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Learning hierarchically organized science
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high and subtype levels
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Abstract

Background: Most science categories are hierarchically organized, with various high-level divisions comprising
numerous subtypes. If we suppose that one’s goal is to teach students to classify at the high level, past research
has provided mixed evidence about whether an effective strategy is to require simultaneous classification learning
of the subtypes. This past research was limited, however, either because authentic science categories were not
tested, or because the procedures did not allow participants to form strong associations between subtype-level and
high-level category names. Here we investigate a two-stage response-training procedure in which participants
provide both a high-level and subtype-level response on most trials, with feedback provided at both levels. The
procedure is tested in experiments in which participants learn to classify large sets of rocks that are representative
of those taught in geoscience classes.

Results: The two-stage procedure yielded high-level classification performance that was as good as the performance
of comparison groups who were trained solely at the high level. In addition, the two-stage group achieved far greater
knowledge of the hierarchical structure of the categories than did the comparison controls.

Conclusion: In settings in which students are tasked with learning high-level names for rock types that are
commonly taught in geoscience classes, it is best for students to learn simultaneously at the high and
subtype levels (using training techniques similar to the presently investigated one). Beyond providing insights
into the nature of category learning and representation, these findings have practical significance for improving
science education.

Keywords: Category learning, Education, Instruction, Memory

Significance
A fundamental part of science education involves teach-
ing the categories of the target domain. Furthermore, in
numerous cases, the categories are hierarchically orga-
nized, with high-level divisions broken down into funda-
mental subtypes. This research addresses the question
whether requiring students to learn the subtypes may
sometimes lead to more effective teaching of the high-
level divisions themselves. The question is pursued here
in basic-research laboratory experiments that investigate
performance in a real-world science domain; namely,
rock classification in the geologic sciences. In particular,

the participants in our studies learn to classify sets of
images of rocks into categories that are commonly
taught in college-level introductory geoscience courses.
The results from the work provide firm suggestions for
methods that are likely to be effective for teaching the
hierarchical structure of categories in the science
classroom.

Introduction
An integral part of science education is learning the cat-
egories of the domain of interest. For instance, botany
focuses on classifying and learning plants, entomology
on classifying and learning insects, and geology on clas-
sifying and learning rocks. As argued below, learning
these categories is fundamental to scientific reasoning

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

* Correspondence: nosofsky@indiana.edu
1Psychological and Brain Sciences, Indiana University, 1101 E. Tenth Street,
Bloomington, IN 47405, USA
Full list of author information is available at the end of the article

Cognitive Research: Principles
and Implications

Nosofsky et al. Cognitive Research: Principles and Implications            (2019) 4:48 
https://doi.org/10.1186/s41235-019-0200-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s41235-019-0200-5&domain=pdf
http://orcid.org/0000-0002-2494-2719
http://creativecommons.org/licenses/by/4.0/
mailto:nosofsky@indiana.edu


and inference and forms a significant component of
college-level science curricula.
In the present research, our example target domain is

rock classification in the geologic sciences. As is true of
numerous natural science categories, rock types have a
graded structure, with clear prototypical instances at
their centers, but also with many less typical instances
(Rosch, 1973; Smith & Medin, 1981). Thus, individual
samples of the same type of rock can often display re-
markable within-category variability. In addition, as is
also true of most natural categories, the boundary lines
dividing different rock types are often fuzzy, and the dis-
tributions of members from contrasting categories may
sometimes even overlap. Moreover, rock categories have
a hierarchical structure in which broader level categories
(igneous, metamorphic, sedimentary) subsume lower
level subtypes organized within each broad-level cat-
egory (as displayed in Table 1). In the senses described
above, rock classification appears to be both a challen-
ging and representative example of natural science cat-
egory learning.
Teaching rock classifications is one of the early goals in

geoscience education. Introductory college-level geology
textbooks devote multiple chapters to the classification of
rocks (e.g., Marshak, 2015; Tarbuck & Lutgens, 2017), as
does the National Association of Geoscience Teachers/
American Geological Institute Laboratory manual in
physical geology (Cronin, 2018). The textbook and labora-
tory manual chapters provide detailed descriptions of the
major categories of rocks, and they attempt to characterize
the key features and dimensions that organize and com-
pose the rock categories. Further, laboratory sessions and
field work associated with college-level introductory geo-
science courses often devote significant amounts of time
to the training of rock classifications.
Teaching fundamental categories, such as rock types

in geology, is a core component of science curricula for
a good reason. Categories are the building blocks of our

basic thought processes and they provide an efficient
means to allow us to reason about the nature of the
world and draw inferences. Examples of the important
role of rock classification in reasoning and inference
abound in geology. For example, as conceptualized in
the geologic sciences, one of the broad high-level divi-
sions of rocks is the class of igneous rocks; this high-
level division is composed of rocks formed from the
solidification of magma. A major distinction between
categories of igneous rocks is that of intrusive versus ex-
trusive rocks. Intrusive igneous rocks, such as granite,
are formed when magma solidifies at depth. In this case,
the magma cools slowly, allowing large crystalline min-
eral structures to develop resulting in a coarse grain. By
contrast, extrusive igneous rocks, such as rhyolite, are
formed when magma solidifies in a surface environment.
In this case, the magma cools quickly, resulting in a
fine-grained crystalline structure. A geologist examining
a terrain might therefore obtain clues about its history
by determining whether the rocks that compose the ter-
rain are intrusive or extrusive igneous rocks as evi-
denced by the grain size of the rocks.
As alluded to above, in numerous scientific domains

the categories are hierarchically organized. For example,
geologic scientists divide rocks into three, broad, high-
level categories: igneous, metamorphic and sedimentary
(Marshak, 2015; Tarbuck & Lutgens, 2017). These broad
categories are defined by how the rocks are formed. In
brief, whereas igneous rocks are formed from the solidi-
fication of magma, metamorphic rocks are formed when
other rocks are exposed to extreme heat and pressure,
causing them to undergo changes in their physical or
chemical structure. Finally, sedimentary rocks are
formed when mineral and organic particles are deposited
on the floor of bodies of water and are eventually
cemented together. However, each of these broad, high-
level divisions is broken down into fundamental sub-
types. For example, common subtypes of igneous rocks
are granite, obsidian and pumice; common subtypes of
metamorphic rocks are gneiss, marble and quartzite; and
common subtypes of sedimentary rocks are sandstone,
shale and limestone.
If we suppose that the goal of the instructor is to teach

students to classify into the high-level divisions of igne-
ous, metamorphic and sedimentary, then a reasonable
hypothesis is that, to achieve that goal, it might be best
to focus training on that high level, without also requir-
ing that students learn to discriminate among all the
subtypes. Consistent with the principle of transfer-
appropriate processing (e.g., Blaxton, 1989; Thomas &
McDaniel, 2007), such training would focus on the out-
come that is the instructor’s primary goal. Recent work
reported by Noh, Yan, Vendetti, Castel, and Bjork (2014)
is consistent with this hypothesis. In one of their

Table 1 A breakdown of the rock high levels and subtype
levels used in the study

Igneous Metamorphic Sedimentary

Andesite Amphibolite Bituminous coal

Basalt Anthracite Breccia

Diorite Gneiss Chert

Gabbro Hornfels Conglomerate

Granite Marble Dolomite

Obsidian Migmatite Micrite

Pegmatite Phyllite Rock Gypsum

Peridotite Quartzite Rock Salt

Pumice Schist Sandstone

Rhyolite Slate Shale
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conditions, these researchers had participants learn to
classify pictures of snakes into the high-level categories
of venomous versus nonvenomous. The participants’
high-level classification performance was better if they
focused their learning solely at that high level, rather
than also being required to simultaneously learn to dis-
criminate among different subtypes of the venomous
and nonvenomous snakes. Presumably, by focusing on
the high level, participants learned more effectively to
attend to features that are highly diagnostic of member-
ship in the contrasting high-level categories (Nosofsky,
1986; Shepard, Hovland, & Jenkins, 1961). For example,
venomous snakes tend to have arrow-shaped heads
whereas nonvenomous snakes tend to have spoon-
shaped heads. By contrast, use of the head-shape feature
does not allow one to discriminate among different sub-
types of venomous snakes or different subtypes of non-
venomous ones.
However, other research has sometimes pointed in the

opposite direction, with subtype-level training being
shown to be beneficial. For example, using a particular
artificially designed category structure, several re-
searchers found that learners displayed more accurate
classification when trained and tested at a subtype level
of a hierarchy than at a higher, more general level (Las-
saline, Wisniewski, & Medin, 1992; Palmeri, 1999; Ver-
heyen, Ameel, Rogers, & Storms, 2008).
Nosofsky, Sanders, Gerdom, Douglas, and McDaniel

(2017) found evidence consistent with the hypothesis
that the best teaching strategy may vary depending on
the structure of the categories being learned. Using real-
world rock categories as their target domain, these re-
searchers compared two different teaching strategies
across two different category structures. One teaching
strategy focused solely on teaching the high-level divi-
sions whereas, in the second, participants simultaneously
learned to classify at both the high and subtype levels
(see below for further details). The to-be-learned cat-
egory structures, illustrated schematically in Fig. 1, were

either compact or dispersed. As shown in Fig. 1, in both
category-structure conditions each high-level division
(igneous, metamorphic and sedimentary) was composed
of three subtypes of rocks. In the compact condition, the
subtypes were chosen such that all three subtypes be-
longing to the same high-level division were highly simi-
lar to one another, while being dissimilar to the subtypes
from the alternative high-level categories. Thus, each
high-level category formed a relatively compact cluster
in a multidimensional similarity space. By contrast, in
the dispersed condition, the subtypes were chosen such
that each of the three subtypes belonging to the same
high-level division were dissimilar to one another, occu-
pying separate clusters of the similarity space. At the
same time, each subtype was similar to individual sub-
types from both other high-level divisions. We acknow-
ledge that readers may find the category structure in the
dispersed condition to be contrived because three differ-
ent categories with the same high-level name are clus-
tered together within each of the similarity groups.
Nevertheless, we emphasize here that the category struc-
ture was produced by sampling real-world subtypes from
the actual high-level divisions of igneous, metamorphic
and sedimentary rocks. In other words, in the real world,
there are many cases, for example, of igneous subtypes
that are highly similar to metamorphic subtypes, and of
igneous subtypes that are highly dissimilar from one an-
other. We expand on this point in greater detail below.
In brief, Nosofsky et al. (2017) found that learning the

high-level names of the rocks in the compact condition
was better when the training procedure focused solely
on teaching the high-level names for the rocks. By con-
trast, learning the high-level names of the rocks in the
dispersed condition was better when the training pro-
cedure required participants to simultaneously learn
both the high-level and subtype-level names. The latter
result is of potentially high practical significance.
Nosofsky et al. (2017) and Nosofsky, Sanders, Meagher,
and Douglas (2018) conducted extensive similarity-

Fig. 1 A schematic illustration of the compact and dispersed category structures tested in Nosofsky et al.’s (2017) study. Circles indicate igneous,
squares indicate metamorphic, and diamonds indicate sedimentary categories
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scaling studies in which participants rated the similarity
among pairs of items drawn from a large battery of igne-
ous, metamorphic and sedimentary rocks that are repre-
sentative of those taught in college-level introductory
geoscience classes. Multidimensional scaling analyses of
the similarity-judgment data revealed that the structure
of the igneous, metamorphic and sedimentary categories
does in fact appear to be relatively disorganized and dis-
persed (although not to the extreme degree illustrated in
the right panel of Fig. 1).
Although suggestive, there were at least two major

limitations of Nosofsky et al.’s (2017) initial study in
terms of its practical implications. First, as already noted,
the researchers constructed the compact and dispersed
conditions by selectively sampling rock subtypes from
the three high-level categories. A natural question is
how the alternative teaching strategies would fare if par-
ticipants were tasked with classifying a larger set of ‘au-
thentically’ sampled rocks that are more representative
of those taught in introductory geoscience classes.
A second and more fundamental limitation concerns

the detailed method that Nosofsky et al. (2017) used in
the condition in which participants learned to classify at
both the high and subtype levels simultaneously. In par-
ticular, Nosofsky et al. used a ‘simultaneous paired-
naming’ procedure, in which the response alternatives
associated with each rock consisted simultaneously of
the high-level category and the subtype name. For ex-
ample, one rock might be designated as ‘igneous-granite’
and another as ‘metamorphic-marble’. Both members of
the paired name were always simultaneously present
when participants made their responses. To measure
high-level naming performance, the researchers scored a
response as correct if the participant indicated the cor-
rect high-level name, regardless of the subtype-level re-
sponse that was indicated. Unfortunately, however,
although the procedure was well motivated from a the-
oretical standpoint (see formal modeling presented by
Nosofsky et al., 2017), from a practical standpoint it does
not allow one to determine whether participants actually
learned the high-level names at all. In particular, a par-
ticipant could have learned at least some rocks solely at
the subtype-naming level, without ever establishing an
association between the subtype name and the high-level
name. For example, if a participant learned that a par-
ticular rock sample was granite, then he or she would
press the ‘igneous-granite’ response key and receive
credit towards a correct high-level categorization re-
sponse. It is unknown, however, whether the partici-
pant could have correctly classified the sample as
‘igneous’ if the subtype name (‘granite’) was not sim-
ultaneously present.
Miyatsu, Nosofsky, and McDaniel (in press) conducted

a series of experiments to begin to address both of the

above-stated limitations. One change to Nosofsky et al.’s
(2017) experiment was that, rather than using the select-
ively sampled compact and dispersed structures, Miyatsu
et al. had participants learn a larger number of rock sub-
types that provided a more representative sampling of
the sets of igneous, metamorphic and sedimentary rocks
found in the natural world. A second change involved
the training and testing procedures in the conditions in
which participants were trained to classify at both levels
of the rock category hierarchy. Of most direct relevance
to the current practical question were the procedures
used by Miyatsu et al. (in press) in their experiments 1
and 2. In their experiment 1, Miyatsu et al. used an ob-
servational training procedure in which participants
studied pictures of rocks with names assigned to them.
One group of participants studied the pictures with just
the high-level names, whereas the second group studied
the pictures with both the high-level and subtype names.
(During this observational training participants were
provided with general instructions to learn the names
associated with the rocks.) Following the observational
training phase, participants were tested on their ability
to classify both old and new rock pictures into their
high-level categories. Participants in the high-level
name-only training group performed significantly better
at the time of the test (on both old and new items) than
did participants in the paired-name training group. One
limitation of this design, however, involves the problem
that many participants in the paired-name training
group may have focused their learning on the subtype
names without ever forming associations between the
subtype-level and high-level names. Clearly, such partici-
pants would then be severely impaired when tested on
their ability to classify the items into their high-level
categories.
To potentially address this limitation, in a second ex-

periment Miyatsu et al. (in press) tested two new groups
of participants. The first group was again trained using
observational training of only the high-level names, and
the participants knew that they would eventually be
tested on their ability to produce the correct high-level
classifications. A second group, however, first engaged in
observational classification training at only the subtype
level (and were instructed to learn the subtype-level
name assignments). Next, the participants in this group
engaged in a separate paired-associate training phase in
which they were trained on the pairings between the
subtype-level and high-level category names. Finally,
during the subsequent test phase, participants in this
group attempted to classify each rock into its high-level
category. Just as in their experiment 1, Miyatsu et al.
found that the group that was trained on only the high-
level names performed significantly better in high-level
classification at the time of the test than did the
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participants in the subtype-level/paired-associate train-
ing group. Unfortunately, however, this new experimen-
tal design ended up with essentially the same main
limitation as the previous one: during the paired-
associate training phase, participants in Miyatsu et al.’s
study achieved an accuracy level of only .76 in producing
the high-level category name associated with each sub-
type name. Thus, even if participants had learned to
classify extremely accurately at the subtype level, it
stands to reason that the high-level classification per-
formance for this group (during the final test phase)
would be impaired. In addition, Miyatsu et al.’s experi-
ment 2 design also had the limitation that, for the
subtype-level/paired-associate group, no form of high-
level training occurred in the initial classification-
learning phase (participants were trained at only the sub-
type level). Thus, there was no opportunity for partici-
pants to learn to give greater attention to features that
were diagnostic at the high level of classification.1

The central motivation of our present research was to
continue to investigate the potential utility of subtype-
level training in improving high-level classification in
this rock domain. Our main goal was to try to develop a
training procedure that maintained the potential advan-
tages of simultaneous high-level and subtype-level train-
ing, while directly addressing the limitation that many
participants may fail to learn associations between the
subtype-level and high-level names. To preview, we
introduce a new condition in which classification train-
ing again takes place simultaneously at both the high
and subtype levels, but which places stronger emphasis
than the previous studies on the goal of learning both
levels, and which provides continuous practice through-
out training to promote the achievement of this goal.
We compare the performance of this new training group
to that of two comparison groups who are trained using

procedures similar to those in the previous studies of
Nosofsky et al. (2017) and Miyatsu et al. (in press).

Experiment 1A
Across three different conditions, participants learned to
classify images of rocks into the high-level categories of
igneous, metamorphic and sedimentary. In all condi-
tions, the instructions to the participants emphasized
that their primary task was to learn these high-level cat-
egory assignments. In some of the conditions, the partic-
ipants also learned to classify the rocks into their
subtype categories. The complete set of rocks comprised
30 subtypes, 10 subtypes from each of the three high-
level categories. The subtypes are listed in Table 1. The
subtypes are highly representative of those that are com-
monly taught in introductory college-level geoscience
classes, and are among the major ones listed and de-
scribed in introductory textbooks (e.g., Marshak, 2015;
Tarbuck & Lutgens, 2017). Because it was unrealistic to
expect a participant to learn all 30 subtypes in a single
1-h session, each individual participant was randomly
assigned 15 of the 30 subtypes to learn (five from each
of the three high-level categories).2

In condition 1, participants were trained on only the
high-level names of the rocks. An example screenshot of
the question prompt on a typical trial is presented in
Fig. 2. As illustrated, on each trial, an individual rock
would be presented, and the participant would attempt
to classify it into one of the three high-level categories.
Feedback was provided only with respect to the high-
level category to which the rock belonged. In the test
phase, participants continued to classify items at only
this high-level of categorization.
In condition 2, participants learned simultaneously to

classify rocks into both their high-level and subtype-level
categories. The condition used a two-stage response pro-
cedure. An example screenshot of the first stage of an
individual trial is presented in Fig. 3. As illustrated, an
individual rock would be presented in the center of the
screen. Underneath the rock, the high-level responses ig-
neous, metamorphic and sedimentary were shown in
three columns, and beneath each high-level name were
shown the subtypes for that high-level category. In the
first stage, participants were prompted to enter the high-
level response for the rock. Once the high-level response
was selected, the second response stage began. As shown
in the example screenshot in Fig. 4, the participant was
prompted to select the subtype name from among the

1Miyatsu et al. (in press) reported two additional experiments
(experiments 3 and 4) in which participants were trained and tested at
only the subtype level; however, analogous to the scoring method used
by Nosofsky et al. (2017), a response was scored as correct if the
indicated subtype was a member of the correct high-level category. In
these experiments, Miyatsu et al. observed no significant difference in
overall performance across the high-level-only and subtype-level train-
ing conditions. One possible interpretation is that the category struc-
ture tested by Miyatsu et al. was intermediate on the compact–
dispersed continuum, so neither category-teaching procedure had a
significant advantage. Alternatively, the simultaneous paired-naming
procedure that had been used by Nosofsky et al. may have fostered
learning at both levels of the hierarchy; because Miyatsu et al. provided
no training at the high level in the subtype-training conditions of their
experiments 3 and 4, participants may not have learned to attend to
features of the rocks that were diagnostic for high-level naming. Even
if participants had achieved improved high-level scores in the subtype-
naming conditions of Miyatsu et al.’s experiments 3 and 4, the prac-
tical implications would still be limited: participants would have
achieved zero knowledge of the actual high-level names associated with
the subtype names.

2Whereas Miyatsu et al. (in press) also tested a broad battery of rock
subtypes from the igneous, metamorphic and sedimentary categories, a
significant subset of them are not commonly taught in college-level
introductory geoscience classes. Hence, in terms of the to-be-learned
materials, the present study has more direct relevance to authentic,
introductory college-level teaching situations.
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possibilities for the selected high level. For instance, if a
participant had responded that the rock was meta-
morphic, he or she would then be prompted to select
the rock’s subtype name within the metamorphic col-
umn. This same two-stage procedure for collecting re-
sponses continued to be used in the testing phase of
condition 2.
Our central idea in implementing the two-stage response

procedure of condition 2 was that it might combine in syner-
gistic fashion various elements of previously tested proce-
dures that have advantageous components. First, because
participants are required initially to classify at the high level,
they may be motivated to search for features that are diag-
nostic at that high level. Second, the requirement that partici-
pants also learn the subtype-level categories may foster the
learning of aspects of the category structure that are disorga-
nized and dispersed (e.g., in which subtypes from contrasting
high-level categories are highly similar to one another).
Third, the requirement that participants make two separate
responses on each individual trial — first the high-level clas-
sification response and then the subtype-level one — might
be effective in allowing participants to develop learned

associations between the high-level and subtype-level names
of the rocks.
Nevertheless, in terms of assessing the participants’ ac-

quired knowledge, this experimental condition has the
same limitation as did the simultaneous paired-name
condition that had been tested in Nosofsky et al.’s (2017)
experiment. In particular, because the high-level and
subtype-level names were simultaneously present, a par-
ticipant could in principle focus on only the subtype
names during both training and test. On each trial, if the
participant decided that a rock was, for instance, ‘gra-
nite’, then he or she could enter the corresponding high-
level category response (‘igneous’) by making reference
to the column in which granite appeared. Thus, an alter-
native condition was required to evaluate the extent to
which the training procedure is effective in allowing par-
ticipants to directly classify the rocks at the high-level of
categorization.
We addressed this requirement by also conducting

condition 3. With one exception described below, the
training phase for condition 3 was identical to that in
condition 2. The key difference across the conditions

Fig. 2 Schematic example of a trial from the training and test phases of condition 1 and the test phase of condition 3

Fig. 3 Schematic example of the first stage of a typical trial from the training and test phases of condition 2 and the training phase of condition 3
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arose at time of test. Whereas in condition 2 we contin-
ued to present the subtypes along with the high-level
names at the time of the test (in the column format il-
lustrated in Figs. 3 and 4), in condition 3 the subtypes
were no longer presented. Instead, just as in condition 1,
the question prompt now made reference to only the
high-level categories (as illustrated in Fig. 2). Thus, con-
dition 3 provided a pure test of the participants’ ability
to classify the rocks into the high-level categories, with-
out the benefit of an external cue that linked the subtype
names to the high-level names.
The second difference between conditions 2 and 3

arose during the training phase. On 80% of the trials,
the same two-stage response procedure was used in
condition 3 as in condition 2. However, on 20% of
the trials, the question prompt was the same as in
condition 1; that is, participants were required to
classify the rock into one of the high-level categories
without the benefit of the external cue showing which
subtype names were linked with which high-level
names (as in Fig. 2). In addition, on these trials, a re-
minder message was provided at the bottom of the
computer screen stating: “Remember, your primary
job is to learn the high-division names.” We included
these high-level-only trials to remind participants that
their primary task was to learn the high-level name
for each rock and to discourage participants from de-
veloping a strategy of relying solely on learning the
subtype-level names.

A schematic summary of the training and testing pro-
cedures across the three conditions is provided in Fig. 5.

Method
Participants
There were 95 undergraduate students from Indiana
University Bloomington who participated as part of a re-
quirement for their introductory psychology courses.
The participants all had normal or corrected-to-normal
vision and all reported having normal color vision. All
reported that they had little or no previous experience in
rock classification. Each participant’s condition was ran-
domly assigned, with 32 participants in condition 1, 32
in condition 2, and 31 in condition 3. These sample sizes
were as large or larger than in the individual conditions
of the closely related studies that most directly moti-
vated the present research and that found significant dif-
ferences in the outcomes of the broad- versus specific-
level training (Miyatsu et al., in press, experiments 1 and
2; Noh et al., 2014; Nosofsky et al., 2017). (As it turned
out, the correlation on the repeated old–new item per-
formance measure in our study was r = .74; this yielded
power = .628 to detect a medium-size main effect of
training procedure on test-phase performance, and
power = .966 to detect a large-size effect.)

Stimuli and apparatus
The stimuli consisted of 360 pictures of rocks from the
three broad divisions of igneous, metamorphic and

Fig. 4 Schematic example of the second stage of a typical trial from the training and test phases of condition 2 and the training phase of
condition 3. The example assumes that the subject selected the high-level response “Metamorphic” during the first stage
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sedimentary rocks. Each broad division comprised 10
subtype categories, listed in Table 1. There were 12 sam-
ples of each subtype. The rock picture samples were
taken from a variety of online sources (for a fuller de-
scription of these stimulus materials, see Nosofsky, San-
ders, Meagher, & Douglas, 2018). The experiment was
programmed in MATLAB using Psychophysics toolbox
(Brainard, 1997) on a personal computer running Micro-
soft Windows.

Procedure
For each individual participant, 5 of the 10 subtypes
from each of the three broad divisions of igneous, meta-
morphic and sedimentary rocks were randomly selected.
The participant learned the items from only these ran-
domly selected subtypes. We used this procedure of
sampling a subset of the categories because pilot work
suggested that overall learning performance would be
poor if participants were required to try to learn all 30
categories in a single 1-h session.
In all conditions, the procedure consisted of a training

phase and a test phase. The training phase consisted of
three training blocks with 90 trials in each block,
whereas the test phase consisted of one block with 120
trials. The test phase included presentations of old items
from the training phase as well as novel transfer items
from the studied categories. Across all conditions, for
each individual participant, the members of each rock
subtype were randomly assigned as either training or
novel transfer stimuli. For each subtype, there were six
randomly chosen training examples and four randomly
chosen transfer examples.
Across all conditions in the training phase, on each

trial, a picture of a training rock was displayed in the
center of the screen and the participant attempted to
classify it. Each of the individual training items was

presented once per block, with the order of presentation
of the 90 training items randomized. An analogous pro-
cedure was used across all conditions in the test phase.
The tested stimuli consisted of four of six randomly se-
lected training examples from each of the 15 subtype
categories, and of the four novel transfer items from
each of the 15 subtype categories, for a total of 120 test
items. The order of presentation of the 120 items was
randomized.
The nature of the training and test procedures in each

of the conditions has already been described in our intro-
duction to this experiment; here we provide only some
additional methodological details. First, in cases in which
participants were required to classify the rocks into their
high-level categories, they did so by pressing the “i” key
for igneous, “m” for metamorphic and “s” for sedimentary.
In cases in which participants were required to indicate
the subtype category of the rock, they did so by pressing a
number on the keyboard that preceded the subtype name
on the computer screen (as illustrated in Fig. 4). During
the training phase, the computer displayed corrective
feedback at the end of each trial (with the rock picture
remaining on screen), stating that the participant was ei-
ther “correct” or “incorrect” followed by the correct re-
sponse. In condition 1 (and in the 20% of trials in
condition 3 that required only a high-level response), the
corrective feedback was with respect to only the high-level
category of the rock (for example, “Correct! Igneous” or
“Incorrect: Sedimentary”). In condition 2 (and in the 80%
of trials in condition 3 that used the two-stage response
procedure), the corrective feedback was provided after
both responses were made. The computer provided simul-
taneous feedback at both levels, such as “Correct!
Igneous-gabbro” or “Incorrect: Metamorphic-marble”. In
all conditions, the feedback remained on the screen for 1 s
following correct responses and for 2 s following incorrect

Fig. 5 Schematic summary of the training and testing procedures across conditions 1–3. In the high-level-only response mode, participants
classified each item into either the igneous, metamorphic or sedimentary high-level categories. In the two-stage high-level/subtype-level mode,
participants first made the high-level response, followed by a subtype-level response from among the subtypes that were members of the
chosen high-level category
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responses (with the picture of the rock remaining on the
screen). The feedback was followed by a 0.5-s inter-trial
interval consisting of a blank screen. At the end of each
training block, the computer reported to the participants
their overall percentage of correct responses. The meth-
odological details of the test phase were the same as
already described for the training phase, except no cor-
rective feedback was provided during the test-phase trials.
Instead, the computer simply displayed a message of
“okay” to indicate to the participants that their response
had been recorded. At the end of the testing phase, the
participants were thanked and were provided with a
debriefing of the purpose of the experiment. The experi-
mental session lasted roughly 50min.

Results
Training
To analyze the results from the training phase, we divided
the complete sequence of 270 trials into 18 consecutive
15-trial sub-blocks and then measured the mean propor-
tion of correct high-level responses in each sub-block.
The results for each of the three conditions are shown in
Fig. 6. These data were submitted to a 3 × 18 mixed model
analysis of variance (ANOVA), with condition (1, 2, 3) as
the between-subjects variable and sub-block (1–18) as the
within-subjects variable. As can be seen, overall perform-
ance improved dramatically in all three conditions as a

function of training, F (17, 1564) = 49.014, MSE = .016,
p < .0001; the degree of improvement in performance did
not significantly vary across conditions, F (34,
1564) = .445, p = .998 for the interaction. Thus, not sur-
prisingly, our naive participants did not enter the experi-
ment with significant amounts of prior knowledge of the
high-level rock category assignments, but rather learned
these assignments during the course of the training phase.
Importantly for present purposes, there was no signifi-

cant difference in high-level naming performance as a
function of condition, F(2, 92) = .934, MSE = .148,
p = .397. Thus, requiring participants to make a subtype-
level classification following the high-level classification
during training (conditions 2 and 3) did not negatively
impact learning of the high-level classification of the
training items relative to focusing participants only on
high-level classification (condition 1); indeed, if anything,
learning of high-level classifications was slightly better
when subtype classification also had to be learned (see
Fig. 6).

Test
The results from the test phase are shown in Figs. 7 and 8.
The figures show the mean proportion with which partici-
pants classified members of each main high-level division
of rocks (igneous, metamorphic, sedimentary) into each of
the high-level divisions. Within each figure, the top panels

Fig. 6 Experiment 1A: mean proportion of correct high-level classification responses as a function of conditions and sub-blocks during the
training phase. Cond. condition
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show the results for the old training items whereas the
bottom panels show the results for the new transfer items.
For ease of comparison, Fig. 7 shows performance for con-
dition 1 (left panels) versus condition 2 (right panels),
whereas Fig. 8 shows performance for condition 1 (left
panels) versus condition 3 (right panels).
Inspection of the results reveals that participants clas-

sified the rocks into their correct high-level categories
well above chance levels (.33) in each of the conditions.
In addition, as would be expected, correct classification
performance for the old training items presented during
the test phase was higher than for the novel transfer
items. The pattern of results was also fairly similar
across each of the three main divisions of rocks (igneous,
metamorphic and sedimentary).
The key question concerns the comparisons of per-

formance across the different training and testing

conditions. Participants in condition 2 achieved nomin-
ally higher correct proportions than did participants in
condition 1 on both the old training items (condition 1,
M1 = .70, SD1 = .14; condition 2, M2 = .73, SD2 = .12)
and the new transfer items (condition 1, M1 = .61,
SD1 = .12; condition 2, M2 = .64, SD2 = .10). Participants
in condition 3 performed virtually the same as did par-
ticipants in condition 1 on both the old training items
(M1 = .70; M3 = .70, SD3 = .15) and the new transfer
items (M1 = .61; M3 = .62, SD3 = .13). We analyzed these
data with a 3 × 2 mixed-model ANOVA, with condition
(1–3) as the between-subjects factor and item type (old
versus new) as the within-subjects factor. Old items were
classified significantly more accurately than new items,
F(1, 90) = 93.91, MSE = .004, p < .001. However, there
was no significant effect of condition, F(2, 90) = 0.46,
MSE = .030, p = .63, and no significant interaction

Fig. 7 Experiment 1A: mean proportion with which members of each high-level category were classified into the alternative high-level categories
during the classification test phase of conditions 1 and 2. (Left panels) Condition 1; (right panels) condition 2; (upper panels) old training items;
(lower panels) new transfer items. For example, within each panel, the white bar to the far left indicates the mean proportion with which members of the
high-level igneous category were correctly classified as igneous, whereas the adjacent gray bar indicates the mean proportion with which members of the
igneous category were incorrectly classified as metamorphic (Meta.). Sedim. sedimentary
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between condition and item type, F(2, 90) = 0.17,
MSE = .004, p = .85.

Discussion
In their previous study, Miyatsu et al. (in press) found
that direct high-level-only training led to significantly
better high-level classification performance at the time
of the test than did training in which participants were
required to also learn the subtype-level names of the
rocks (see also Noh et al., 2014). If anything, our results
go slightly in the opposite direction, with performance
in the simultaneous paired-name conditions being at
least as good as performance in the high-level-only con-
dition. Importantly, this pattern held even in the paired-
name training condition in which participants were no
longer provided with the subtype names of the rocks at

the time of transfer. However, before discussing the
most likely reasons for these contrasting results, we first
report a second study to confirm the reliability of our
findings. Our tentative conclusion from the present ex-
periment is that the present form of paired high-level/
subtype-level training leads to no disadvantage in high-
level naming performance compared to the case in
which participants are trained at only the high level. Be-
cause the conclusion rests on a finding of no difference
(i.e., a null result), a possible concern is that forms of
experimental noise could be hiding a high-level-only ad-
vantage. One such potential form of experimental noise
is that each participant in experiment 1A was exposed to
randomly selected subsets of rock subtypes from each of
the high-level categories. If, by happenstance, partici-
pants in the paired-name condition were exposed to an

Fig. 8 Experiment 1A: mean proportion with which members of each high-level category were classified into the alternative high-level categories
during the classification test phase of conditions 1 and 3. (Left panels) Condition 1; (right panels) condition 3; (upper panels) old training items;
(lower panels) new transfer items. For example, within each panel, the white bar to the far left indicates the mean proportion with which members of the high-
level igneous category were correctly classified as igneous, whereas the adjacent gray bar indicates the mean proportion with which members of the igneous
category were incorrectly classified as metamorphic (Meta.). Sedim. sedimentary
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easier set of subtypes, then the results could be hiding
what is a true high-level-only advantage. We conducted
experiment 1B to address this possibility.

Experiment 1B
Experiment 1B was the same as experiment 1A, with the
following exceptions. First, because the central compari-
son of interest involves the conditions that evaluate
high-level naming performance in cases in which sub-
type names are not provided at the time of the test, we
omitted condition 2 from the design. Second, the stimu-
lus materials were assigned to individual participants
across conditions 1 and 3 in a yoked fashion. The sub-
types, training items and transfer items were chosen ran-
domly for each individual participant i in condition 1,
using the same constraints as described in experiment
1A. Those same subtypes, training and transfer items
were then assigned to a matched participant i in condi-
tion 3. Finally, to gain some additional information con-
cerning the results of the training procedure, we tested
participants in a paired-associate naming task. On each
trial of the task, one of the subtype-level names was pre-
sented, and participants chose which of the three high-
level names with which it was associated.

Method
Participants
The participants were 102 undergraduate students from
Indiana University Bloomington who received credit to-
wards a requirement for their introductory psychology
courses. Again, all participants had normal or corrected-
to-normal vision, reported having normal color vision,
and reported little or no previous experience in rock
classification. In sequential fashion upon arrival to the
laboratory, half the participants were assigned to condi-
tion 1 and half to condition 3. Thus, there were 51 par-
ticipants in condition 1 and 51 in condition 3. We used
this increased sample size with the goal of increasing the
statistical power from experiment 1a. (As it turned out,
the correlation on the repeated old–new item perform-
ance measure in experiment 1b was r = .86; this yielded
power = .737 to detect a medium-size main effect of
training procedure on test-phase performance, and
power = .986 to detect a large-size effect.)

Stimuli and apparatus
The stimuli and apparatus were the same as in experi-
ment 1A.

Procedure
The method of choosing subtypes, training stimuli and
transfer stimuli for the condition 1 participants was the
same as in experiment 1A. For each participant i in con-
dition 1, there was a yoked participant i in condition 3.

Each yoked participant received the same subtypes and
training and transfer stimuli as did the corresponding
condition 1 participant.
All other aspects of the experiment 1B procedure were

the same as in experiment 1A, except for the inclusion
of a paired-associate naming test in experiment 1B. The
paired-associate test was conducted following the classi-
fication training phase but prior to the classification
transfer phase. The names of the 15 subtypes experi-
enced by each participant were presented in random
order, one per trial. For each subtype name, the partici-
pant indicated whether it was a member of the igneous,
metamorphic or sedimentary categories by pressing the
“i”, “m” or “s” response keys, respectively. No feedback
was provided during this test. The participants from
both conditions engaged in the paired-associate task,
despite the fact that those in condition 1 had received
no training on classifying the rocks into the subtype cat-
egories. Thus, the condition 1 participants served as a
source of comparison for evaluating the learning of the
name associations of the condition 3 participants.

Results
Training
The training results are shown in Fig. 9. The training re-
sults show the same pattern as in experiment 1A. High-
level naming performance increased dramatically across
the training session, F (17, 1700) = 39.739, MSE = .017,
p < .0001, and the pattern of the increase did not signifi-
cantly differ across the two conditions, F (17, 1700) =
1.571, p = .064 for the interaction. The key finding was
that requiring classification of both the high-level category
and the subtype-level category (on 80% of the trials in
condition 3) did not significantly alter the performance
level of high-level classification learning relative to requir-
ing only high-level classification during training (condition
1), F (1, 100) = 1.573, MSE = .173, p = .213.

Naming associative learning
In the paired-associate naming test, the high-level nam-
ing (condition 1) participants scored 40.4% correct on
average, which is only slightly better than chance
(33.3%) as would be expected. By contrast, the condition
3 participants scored 85.5% correct, a substantial and
significant improvement over that in condition 1, F (1,
100) = 330.38, MSE = .016, p < .0001 (analysis on propor-
tion correct). Thus, although the condition 3 partici-
pants never received direct paired-associate name
training, the two-stage response procedure appears to
have been reasonably effective in allowing most of them
to learn the name associations. Indeed, approximately
half of these participants (25) learned from 93 to 100%
of the associations between high-level category names
and their corresponding subtype category names.
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Test
The results from the rock classification test phase are
shown in Fig. 10. The pattern of results is similar to
those seen in experiment 1A. Averaged across the high-
level categories, participants in condition 3 achieved
slightly higher correct proportions than did participants
in condition 1 on both the old training items (condition
1, M1 = .64, SD1 = .15; condition 3, M3 = .67, SD3 = .16)
and the new transfer items (condition 1, M1 = .58, SD1 =
.14; condition 3, M3 = .59, SD3 = .14). A two-factor
mixed-model ANOVA indicated that the slight differ-
ences across conditions 1 and 3 were not significant,
F(1, 100) = 0.42, MSE = .040, p = .52, and did not interact
with item type, F(1, 100) = 0.80, MSE = .003, p = .37. As
in experiment 1a, there was significantly better perform-
ance on old than new items, F(1, 100) = 75.43, MSE =
.003, p < .001.3

General discussion
The purpose of this study was to pursue issues related to
the teaching of hierarchically organized science categor-
ies. The example target domain was the teaching of rock
categories in the geologic sciences. The main question
was how the teaching of high-level category names for
rocks (igneous, metamorphic, sedimentary) would be in-
fluenced by requiring participants to simultaneously
learn the rocks’ subtype-level names (e.g., granite, mar-
ble, shale). Past research that examined this question in
both the rocks domain and related domains found vary-
ing patterns of results (e.g., Lassaline et al., 1992;
Miyatsu et al., in press; Noh et al., 2014; Palmeri, 1999;
Verheyen et al., 2008; for research examining a related
question, see Tanaka, Curran, & Sheinberg, 2005).
Nosofsky et al. (2017) suggested and found support for

the hypothesis that the effectiveness of the high-level
teaching strategy may vary with the precise structure of
the to-be-learned categories. High-level-only training
may be more effective in cases in which the high-level
categories occupy compact regions in a multidimen-
sional similarity space; however, simultaneous high-
level/subtype-level training may be more effective in
cases in which the high-level category structures are dis-
organized and dispersed. The practical implications of
Nosofsky et al.’s findings, however, are unclear. First,
these researchers constructed the compact and dispersed

Fig. 9 Yoked experiment 1B: mean proportion of correct high-level classification responses as a function of conditions and sub-blocks during the
training phase. Cond. condition

3Because participants across the two conditions were yoked by
stimulus items, we also conducted a 2 × 2 repeated measures ANOVA
with condition (and item type) as a within-subject factor. The results
were identical to the mixed ANOVA with condition as a between-
subjects factor (F values but not error terms deviated very slightly).
This is as expected because the yoking by stimulus items produced
negligible correlation in performance between conditions (e.g., for old
item, r = .053). The same held when the paired-associate name results
were analyzed with a repeated-measure ANOVA (with condition as
the repeated measure).
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structures by selectively sampling rock subtypes from
the high-level categories; the relevance to the teaching of
more authentic categories, such as those taught in
college-level introductory geology courses, is unknown.
Second, in the condition that used simultaneous high-
level/subtype-level training, the subtype name was al-
ways available to the participants to guide their re-
sponses. It is unknown whether participants could have
produced the correct high-level names in the absence of
the simultaneously present subtype names.
Miyatsu et al. (in press) pursued these issues in two

main ways. First, rather than selectively sampling rock
subtypes to produce either compact or dispersed struc-
tures, these researchers conducted a more random sam-
pling by using the availability of pictures of particular
rock types from web searches as a proxy for how often
the rocks appear in educational and recreational

situations. In addition, in their experiments of most
practical relevance to the present question, participants
were tested on their ability to directly classify into the
high level (without the benefit of the subtype names be-
ing present). In brief, Miyatsu et al. found that partici-
pants who were required to learn to classify at the
subtype level performed significantly worse at high-level
classification than did groups that focused solely on
learning the high-level names (experiments 1 and 2). As
we reviewed in our introduction, however, there were
various limitations associated with Miyatsu et al.’s train-
ing procedures. One limitation is that at least some par-
ticipants likely formed relatively weak associations
between the subtype-level and high-level names. Hence,
even if they learned to classify extremely accurately at
the subtype level, they would be severely impaired when
asked to provide category names at the high level. A

Fig. 10 Yoked experiment 1B: mean proportion with which members of each high-level category were classified into the alternative high-level
categories during the classification test phase of conditions 1 and 3. (Left panels) Condition 1; (right panels) condition 3; (upper panels) old
training items; (lower panels) new transfer items. For example, within each panel, the white bar to the far left indicates the mean proportion with
which members of the high-level igneous category were correctly classified as igneous, whereas the adjacent gray bar indicates the mean
proportion with which members of the igneous category were incorrectly classified as metamorphic (Meta.). Sedim. sedimentary
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second limitation is that, in the condition in which par-
ticipants first learned to classify at the subtype level and
then received paired-associate training between the
subtype-level and high-level names, the participants
never received any direct training at the high level. Thus,
they never had the opportunity to learn any direct asso-
ciations between the rocks and the high-level categories,
nor to learn to attend to any features that were diagnos-
tic for classifying items at the high level.
The key idea that we pursued in the present research

was to implement a two-stage response-training proced-
ure that involved simultaneous training at both the high
and subtype levels and that would potentially address
the limitations noted above. On each trial, for each indi-
vidually presented rock sample, a participant would first
indicate a high-level category response, followed by a
subtype-level response. Feedback was then presented
simultaneously at both levels of the hierarchy. Our hy-
pothesis was that this procedure might combine effective
elements of the alternative training techniques in a syn-
ergistic fashion. First, asking for high-level responses
might motivate participants to learn to attend to features
of the rocks that are diagnostic of the high-level categor-
ies and to form some direct associations between the
rocks and their high-level classifications. Second, asking
for subtype-level responses might be effective in guiding
the learning of aspects of the category structure that are
disorganized and dispersed. Third, the two-stage proced-
ure might be effective in allowing participants to develop
learned associations between the high-level and subtype-
level names of the rocks. Thus, participants would be
well positioned to transfer their knowledge to a testing
situation that required direct classification into the high-
level categories.
Briefly, we found that participants trained using this two-

stage high-level/subtype-level procedure showed high-level
classification performance that was at least as good as a
group that was trained solely at the high level. Furthermore,
we observed the result in an experimental situation in which
participants learned to classify a broad range of subtypes of
rocks that are highly representative of those taught in intro-
ductory college-level geology courses. In addition, the result
was observed in conditions in which the subtype name was
no longer present to help guide the participants’ high-level
classification response.
Admittedly, in the present experiments, requiring par-

ticipants to simultaneously learn at the subtype level did
not significantly improve their high-level classification per-
formance (compared to a high-level-only group). The
more important take-home message, however, is that,
contrary to the results reported in Miyatsu et al. (in press,
experiments 1 and 2), it certainly did not hinder their
high-level learning. This result suggests that, in a setting
in which students are tasked with learning high-level

names for authentic sets of igneous, metamorphic and
sedimentary rocks that are commonly taught in introduc-
tory college-level geoscience classes, it is best for students
to learn simultaneously at both the high and subtype levels
(using training techniques similar to the presently investi-
gated one). The obvious reason is that students are learn-
ing far more total information. First, in addition to
learning the high-level names for the rocks, they are also
learning their subtype names. In this regard, it is import-
ant to note that the kinds of reasoning and inferencing for
which geologists rely on rock type categorization often de-
pend on making accurate subtype classifications of rock
samples. As noted in the introduction, classification of an
igneous rock as either rhyolite or granite allows fine-
grained inferences about the history of a terrain. As such,
in the introductory geosciences courses of which we are
aware, the learning objectives include learning both the
high-level and the subtype-level classifications of rocks.
From an instructional standpoint, the present simultan-
eous training procedure provides an efficacious technique
for doing so.
Second, the paired-associate name-test results (experi-

ment 1b) clearly showed that the two-stage high-level/
subtype-level training also supported good learning of
the hierarchy of classification levels for rocks; that is,
participants in this training group learned well the sub-
type classifications that belong to each high-level cat-
egory. In comparison, Miyatsu et al. (in press,
experiment 2) implemented a name-learning study phase
in which participants were presented with the high-
level–subtype-level name pairings, followed by three
test-feedback trials. This name-learning phase decreased
the total amount of rock classification training the par-
ticipants received, but still produced only 76% accuracy
at knowing the name pairings. Accordingly, the current
two-stage training procedure is attractive because it sup-
ports more accurate name-pair learning (86%) with no
reduction in rock classification training.
A potential concern regarding our suggestion is that

participants using the two-stage response procedure are
spending slightly greater time on the task than are par-
ticipants who use the high-level-only response proced-
ure. On each trial, the participants using the two-stage
procedure make two key presses, whereas those using
the high-level-only procedure make only a single key
press. (Importantly, however, total response–feedback
time was held constant across the two conditions.) In
our view, this slightly greater time-on-task is a minor
consideration given the dramatic gains in overall cat-
egory knowledge that are achieved.
There are a number of limitations of the present study

that need to be pursued in future work. First, we investi-
gated participants’ ability to generalize to new members
of the categories only in a test that occurred immediately
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following initial training. An important question is
whether the same effects would also be observed in de-
layed tests. Second, although we argued in our introduc-
tion that learning of rock categories is crucial to
inference and causal reasoning in the geologic sciences,
it is important to demonstrate that the effects of our
proposed two-stage training procedure do indeed extend
beyond mere classification accuracy to various forms of
geologic problem-solving as well. Third, the present
study did not involve classification of real, physical
rocks; instead, it was limited to the use of only rock im-
ages. In general, we would expect that our two-stage
training procedure would yield similar patterns of results
regardless of whether the to-be-classified materials are
images or physical rocks. Nevertheless, this hypothesis
also needs to be pursued in future research.4

Much work remains for future investigations of the
training techniques that might be most effective in
teaching students to classify objects into hierarchically
organized natural science categories. For example, Mea-
gher, Carvalho, Goldstone, and Nosofsky (2017) found
evidence that the use of organized, simultaneous visual
displays provides a promising technique for conveying
the hierarchical structure of rock categories. Much other
research has also pursued techniques for effectively
teaching categories at a single level of a hierarchy. Such
techniques include ones that manipulate the presenta-
tion sequences of training instances from contrasting
categories (e.g., Carvalho & Goldstone, 2014; Eglington
& Kang, 2017; Kornell & Bjork, 2008; Mathy & Feldman,
2016); the order in which hard versus easy instances are
presented (e.g., Pashler & Mozer, 2013); the size of the
sets of training instances and which specific training

instances to use (e.g., Nosofsky et al., 2018, 2019; Wahl-
heim et al., 2012); and the use of explicit coaching such
as visual highlighting of diagnostic features (Miyatsu,
Gouravajhala, Nosofsky, & McDaniel, 2019). Combining
these techniques with variants of the presently proposed
two-stage response procedure might yield even better
learning of hierarchically organized science categories.
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