineup (measured by the parameter, dt, or
dt – ds where relevant). Second, we found a shift to a
more conservative response bias in sequential lineups.
As the studies in the database did not collect or report
post-decision confidence estimates, we were unable to
estimate all the parameters specified in our models, leav-
ing more nuanced aspects of the simultaneous versus se-
quential presentation question unexplored. Most studies
also had relatively small numbers of participants and so
lacked statistical power to detect a small effect, they se-
lected designated innocent suspects designed to resem-
ble the target and they did not randomise the position of
the target in sequential lineups. For this reason, we con-
ducted a more powerful experiment that elicited mul-
tiple confidence judgements, did not employ a

Table 8 Mean parameter values weighted by sample size from
fits of SDT-MAX to simultaneous lineup data and SDT-SEQ to
sequential lineup data from a corpus of eight studies published
since 2011

Format Source Parameter

discriminability c

μw σw μw σw
Simultaneous SDT-MAX 1.23 .54 1.09 .21

Sequential SDT-SEQ 1.02 .38 1.09 .32
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designated innocent suspect and randomised the pos-
ition of the target on sequential lineups. We found no
significant difference in underlying discriminability and
more conservative responding for the sequential lineup,
consistent with the Palmer and Brewer re-analysis. Fi-
nally, we analysed a corpus of data containing eight re-
cent lineup studies that compared simultaneous and
sequential presentation. The results were consistent with
the previous findings in that there was no significant dif-
ference in underlying discriminability, but we did not
find more conservative response bias for sequential
presentation.
Our analyses provide estimates of the difference in

underlying discriminability between simultaneous and
sequential lineups across a total of 36 separate studies or
conditions within studies. While many features of these
studies (e.g. lineup size, target position, presence of a
designated suspect, backloading) vary considerably, each
provides a point estimate of the difference in underlying
discriminability. These estimates are plotted in Fig. 5
panel A weighted by the number of participants and in
panel B as a cumulative proportion ogive. Panel A can
be viewed as a “group-based” histogram in which each
participant is assigned the difference estimate calculated
for their group as a whole. Each vertical bar is centred
on a given estimate and the length of the bar corre-
sponds to the total number of participants in the group.
The total number of participants across all the studies is
10,913. According to these data, the overall weighted
mean difference is 0.09, indicating a slight advantage for

simultaneous lineups. The same data are plotted in panel
B as a cumulative proportion ogive. From this, it is pos-
sible to determine that the median difference is 0.03, the
5th percentile is − 0.56 and the 95th percentile is 0.77.
Thus, in the studies we have analysed, approximately
50% of participants can be presumed to have shown a
simultaneous advantage in underlying discriminability
while the remaining 50% show the opposite. Overall, this
means that although some more recent studies have ob-
served a simultaneous advantage in underlying discrim-
inability, the evidence to date taken as a whole suggests
that this effect is close to zero.

Diagnostic feature detection theory
Our results are not consistent with a key prediction of
diagnostic feature detection theory (DFDT), that the
greater opportunity to compare lineup items in the sim-
ultaneous lineup should improve underlying discrimin-
ability compared to the sequential lineup. However, the
lack of an easily detected difference in underlying dis-
criminability between simultaneous and sequential
lineups does not necessarily militate against the pro-
cesses proposed by the DFDT. All things being equal, it
is possible that the greater detectability of diagnostic fea-
tures in simultaneous lineups may lead to a performance
advantage. However, this is a critical caveat - there may
be other differences between the procedures that serve
to counteract this effect. One obvious difference is the
size of the choice set. In a simultaneous lineup, the tar-
get (if present) is one of several alternatives while in a

Fig. 5 Summary plot of the observed difference in underlying discriminability between simultaneous and sequential presentation. a Histogram
plot. Each bar corresponds to an observed difference. The length of the bar equals the number of participants on which the estimate is based.
b Empirical cumulative distribution plot. The same data plotted as an ogive
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sequential lineup, on each trial only a single item is pre-
sented. It is well-known that the probability of correct
target detection declines with the increasing size of the
choice set (Swets, 1959). On the other hand, it is pos-
sible that sequential presentation may induce retroactive
interference through re-encoding of lineup items into
memory. This would be expected to have a greater im-
pact on items appearing later in the sequence which is
suggested by the finding reported by Wilson et al. (2019)
that underlying discriminability may increase over the
course of the sequential lineup, at least after position 1.
The point is that because the two procedures have dif-
ferent characteristics, it is likely they induce a range of
effects on memory which, in the cases we have so far ex-
amined, more or less cancel out. Diagnostic feature de-
tection may well occur but its effects on memory may be
counteracted by other differences.
The foregoing analysis suggests that if relevant differ-

ences between simultaneous and sequential lineups
could be reduced then the effects of diagnostic feature
detection may be revealed. A recent study by Colloff and
Wixted (2020) bears on this issue. They compared a
standard show up in which only the suspect was pre-
sented with a novel simultaneous show up in which the
suspect was presented along with five fillers, none of
which could be identified as the target. Based on ROC ana-
lysis, they found that the opportunity to compare the sus-
pect to other similar faces in the simultaneous show-up
procedure improved empirical discriminability. Because the
structural characteristics of the standard and simultaneous
lineups are essentially the same - both require a decision to
be made about a single item - the difference in empirical
discriminability suggests a corresponding difference in
underlying discriminability. If so, then the results reveal the
kind of advantage predicted by the DFDT.

The UK lineup procedure
In a series of studies, Seale-Carlisle and colleagues have
investigated the empirical and underlying discriminabil-
ity of the UK (or Police and Criminal Evidence (PACE))
lineup procedure (Seale-Carlisle et al., 2019; Seale-
Carlisle & Mickes, 2016; Wixted et al., 2018). This pro-
cedure is conducted in accordance with the UK Police
and Criminal Evidence guidelines (Police and Criminal
Evidence Act 1984, Code D, 2017). It differs in import-
ant ways from the stopping rule sequential lineup. First,
witnesses see short videos of each lineup member rotat-
ing through a head-and-shoulders profile rather than a
static photo. Second, witnesses must view two full laps
of the lineup procedure before making a decision, i.e.
the lineup does not have a stopping rule, and may return
to any item as many times as they wish before making
their decision. In addition, the UK lineup contains nine

items rather than six, as is common in other
jurisdictions.
Seale-Carlisle and Mickes (2016) found that the UK

lineup procedure had lower empirical discriminability
based on ROC analysis than a comparable simultaneous
lineup. Seale-Carlisle et al. (2019) conducted a series of
experiments to try to isolate which aspects of the UK
procedure were responsible for this difference. They also
examined underlying discriminability by fitting the en-
semble model to different versions of the UK lineup.
They concluded that the crucial feature that impaired
relative performance in the UK lineup was the sequential
presentation format. This was identified in one experi-
ment (experiment 1) and partially verified in a second
experiment (experiment 5). That is, both experiments
found a difference in empirical discriminability based on
measurement of the area under the ROC curve, but al-
though there was a significant difference in underlying
discriminability in the first experiment, this was not rep-
licated in the second.
The results of Seale-Carlisle et al. (2019) are, to our

knowledge, the only example of a significant simultan-
eous lineup advantage in underlying discriminability.
Because there is no stopping rule, witnesses make their
decision after having viewed all the lineup items.
Therefore, in terms of the task demands, the UK lineup
functions as a kind of simultaneous lineup in which
viewing of items is constrained to be sequential. The
decrement in underlying discriminability identified by
Seale-Carlisle et al. appears to be a consequence of this
feature. However, our previous analyses suggest that it
may not be a consequence of sequential presentation
per se. These show that sequential presentation with a
stopping rule does not significantly impair underlying
discriminability. The difference must lie elsewhere. One
possibility is that the UK procedure places additional
memory demands on witnesses who must encode infor-
mation about the members in the lineup, such as their
facial features and lineup position, for a future identifi-
cation decision. This may lead to the build-up of retro-
active interference between test items and target
memory (Dewar, Cowan, & Sala, 2007; Sosic-Vasic,
Hille, Kröner, Spitzer, & Kornmeier, 2018; Wickelgren,
1966). In contrast, the presence of a stopping-rule re-
duces memory demands because once a decision is
made, the features of the current lineup item can be
immediately forgotten.
Consistent with previous studies (Carlson et al., 2016;

Clark, 2012; Dobolyi & Dodson, 2013; Gronlund et al.,
2009; Meissner et al., 2005; Palmer & Brewer, 2012), we
found that sequential presentation led to more conserva-
tive responding. This conforms to the original intention
behind the introduction of sequential lineups, to reduce
false alarms.
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Conclusions
This study introduced a new model of the sequential
lineup task, SDT-SEQ, and in conjunction with models
of the simultaneous lineup task, SDT-MAX and SDT-
INT, tested a key prediction of the diagnostic feature de-
tection theory that underlying discriminability should be
greater in a simultaneous lineup. In both our re-analysis
of the Palmer and Brewer (2012) database and data from
eight recently published studies, in addition to the re-
sults of a new experiment, we did not find evidence con-
sistent with this prediction. This suggests that if the
effect exists, it may be counteracted by other effects as-
sociated with differences between the two kinds of task.
Further research is required to determine the conditions
under which comparing features across lineup items im-
proves memory, the limits of such an effect, and the ex-
tent to which it is affected by structural aspects of
different lineup tasks.
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