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Abstract

expected to be used by criminals.

implications for security authorities worldwide.

Background: In recent years, fraudsters have begun to use readily accessible digital manipulation techniques in
order to carry out face morphing attacks. By submitting a morph image (a 50/50 average of two people’s faces) for
inclusion in an official document such as a passport, it might be possible that both people sufficiently resemble the
morph that they are each able to use the resulting genuine ID document. Limited research with low-quality
morphs has shown that human detection rates were poor but that training methods can improve performance.
Here, we investigate human and computer performance with high-quality morphs, comparable with those

Results: Over four experiments, we found that people were highly error-prone when detecting morphs and that
training did not produce improvements. In a live matching task, morphs were accepted at levels suggesting they
represent a significant concern for security agencies and detection was again error-prone. Finally, we found that a
simple computer model outperformed our human participants.

Conclusions: Taken together, these results reinforce the idea that advanced computational techniques could prove
more reliable than training people when fighting these types of morphing attacks. Our findings have important
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Significance

In order to minimize the use of fraudulent documents as
forms of identification, anti-counterfeit measures such
as watermarks are often included. With an increase in
the detection of fraudulent IDs, security officers have re-
cently seen a rise in the use of fraudulently obtained
genuine (FOG) documents. As the name suggests, these
involve deception during the application process in
order to obtain a genuine document, equipped with all
the necessary watermarks, and so on. One method used
by fraudsters is to submit a morph image (a 50/50 aver-
age of two people’s faces) for inclusion in an official
document like a passport. If both people sufficiently re-
semble the morph, they could both use the resulting
genuine passport for international travel. Recent re-
search has begun to investigate whether people can de-
tect morphs and has suggested that training might
provide an effective way to increase performance. Here,
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we reconsidered these findings with the use of higher-
quality morphs, where every effort was made to produce
images comparable with those we expect criminals to
use. We found that on-screen morph detection was poor
and training did not lead to improvements. When
morphs were compared to faces during a live inter-
action, they were accepted at concerning levels and,
again, detection was error-prone. Importantly, we found
that a simple computer model performed better than
our human participants, suggesting that security agen-
cies should focus on automated solutions rather than
training people when fighting morphing attacks.

Background

The use of biometrics in identification is commonplace
across a variety of contexts. For example, face photo-
graphs are featured in many forms of documentation
internationally, including passports and driving licenses.
Our reliance on the face as a means of identification is
likely a result of our belief that we are face experts.
However, in reality, we are only familiar face experts
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(Young & Burton, 2018). Numerous studies have now
shown that we are error-prone when making decisions
based upon unfamiliar faces (e.g. Bruce, Henderson,
Newman, & Burton, 2001; Burton, White, & McNeill,
2010; Jenkins, White, Van Montfort, & Burton, 2011;
Kemp, Towell, & Pike, 1997). Further, and perhaps sur-
prisingly, trained passport officers perform at similar
levels to untrained university students (White, Kemp,
Jenkins, Matheson, & Burton, 2014).

Errors with unfamiliar faces become especially prob-
lematic when dealing with various types of fraudulent
identification. For instance, researchers in recent years
have begun to investigate the issue of “face morphing at-
tacks” (Ferrara, Franco, & Maltoni, 2014). This term re-
fers to the following three-step process to obtain a
passport fraudulently. Person A (who has no criminal
record) creates a morphed photo of himself and person
B (whose prior record prevents him from international
travel). First, person A submits this AB morph as his ID
photograph with his passport application. Second, the
morph is compared with previous images of person A
that are kept on file and the application is subsequently
approved by the passport issuing officer on the grounds
that the image sufficiently resembles him. Third, person
A gives this FOG (Interpol, n.d.) passport to person B,
who then proceeds to use it during travel as he also re-
sembles the morph image sufficiently to pass through
border control.

Problematically, since the document itself is genuine,
typical anti-counterfeit measures (e.g. the use of security
watermarks, inks, and fibers) are powerless to detect
these types of fraud. Therefore, detection must rely upon
comparing the morph with previously stored face photo-
graphs (at the point of issuance) or the “live” face (at the
point of presentation for travel). As digital image ma-
nipulation software becomes more advanced, the result-
ing morphs become more difficult to detect. One
approach is to develop increasingly sophisticated com-
puter methods for morph detection (e.g. Makrushin,
Neubert, & Dittmann, 2017; Neubert, 2017; Raghaven-
dra, Raja, Venkatesh, & Busch, 2017a, 2017b; Scherhag,
Nautsch, et al., 2017; Scherhag, Raghavendra, et al,
2017; Seibold, Samek, Hilsmann, & Eisert, 2017, 2018).
For example, inconsistencies between the reflections vis-
ible in the eyes and skin could signal a morphed image
(Seibold, Hilsmann, & Eisert, 2018). Such techniques
may be incorporated into automated border control
(ABC) systems in order to prevent the use of morph
images.

In many situations, however, the decision to accept an
ID image is left to a human operator. Indeed, even in
face matching scenarios where algorithms are initially
employed, human users are often presented with a “can-
didate list” and are required to make the final selection,
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potentially reducing the overall accuracy of the process
(White, Dunn, Schmid, & Kemp, 2015). Although im-
portant across a variety of contexts, the question of
whether people are able to detect morphs and/or
whether they accept such images as genuine ID photo-
graphs has received little attention to date.

Ferrara, Franco, and Maltoni (2016) provided evidence
that several computer algorithms performed with high
error rates when tasked with detecting morph images. In
addition, they found that human performance on their
task was also poor, with morphs going undetected in
most cases (see Makrushin et al., 2017, for similar find-
ings). In line with previous work on face matching with
expert populations (White et al., 2014), their results also
showed that professionals working in the field (border
guards) were no better than university students and em-
ployees in detecting morphs.

Recently, two articles by Robertson and colleagues
have specifically focused on human performance in the
matching and detection of morphs. In the first, partici-
pants completed computer tasks in which they decided
whether two face images onscreen depicted the same
person or not (Robertson, Kramer, & Burton, 2017). In
seven trials, the two images were different photographs
of the same face, and in another seven trials, the images
were photographs of two different people. For the
remaining 35 trials, a face photograph was paired with a
morph containing differing amounts of that face and a
second person. (When creating morphs, the researcher
can specify the percentage weighting of each identity
contained in the final image.) The results demonstrated
that 50/50 morphs (weighting both identities equally)
were accepted as “matches” for the faces they were
paired with on 68% of trials. After providing instructions
regarding the nature of morphs, and with the additional
response option of “morphed image,” participants subse-
quently accepted them as “matches” on only 21% of tri-
als. Taken together, the authors suggested that
erroneously accepting morphs as ID images was com-
mon, but these errors can be significantly reduced
through instruction.

In the second article, the researchers investigated
whether people were able to detect morph images and
whether training could help with this task (Robertson et
al, 2018). Participants were shown ten-image arrays
containing a mixture of the morph images and exem-
plars (original, unmorphed faces) used in the previous
article and were asked to identify which were the
morphs. Performance was poor, with the 50/50 morphs
resulting in average d’ sensitivities of 0.56 and 0.96 (for
the two groups that took part: training versus none),
suggesting that morphs were not readily detected. How-
ever, providing information regarding the nature of the
morphs, along with some tips to help with identifying
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them, resulted in a significant increase in sensitivity (to
2.69 and 2.32, respectively). An additional training
protocol, in which feedback was provided via a two-
alternative forced choice (2AFC) task, also led to a fur-
ther benefit for the group that received it (the first men-
tioned in the values reported above). The authors
concluded that people were poor at detecting morphs,
but that training could significantly improve
performance.

As mentioned earlier, with improvements in image
manipulation techniques, and in combination with a
criminal’s determination to avoid being caught, we
should expect that real-world morphs will be made with
a level of sophistication that renders them virtually un-
detectable to the human eye. Problematically for the two
articles investigating human acceptance and detection of
morphs (Robertson et al., 2017, 2018), the images used
were not representative of the level of cutting-edge
methods that are likely to be applied by fraudsters. Al-
though the initial face averaging was carried out using
advanced morphing software (JPsychomorph; e.g. Ben-
son & Perrett, 1993), there was no subsequent “touch
up” stage in order to remove artefacts that are known to
result from the averaging process (e.g. the presence of a
secondary outline for the hair). As Fig. 1 (top row) illus-
trates, the 50/50 morph (center) included obvious arte-
facts that can be easily removed using image-editing
software. Indeed, these artefacts were highlighted to par-
ticipants during the morph detection training phase of
both previous studies: “look for a ‘ghost-like’ outline of

Fig. 1 Top: An example of the images used in previous work
(adapted from Robertson et al,, 2018). Bottom: An example of the
images used in the current work (Experiment 3"). The three faces
depict two individuals (left, right) and a morph created using these
images (center). The individuals pictured have given permission for
their images to be reproduced here
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another face; look for the outline of another person’s
hair over the forehead” (Robertson et al., 2018, p. 4). In
addition, by presenting faces that have been cropped to
remove the neck and background, these images did not
conform to real-world ID specifications and also
highlighted to participants that all the images had been
altered to some extent. For these reasons, we predict
that the performance levels reported, along with the ap-
parent training benefits, may only be of limited utility
with regard to real-world behaviors when using more
realistic images.

In the current set of studies, we aim to address these
issues by creating higher-quality morph images and in-
vestigating both human and computer detection of these
images. It is important to determine whether people
accept morphs, or can detect their use, when every effort
is made to produce images that reflect real-world fraud.
For example, if training methods were implemented with
the assumption that morph detection would be signifi-
cantly improved, this might result in a false sense of se-
curity (literally) for passport control and issuing officers.
Therefore, in this paper, we investigate human morph
detection performance with and without training,
reflecting a passport-issuing context (Experiments 1 and
2), whether people accept morphs as ID images in a
“live” task, reflecting a border control scenario (Experi-
ment 3), and, finally, whether computational modelling
outperforms human detection, providing a more suitable
alternative than training people (Experiment 4).

Experiment 1: Replication of Robertson et al.
(2018) using higher-quality morphs

In the first experiment, we repeated the design and pro-
cedure of Robertson et al. (2018) with our higher-quality
morphed images. In addition, we determined whether
the previously implemented training paradigm (forced
choice trials with feedback) would result in improved
morph detection performance with our more sophisti-
cated morphs.

Method

Participants

Eighty participants (57 women; age M = 21.2 years, SD =
7.2 years; all self-reported as White or White-mixed eth-
nicities) were recruited for this experiment, based on an
opportunity sample of friends, family, and through ap-
proaching students and staff on campus.

The University’s School of Psychology Research Ethics
Committee approved all the experiments presented here
(approval code PSY171881) which were carried out in
accordance with the provisions of the World Medical
Association Declaration of Helsinki. In all experiments,
participants provided written informed consent before
taking part.
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Materials

Digital face photographs were taken from two different
databases used in previous research (Set 1: n = 262; Set
2: n =224; Kramer, Jones, & Ward, 2012; Scott, Jones,
Kramer, & Ward, 2015; Scott, Kramer, Jones, & Ward,
2013). To create morphs for our pre- and post-training
morph detection tasks, we paired 120 individuals from
our Set 1 database to create 60 morphs (43 female). Our
60 exemplar (non-morphed) images (also taken from Set
1) all showed new identities not used in the creation of
the morphs. In line with Robertson et al. (2017, 2018),
we used JPsychomorph to create our morph images, al-
though crucially, we then modified these images using
Adobe Photoshop in order to remove any noticeable ar-
tefacts of the averaging process. For further details of
the creation of the images, see Additional file 1.

To create morphs for our morph training task, we
paired 40 individuals from our Set 2 database and then
created 20 morphs (12 female) using the same procedure
as above (see Additional file 1). Similarly, we selected 20
individuals (12 female) from the same set for our exem-
plar images and processed the images as before. Again,
these individuals had not appeared in any of the morph
pairings.

All images were resized to match the dimensions of
official UK passport photographs (3.5 x 4.5 cm).

Procedure

All details of the procedure were identical to that of
Robertson et al. (2018) unless otherwise specified, al-
though we excluded their final face matching test as this
was not central to our question. Here, participants com-
pleted a pre-training morph detection task, a morph
training or control task, and then a post-training morph
detection task.

In the pre-training baseline morph detection task, par-
ticipants were asked to identify morph images in ten-
image arrays, providing an initial measure of ability to
detect morphs before any training or guidance had been
given. On each of the six trials, participants were shown
ten faces (five morphs, five exemplars), along with the
question, “Which of these images are face morphs (a
blend of two faces)?”,> with the option of entering be-
tween zero and all ten faces.” The on-screen locations of
the morphs and exemplars were randomized for each
trial; the 60 faces (30 morphs, 30 individuals) were ran-
domly selected from the set of 120 images described
above.

Next, as in Robertson et al. (2018), participants viewed
a set of “morph fraud/detection tips” onscreen (“tips
screen”). This provided an example of two exemplar
photographs, along with the resulting morph created by
averaging those two images together (featuring two
women who did not appear in any of the experimental
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trials, either individually or as a morph.) The tips screen
also suggested two possible ways to identify morphs: (1)
“morphs often have smoother skin than normal photo-
graphs”; and (2) “morphs may also show irregularities
within the hair’s texture.” These suggestions were tai-
lored to our specific morph set and therefore differed
from those provided by Robertson et al. (2018), who rec-
ommended that participants look for artefacts that we
had digitally removed (see Fig. 1 bottom row). Import-
antly, in line with Robertson et al.,, participants in both
groups (morph training, control) were shown these tips.

Following the tips screen, participants completed ei-
ther a morph training task (n=40) or a control task
(n =40), with alternating assignment to these tasks. In
the morph training task (20 trials), pairs of faces were
presented onscreen (one morph, one exemplar) and par-
ticipants were asked to select the morphed face photo.
In the control task (20 trials), pairs of letter circles were
presented onscreen (one containing only letters, the
other also containing one number) and participants were
asked to identify which circle contained the number.
Left/right locations for the morphs and letter circles
were counterbalanced across trials. Both tasks provided
feedback regarding the correct answer before the next
trial appeared.

Finally, after completing either the morph training or
control task, participants were given a post-training
morph detection task. This was identical to the pre-
training version (see above) except that a different set of
60 faces (the remaining faces from our set of 120) ap-
peared in the arrays.

Results

In order to determine whether participation in the
morph training task resulted in improved performance
when comparing the pre- and post-training blocks, per-
centage correct was analyzed using a 2 (Group: morph
training vs control) x 2 (Session: pre-training vs post-
training) mixed analysis of variance (ANOVA). Group
varied between participants while Session varied within
participants. Overall, performance on the morph detec-
tion task was poor. We found a significant main effect of
Group, F(1, 78)=6.32, p=0.014, 1°,=0.75, with the
control group (M =56.0%) performing better than the
training group (M =52.1%). However, since assignment
of participants to these groups was essentially random,
any difference between groups can only be explained by
chance. Indeed, this group difference translates into the
control group scoring an average of only one more cor-
rect response on the task than the training group. More
importantly for the current work, we found no main ef-
fect of Session, F(1, 78) = 0.05, p = 0.829, 172p =0.00, and
no significant Group x Session interaction, F(1, 78) =
0.00, p = 0.971, 1%, = 0.00.
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Robertson et al. (2018) analyzed their results using sig-
nal detection measures. Therefore, in order to directly
compare our data with theirs, we also carried out these
analyses. Our ANOVA of d’ sensitivity showed the same
pattern of results as the percentage correct analysis re-
ported above (see Fig. 2 and Additional file 1).

Finally, in line with Robertson et al. (2018), we investi-
gated performance during the morph training and con-
trol tasks. For the morph training task, percentage
correct over the 20 trials (M =51.3%) was not signifi-
cantly different from chance (50%) performance, £(39) =
0.72, p =0.475, Cohen’s d = 0.11. In addition, percentage
correct on the first five (M =54.0%) and last five trials
(M =47.0%) did not significantly differ from each other,
t(39) = 1.51, p=0.137, Cohen’s d=0.24, suggesting no
improvement as the training task progressed. In con-
trast, analysis of the control task showed that accuracy
was at ceiling (M =99.4%), which was expected, given
the simplicity of the task.

Discussion

The results of this experiment demonstrated two im-
portant findings. First, the ability to detect morphs was
poor on this task. Sensitivity was only slightly above zero
(and not different from zero in some cases). Second,
providing training did not lead to an improvement. In-
deed, accuracy during training was at chance levels and
failed to improve over the 20 trials, despite the feedback
that was given after each response.

Previous research (Robertson et al., 2018) showed poor
performance on the baseline morph detection task (al-
though at levels higher than in the current experiment)
and substantial improvements after receiving detection
tips and training. As Fig. 2 illustrates, our current results
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and those of Robertson et al. (2018) are strikingly differ-
ent when displayed on the same axes. It is clear that our
morphs were more difficult to detect; even when we
provided a tailored set of tips (specifically updated to ad-
dress characteristics that may reveal flaws in our im-
ages), no performance increase was seen.

In addition, morph detection during our training task
differed substantially from detection rates for the same
task in Robertson et al. (2018). Where Robertson and col-
leagues found that morphs were correctly chosen in the
2AFC training task in 89% of trials, we showed chance-
level morph detection (51%). This further highlights that
our high-quality morph faces were difficult to detect.

It is, however, unclear as to what should be considered
chance-level detection in the pre- and post-training
morph detection tasks, where perfect performance
would be selecting all five morphs from each ten-image
array. Therefore, we designed Experiment 2 in order to
establish detection levels for our morphs in a task where
chance was 50%.

Experiment 2: Forced choice morph detection and
tips

Here, we explored morph detection using a forced
choice paradigm. By presenting a single image on each
trial, with participants deciding whether the image is a
morph or not, we have a clear notion of chance per-
formance (i.e. 50%) and there are no other images on
screen with which to simultaneously compare the image
in question (unlike Experiment 1). In addition, making
decisions based on single images more closely parallels
the real-world task of morph detection that passport of-
ficers and other professionals carry out each day. There
is no obvious situation in which a large array, containing
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both morphs and individuals’ images, would be pre-
sented for consideration.

Finally, we used a more limited “training” design in
that half of the participants viewed the morph detection
tips screen before the detection task. We chose not to
include the full training task (utilizing feedback) featured
in Experiment 1, given that our results provided no evi-
dence that this method of training resulted in improved
performance.

Method

Participants

Forty participants (21 women, age M = 23.9 years, SD =
10.8 years; all self-reported as White ethnicity) were re-
cruited for this experiment in the same manner as Ex-
periment 1. There was no overlap between this sample
of participants and those who took part in Experiment 1.

Materials
The 120 images used in the morph detection task in Ex-
periment 1 were used here.

Procedure

Participants completed a forced choice morph detection
task, either viewing the tips screen beforehand (n = 20)
or not (n =20). Assignment to these groups (tips screen
vs control) alternated as above, with odd numbered par-
ticipants viewing the tips screen and even numbered
participants not. The tips screen was identical to the one
used in Experiment 1, providing information about
morphs, a visual example of their creation, and two sug-
gestions for identifying morphed images.

For the task itself, from the 120 images created using
our Set 1 database (60 morphs and 60 exemplars), each
participant was presented with a randomly selected 30
morphs and 30 exemplars. The order of presentation of
these faces was also randomized. On each trial, one face
appeared onscreen, along with the question, “Is this
image a face morph (a blend of two faces)?” Participants
selected either “yes” or “no” onscreen using the mouse.
No feedback was given at any point during the task.

Results

As Table 1 illustrates, performance on the forced choice
morph detection task was poor. In order to determine
whether viewing the tips screen before completing the
task resulted in improved performance, percentage cor-
rect was analyzed using an independent samples ¢-test.

Table 1 A summary of the data for Experiment 2
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We found no significant difference between the two
groups, £(38) = 1.04, p = 0.304, Cohen’s d = 0.33.

We also analyzed signal detection measures using the
following definitions: Hit — the image was a morph and
participants responded “morph”; and False alarm — the
image was an individual and participants responded
“morph.” For both d; £(38) =0.90, p = 0.374, Cohen’s d =
0.28, and ¢, £(38) =147, p=0.150, Cohen’s d =0.46, we
again found no significant difference between the two
groups. That the latter comparison produced a near-
medium effect size perhaps provided some evidence that
participants who viewed the tips screen showed a criter-
ion shift towards responding “morph” more often when
completing the task.

Finally, we compared performance levels to those pre-
dicted by simple guessing. For percentage correct, the
training group performed significantly better than
chance, £(19) =3.19, p = 0.005, Cohen’s d =0.71, but the
control group did not, #(19)=1.52, p=0.145, Cohen’s
d =0.34. This pattern was mirrored in the analysis of d,
where the training group’s sensitivity was significantly
above zero, £(19) =3.11, p = 0.006, Cohen’s d = 0.70, but
the control group’s sensitivity was not, £(19) =1.61, p =
0.124, Cohen’s d = 0.36.

Discussion

The results of this experiment confirmed that morph de-
tection was poor, using a task where chance levels were
easily defined and the forced choice procedure better
reflected real-world decision-making. That d’ sensitivities
were very similar to the levels found in Experiment 1
provided additional evidence of the difficulties that par-
ticipants had with detecting morphs across multiple
paradigms.

Although Experiment 1 demonstrated that neither the
tips screen nor the morph training led to an improve-
ment in performance, the current experiment produced
more ambiguous results. We found that viewing the tips
screen did not significantly increase morph detection
abilities, but those participants did perform at above
chance levels. In comparison, responses given by partici-
pants in the control group did not differ from those ex-
pected by simple guessing.

Taken together, the results of the two experiments
might suggest that the tips screen has the potential to
increase morph detection levels. However, this benefit
may be counteracted by: (1) carrying out another task
(feedback training or an irrelevant letters task) before

Group Percentage correct, % Hits False alarms d c
Tips screen 57.1 524, 61.7] 0.59 [0.53, 0.64] 045 [0.38,0.51] 0.38[0.12, 0.64] —0.04 [-0.14, 0.06]
Control 537 [486, 58.7] 0.50 [0.42, 0.58] 043 [0.34, 0.51] 0.22 [-0.07, 0.50] 0.11 [-0.08, 0.29]

Note. Values represent the means, with 95% confidence intervals shown in square brackets
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morph detection is measured for the second time; and/
or (2) the use of a ten-image array paradigm, incorporat-
ing additional noise in the data due to the uncertainty as
to how many images should be selected on each trial.
Whether viewing a tips screen improved detection or
not, we can say with certainty that any increase in per-
formance was small and detection levels both with and
without training/tips were low.

Both Experiments 1 and 2 addressed the first process
involved in using a FOG passport — when issuing a pass-
port, personnel must compare the newly submitted
morph image to the previous passport image of one of
the identities. Our results have shown that it is unlikely
that a morph image would be detected at this stage and
that training would not help in this process. The next
experiment addresses the second stage of FOG passport
criminality — its usage. In this situation, a border control
officer or other official must compare a live person to
the morph image.

Experiment 3: Live face matching

Experiments 1 and 2 demonstrated that people were
poor at identifying our face morphs and that the training
methods we explored did not result in significantly im-
proved performance. If this type of image cannot be eas-
ily distinguished from standard exemplar images, then
this provides the possibility for fraudsters to use face
morphs as photographic identification in the real world.
More specifically, at the point of issuing identification
documents, morphs that fail to be detected will be incor-
porated into FOG documents for later use.

However, even if morphs are incorrectly accepted by
viewers (e.g. passport issuing officers) as unaltered pho-
tographs, this does not mean that these images suffi-
ciently resemble one or both original identities (i.e. the
two faces used to create the morph). In order for fraud-
sters to take advantage of this method of deception at
the point of document use, observers (e.g. border con-
trol officers) must accept morphs as believable photo-
graphs of those people presenting them.

One previous study has investigated face matching
performance with morphs (Robertson et al., 2017) but
used a computerized version of the task and only investi-
gated morph acceptance for one of the two people pic-
tured in each morph image (ie. morph AB was
compared to person A but not person B). In addition, as
discussed earlier, those morphs were of a lower-quality
in terms of realism than the ones used in the current
work (see Fig. 1 for comparison between face sets). In
this experiment, we investigated whether our high-
quality face morphs provided acceptable identification
photographs for use by both of the original people fea-
tured in the morph. In addition, we utilized a live face
matching context rather than a computerized task in
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order to better understand the everyday process whereby
people present their photo-ID documents for
consideration.

Method

Participants

For clarity in this experiment, we labelled our partici-
pants as either models or judges. Models were those in-
dividuals who appeared in the images used and
subsequently presented these images and collected re-
sponses. Judges, in contrast, were those who viewed the
images and gave their responses, providing the current
data for analysis.

Models

Forty-eight undergraduate students acted as models for
this experiment (40 women, 44 self-reported as White;
age M =19.6 years, SD = 1.3 years).

Judges

We recruited a sample of 1410 people (985 women; age
M =21.8years, SD="7.1years; 97.1% of judges self-
reported as White).

All models and judges were members of a UK univer-
sity. Models participated as part of their undergraduate
research skills course, while judges represented an op-
portunity sample of students and staff that were present
on campus at the time of data collection. Judges were
strangers and did not know the models before recruit-
ment. In addition, no judges had previously participated
in Experiments 1 or 2. Finally, all judges confirmed that
they had not already taken part in this experiment before
responding.

Materials

Digital face photographs were taken of the models. All
images were constrained to reflect neutral expression,
eyes on the camera, consistent posture, distance to the
camera, no glasses, and hair back. A headband was pro-
vided where necessary. There were small differences in
lighting conditions across subsets of models (see Fig. 1,
bottom row). In addition, unlike the images used in Ex-
periment 1, we were unable to restrict the use of visible
jewelry and make-up.

We formed 20 same-sex pairs from 40 of our White
models based on general descriptors (e.g. blonde hair),
with this pairing carried out by two of the authors. The
person each model was paired with is referred to as their
“foil,” with paired individuals serving as each other’s
foils. Due to the limited size of our model sample, we
failed to form acceptable pairings for four White individ-
uals. These four, along with the four non-White models,
were paired with images taken from our Set 1 database,
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which provided a larger selection of individuals of both
sexes and multiple ethnicities to choose from.

Morphs were created as in Experiment 1 (see Add-
itional file 1), again using JPsychomorph and Adobe
Photoshop in order to produce convincing images. As
before, both morphs and exemplar images were given a
uniform, gray background and cropped to 440 x 570
pixels. Next, any visible jewelry that appeared in the im-
ages was removed using Adobe Photoshop, primarily
with the “clone stamp” tool. Finally, images were printed
and laminated, with each image measuring 3.5 x 4.5 cm
(see Fig. 1, bottom row for examples).

Models were provided with three images for data col-
lection, representing the three experimental conditions:
(1) match — an image of themselves; (2) morph — a
computer-generated average of the model and their foil;
and (3) mismatch — an image of their foil.

Procedure

We followed the general procedure used in previous
live face matching research (Ritchie, Mireku, & Kra-
mer, 2019). The models approached people on campus
and stood at a conversational distance. Each judge was
shown an image corresponding to only one of the
three conditions (match, morph, mismatch) and was
asked, “Is the image a photo of me?” Judges had an un-
limited amount of time to respond to all questions.
After their yes/no response was written down, judges
were then asked, “Do you have any reason why you
wouldn’t accept this as an ID photo?” This open-ended
question allowed judges to provide their own reasons
as to why the image might not be suitable for use as
identification. (Judges also had the option of giving no
reason.) After these responses were written down,
judges were given a morph fraud/detection tips sheet —
a printed/laminated version of the tips screen used in
Experiments 1 and 2. Finally, after receiving this infor-
mation regarding morphs, judges were asked, “Do you
think that this image is a morph?” Their yes/no re-
sponses were written down and demographic informa-
tion was also collected. No feedback was given at any
point during the experiment.

Each judge gave their responses to the three ques-
tions based upon only one image/condition. The
image they saw was determined by cycling through
all three conditions in order and then repeating this
process. Each model collected responses from 30
judges (ten in each condition). However, one model
was unable to collect data. As such, the final size of
our dataset was 1410 judges (47 models x 30 judges).
Data collection spanned approximately two weeks
during the semester, with the ID photos having been
taken 3-5 weeks earlier.
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Results

Accuracy with live matching

Each model collected responses in all conditions, and
following the method used previously in live face match-
ing tasks (Kemp et al., 1997; Ritchie et al.,, 2019), we cal-
culated mean accuracy (percentage correct) for the
match and mismatch conditions separately (i.e. for the
ten responses collected per condition) for each model.
We found that accuracies in the match (M = 83.2%) and
mismatch (M = 84.0%) conditions, derived from the data
presented in Table 2, were comparable with overall ac-
curacies reported in previous studies of live face match-
ing (67.4% — Kemp et al, 1997; 83.1% — Megreya &
Burton, 2008; 79.9% — Ritchie et al., 2019).* As such, we
can be confident that the images and foils used here did
not result in overly easy or difficult matching.

Are morphs accepted as ID photos?

For each model, we calculated the proportion of judges
that answered “yes” for each condition when asked, “Is
the image a photo of me?” These proportions were ana-
lyzed using a repeated measures ANOVA (with Condi-
tion as a within-models factor). We found a significant
main effect, F(2, 92) = 160.91, p < 0.001, 172p =0.78, dem-
onstrating that judges responded differently for the three
types of image. Pairwise comparisons (Dunn-Siddk cor-
rected) showed that judges responded “yes” significantly
differently across all three conditions (all p values <
0.001; see Table 2).

Considering these proportions, we found that, on aver-
age, judges accepted morphs on approximately half of
the times that they were presented (M = 0.49). However,
there were substantial differences across models (pro-
portion range: 0—1), demonstrating that the utility of a
given morph depended upon the particular morph and
the model attempting to use it.

Thirty-eight of our White models formed pairs in
which both individuals were used to create the morph
and both collected data using that same image. With
these pairs, we were able to investigate whether (differ-
ent) judges accepted the same morph image when pre-
sented by each of our paired models (i.e. the AB morph
presented by both person A and person B). Figure 3 il-
lustrates these results, highlighting that for the majority
of pairs, the morph was accepted as an ID image of one
model noticeably more than the other. This suggests
that the morphs we used, although created by equally
weighting both individual images, did not resemble each
individual equally.

This sheds further light on previously reported results
whereby 50/50 morph images were accepted in a com-
puterized face matching task on 68% of trials (Robertson
et al, 2017). In that study, morph images were only ever
presented with one of the two identities comprising the
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Table 2 A summary of the data for Experiment 3. These values represent the mean proportion of “yes” responses received by

models for each condition

Question Match Morph Mismatch
Is the image a photo of me? 0.83 [0.78, 0.88] 049 [041, 0.57] 0.16 [0.11, 0.21]
Do you think that this image is a morph? 0.36 [0.30, 041] 0.64 [0.58, 0.70] 044 [0.37,0.51]

Note. Values represent the means, with 95% confidence intervals shown in square brackets

morph. Therefore, the acceptance rates when matching
each of the two identities with the morph image were
not investigated. Here, we show the importance of pre-
senting the morph with both of the contributing faces,
as only one of our 19 pairs produced equal morph ac-
ceptance rates for each person (pair 10 in Fig. 3).

Are morphs detected spontaneously?

We explored the responses given when judges were
asked, “Do you have any reason why you wouldn’t accept
this as an ID photo?” Of the 1410 judges, only 18 gave
reasons that specifically included mention of computer
manipulation or similar, e.g. “doesn’t look real,” “looks
filtered,” “looks photoshopped,” “avatar-like.” Of these,
15 judges took part in the morph condition (where a
total of 470 judges viewed morphs).

Fourteen additional judges in the morph condition
gave reasons that were less specific but suggested they
had an issue with the appearance of the face, e.g. “face
looks strange,” “hair line is strange,” “looks odd,” The
remaining reasons given by judges for not accepting the
photos either involved general issues with lighting, that
the model was displaying a smile, the background color
was inappropriate, or that the model was wearing a
headband. These judges were approximately evenly dis-
tributed across all three conditions. The remaining
judges either gave no reason or mentioned not accepting

the image based on it not sufficiently resembling the
model presenting it.

Are morphs detected after instruction?

After receiving the morph fraud/detection tips sheet,
judges were asked, “Do you think that this image is a
morph?” For each model, we calculated the proportion
of judges that answered “yes” for each condition and an-
alyzed these using a repeated measures ANOVA (with
Condition as a within-models factor). We found a sig-
nificant main effect, F(2, 92)=29.29, p<0.001, 172P=
0.39, demonstrating that judges responded differently for
the three types of image. Pairwise comparisons (Dunn-
Sidék corrected) showed that judges responded “yes” sig-
nificantly more often (both ps<0.001) to the morph
than to the match and mismatch images (see Table 2).
The latter two conditions did not significantly differ
from each other (p = 0.096).

By comparing these proportions to response levels
predicted by simple guessing (0.5), we found that judges
were significantly better than chance at detecting that
the morphs were morphs, #(46) = 4.92, p < 0.001, Cohen’s
d=0.72 and that the match images were not morphs,
1(46) =4.97, p<0.001, Cohen’s d=0.72. Interestingly,
judges were not significantly different from chance per-
formance for the mismatch condition, #(46)=1.80, p =
0.079, Cohen’s d = 0.26.
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Fig. 3 Morph acceptance for 19 of the pairs in Experiment 3. Both models within each pair are shown, illustrating the acceptance of morph
images when presented by both the models they comprised
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We also calculated sensitivity measures for this ques-
tion, considering the 30 judges approached by each
model, using the following definitions: Hit — the image
was a morph and judges responded “morph”; and False
alarm — the image was an individual and judges
responded “morph.” Across all models, we found that d’
was low, M =0.73, 95% confidence interval (CI) [0.53,
0.94], and there was no evidence of a response bias with
regard to ¢, M = - 0.05, 95% CI [- 0.18, 0.08].

Discussion

The results of this experiment demonstrated that the ac-
ceptance of morph images as ID photographs was highly
image-dependent, revealing significant variation in their
success as fraudulent images. In addition, we found that
morph images typically resembled one of the individuals
featured in the image more than the other (see Fig. 3),
again resulting in large variation in their success. It is
unclear as to why this was the case, giving rise to an in-
teresting theoretical question: what causes a 50/50
morph image to equally resemble both individuals?

Previous research has shown that 50/50 morphs were
judged to better resemble the more distinctive of the
two individuals that were used to produce the morph
(Tanaka, Giles, Kremen, & Simon, 1998). In order to test
this idea, we collected ratings of distinctiveness for the
images of our 38 White models that formed the pairs in
Fig. 3. We found evidence suggesting that judges ac-
cepted the morph as a photo of the model more often
for the more distinctive model in the pair, #(17) = 0.26,
p =0.284 (see Experiment 3b in Additional file 1 for de-
tails). The small number of pairs in the current experi-
ment likely explains the non-significant effect and
prevents our drawing any strong conclusions, although
the moderate association is certainly in line with previ-
ous work (Tanaka et al., 1998). Further research might
investigate this relationship in more detail.

Finally, our results suggested that judges failed to
spontaneously notice that the morph images were in-
deed morphs (49% acceptance; see Table 2), although
after receiving information/instruction regarding these
types of images, detection was at levels above chance
performance but was still relatively low. It is worth not-
ing that 4’ in the current experiment (0.73) was some-
what higher than the sensitivities found in Experiments
1 and 2 (approximately 0.1-0.4). This may be due to the
length of time that judges spent studying the images or
models’ faces while interacting with the models (in com-
parison with those presented onscreen in the computer
tasks), or that the morph fraud/detection tips sheet
could be consulted while studying the images (versus the
onscreen images being presented after the tips screen).
The suggestion that detection may be higher in a live
matching context is an interesting one and may have
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important implications for real-world procedures if sup-
ported by further research.

In this and other live matching tasks, it might be the
case that participants feel more suspicious than in typ-
ical psychology experiments. When presented with a sin-
gle image and asked if it depicts the person in front of
them, participants may scrutinize the image more than
during a multiple-trial computer task, for instance. Of
course, these suspicions should be equally evident across
conditions and would be apparent in their calculated re-
sponse biases. However, this consideration is worth not-
ing when designing such tasks.

Experiment 4: Morph detection using
computational modeling

So far, we have shown that naive participants were poor
at detecting high-quality morph images and that provid-
ing training or tips aimed at improving performance re-
sulted in little or no benefit. In addition, we found that
morphs were accepted as ID photos often enough that
they may be feasible as tools for committing fraud.

If people are unable to detect relatively sophisticated
morphs at levels that are useful for real-world fraud pre-
vention, then perhaps computer software may represent
a better approach. Recent work has begun to investigate
this idea, typically utilizing state of the art computer
models (e.g. deep convolutional neural networks —
Raghavendra et al., 2017b). In this final experiment, we
implemented a simple computational model using min-
imal assumptions and standard image analysis tech-
niques. As such, we aimed to explore how a generic
simulation performed with our images, allowing us to
determine whether a basic computer model might out-
perform human morph detection.

Method

Materials

The images created for the above experiments were used
as training and test sets here. We combined the images
from the morph detection (60 individuals, 60 morphs)
and training tasks (20 individuals, 20 morphs) from Ex-
periment 1. To these, we added a subset of images used
in Experiment 3 (16 individuals, 16 morphs), allowing
the maximum number of images from this experiment
while avoiding the use of images with overlapping iden-
tities, i.e. no individuals that formed morphs and no
morphs that included individuals. This resulted in a total
of 96 individuals and 96 morphs, where no identities ap-
peared in both sets.

All images were cropped to 190 pixels wide x 285
pixels high by removing some of the background in
order to be compatible with InterFace processing soft-
ware (Kramer, Jenkins, & Burton, 2017).
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Model

We used linear discriminant analysis (LDA) to train our
model to group different images of the same type (indi-
viduals, morphs) together. This technique minimizes
intra-class differences while maximizing inter-class dif-
ferences and has been used previously to simulate famil-
iar face recognition (Kramer, Young, & Burton, 2018;
Kramer, Young, Day, & Burton, 2017). When classifying
images, it is common to have fewer sample vectors (im-
ages) than features (pixels). In such cases, LDA cannot
be carried out without first reducing the number of fea-
ture dimensions. One popular approach is to initially
subject the faces to principal components analysis
(PCA), resulting in a lower-dimensional description of
“eigenfaces,” which represent the variability in the image
set (e.g. Bekios-Calfa, Buenaposada, & Baumela, 2011).
Here, we adopted this PCA-based approach to dimen-
sion reduction.

All images were shape-standardized by morphing them
to a template derived from the average shape of the
training set (Burton, Miller, Bruce, Hancock, & Hender-
son, 2001; Craw, 1995). This standardization was based
on the alignment of 82 fiducial points for each image
(e.g. corners of eyes, corners of mouth, etc.; for technical
details, see Burton, Kramer, Ritchie, & Jenkins, 2016,
and for downloadable face processing software, see Kra-
mer, Jenkins, & Burton, 2017). Assignment of these fidu-
cial points was carried out using a standard semi-
automatic process requiring just five manually entered
landmarks (see Kramer, Young, et al., 2017, for details).
PCA was then computed on these normalized images.

In order to reduce the number of dimensions describ-
ing the resulting space without significant loss of vari-
ability, we retained the highest 67 components only
(which explained approximately 95% of the variance in
the image RGB information). The images’ projections on
these principal components were then entered into an
LDA, where the two classes represented individuals and
morphs. The result is a reshaped space comprising one
dimension (the number of classes minus 1).

Procedure

On each iteration of our simulation, we randomly se-
lected 86 individuals and 86 morphs to represent the
training set. The remaining 10 individuals and 10
morphs (approximately 10% of the total) were used as
novel, test images. We then ran the PCA + LDA proced-
ure without these test photos (i.e. with 172 training im-
ages). Next, we projected each untrained test image into
the resulting one-dimensional space.

We calculated the mean location along this dimension
of the 86 training individuals and, separately, the mean
location of the 86 training morphs. These two values
were used when classifying untrained images — each

(2019) 4:28

Page 11 of 15

novel image was labelled according to which of the two
points it fell closest to on the dimension. Finally, we cal-
culated percentage correct, along with d’ as before: Hit —
the image was a morph and was categorized as “morph”
by the model; and False alarm — the image was an indi-
vidual and was categorized as “morph” by the model.

We ran 100 iterations of the simulation, each time
randomly selecting images for the training and test sets.
For each iteration, percentage correct and d’ values were
calculated.

Results

Over 100 iterations, the performance of the model was
as follows: percentage correct, M = 68.4%, 95% CI [66.0,
70.9]; and d; M =1.01, 95% CI [0.88, 1.15]. Although im-
perfect, these values were higher than those found in the
previous experiments with human morph detection (see
Tables 1 and 2, and Additional file 1: Table S1). Indeed,
a direct comparison of the d’sensitivities for the best hu-
man performance (in Experiment 3) and those found
here showed a significant computer advantage, £(145) =
2.28, p = 0.024, Cohen’s d = 0.40.

Discussion

The results of this experiment demonstrated that a basic
computer model outperformed humans with regard to
morph detection. Given that the model was provided
with training images to “learn” from, we might consider
this to be comparable with our participants in Experi-
ments 1-3 who received morph training and/or tips re-
garding how to detect morph images. That the model
showed higher sensitivity to the detection of morphs
(see Fig. 4) suggests that computational techniques
might be better suited to this task, where image artefacts
indicative of morph creation (e.g. impossible lighting
and reflectance) may be present but imperceptible when
viewed by people. This supports the growing body of re-
search investigating the use of computational techniques
in morph detection (e.g. Seibold, Hilsmann, et al., 2018).

The current model was trained and tested using im-
ages with varying characteristics. The photos of individ-
uals (and hence the resulting morphs) showed
significant differences in brightness and other qualities
across the image sets used; this may have resulted in a
more robust “morph detector” since the model was
trained to classify images irrespective of these irrelevant
sources of variation. One might predict that further in-
creases in this type of variation by including morphs cre-
ated from many different photo sets would result in
additional performance improvements.

That a simple model, based on a PCA + LDA process
and using only RGB pixel values, performed with more
success than our participants is revealing. This demon-
strates that the necessary information was present in the
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Fig. 4 A comparison of all four experiments. A plot of sensitivity
data for the human detection of morphs for conditions where the
morph detection tips were provided beforehand (light gray), along
with the computer model's performance (dark gray). Error bars
represent 95% confidence intervals

images in order for detection to take place, but com-
puters were better suited to making use of this informa-
tion. Here, we explored a basic “proof of concept” model
with our images, while more advanced computational
techniques are beginning to demonstrate impressively
high levels of detection using a variety of approaches
(e.g. Seibold, Samek, et al., 2018).

General discussion

In the current set of experiments, we investigated hu-
man performance in morph acceptance and detection
tasks. Although recent work has provided some initial
insights into this field (Robertson et al., 2017, 2018), we
have argued that the use of unsophisticated morph im-
ages failed to quantify the viability of real-world morphs
in everyday fraud. Here, we have demonstrated that
people were poor when asked to detect high-quality
morphs and that training paradigms of the type previ-
ously implemented did not produce significant improve-
ments (Experiments 1 and 2). In a live matching
scenario, morphs were often accepted as ID images and,
in many instances, judges failed to notice that the morph
images were indeed morphs, either spontaneously or
after receiving tips/instruction (Experiment 3). Finally, a
relatively basic computational model was able to detect
our morphs at levels higher than those found with our
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human participants, suggesting a more suitable alterna-
tive for fraud prevention (Experiment 4).

Previous work suggested that morph detection was dif-
ficult, but that providing a tips screen with an example
morph, along with suggestions for how to identify them,
resulted in significant improvements (Robertson et al.,
2018). In contrast, performance with our higher-quality
morphs found even lower levels of detection and no
benefit from tips or training (see Fig. 2). Importantly, the
tips we provided were specifically tailored to our morphs
in order to give participants the opportunity to gain use-
ful knowledge that might help with detection. It is worth
noting that, had we used the tips provided by the previ-
ous researchers, participants would have been searching
for artefacts and signs that were never present. In reality,
as morphs become increasingly sophisticated, there will
inevitably come a point at which there are no visible
signs (at least, to humans) betraying the image as a
morph. Indeed, we may already be reaching that point
with our images, given the lack of a tips/training benefit.
Therefore, it seems reasonable to assume that no
method of training will provide human viewers with the
ability to detect morphs currently or, at the very least, in
the near future.

Using a forced choice task with chance performance at
50%, we found that morph detection was no better than
this level. This result highlights the problematic nature
of detecting this type of fraud for professionals when is-
suing documents or making comparisons with morph
images. Although Experiment 2 provided limited evi-
dence that a tips screen improved performance, such in-
creases were very small and the resulting sensitivity (4’ =
0.38, the highest found across Experiments 1 and 2)
could not be considered useful or effective if applied to a
national security context.

Importantly, for face morphing attacks to be of signifi-
cant risk to security, detection is only half of the story.
Morph images must also look sufficiently like the person
using the document in order for them to be of practical
value — a morph that looks like a real photo but does
not resemble the person carrying it will pose no threat.
Previous work suggested that 50/50 morphs were ac-
cepted as depicting the same person as the comparison
image on 68% of trials (Robertson et al., 2017). Here, in
a live matching scenario, we found that our higher-
quality morphs were accepted on 49% of occasions. We
suggest several possibilities for why our morphs were
seemingly less successful. First, Robertson et al. (2017)
selected identities from a substantially larger initial set,
which may have resulted in pairs of faces that more
closely resembled each other. Here, as best we could, we
limited ourselves to forming pairs from only 48 iden-
tities. Second, live face matching (used here) may allow
judges to access additional information regarding face
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variability, provided by the brief initial conversation with
the models (mirroring the informal interviews conducted
by border control officers). In contrast, comparison with
a second photograph (Robertson et al., 2017) will be in-
herently more limiting in the information it conveys.
Third, participants in a 49-trial computer task (Robert-
son et al., 2017) may be less conscientious in their re-
sponses. Here, each judge only considered one image/
comparison and so we might predict that more thought
went into their decision. Fourth, it appears that Robert-
son et al. only investigated acceptance rates for one
identity from each pairing. If their sample of identities
happened to consist of those that better resembled the
morphs they were contained within (in comparison with
the second identities not featured) then this would result
in inflated estimates. In Experiment 3, we provided
strong evidence that in almost every pair, the morph re-
sembled one identity more than the other (see Fig. 3). If
we only considered responses for the identity in each
pair that saw higher acceptance rates when asked if the
image was a photo of the model, our mean level would
increase to 62%.

Interestingly, we found that accuracy in detecting
morphs was notably higher in the live matching context
in comparison with the two computer tasks (see Fig. 4).
This may be due to the lower-quality of the morphs
used, given that lighting conditions were not controlled
when photographing the individuals in Experiment 3. As
such, the resulting morphs may have looked more artifi-
cial when presented with dark/light artefacts (see Fig. 1,
bottom row). In addition, and as mentioned above,
judges were exposed to information regarding face vari-
ability that is absent in photographs. At the point of
presentation, border control officers purposely converse
with travelers while checking their documents. Although
this may be primarily to observe any suspicious behav-
iors, the process also provides additional face informa-
tion. Therefore, when attempting to detect morphs in a
face matching situation, live comparisons better repre-
sent the typical context in which professionals find
themselves and are also ones in which performance
levels may be optimal (although still error-prone).

Perhaps surprisingly, we found that morphs typically
resembled one identity contained within them more
than the other, as implied by acceptance rates for the
two models presenting each morph image. At first con-
sideration, such patterns might be predicted by categor-
ical perception studies, where presenting a continuum of
images morphing from one face to another will result in
a perceptual boundary — either side of this boundary,
each of the identities is perceived despite the continuous
nature of the images (e.g. Beale & Keil, 1995). However,
this result may be limited to familiar faces or those that
have been explicitly categorized beforehand (Kikutani,
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Roberson, & Hanley, 2010). Importantly, when present-
ing a morph to a stranger, no prior knowledge of either
identity exists. Instead, they must simply decide whether
the morph sufficiently resembles the photo/live face or
not. That one identity clearly “dominates” within the
morph image is a finding predicted by previous work
demonstrating that a 50/50 morph better resembled the
more distinctive identity (Tanaka et al, 1998). Indeed,
some preliminary data (see Experiment 3b in Additional
file 1) support this idea.

Our human performance results demonstrate that
there are many instances in which morphs could prove
viable for fraudsters, primarily because people were poor
at detecting morph images and training provided little
or no benefit. Much of the research on face morphing
attacks has been focused on computational methods of
detection (e.g. Seibold, Hilsmann, et al., 2018), with the
implication that developing effective software is the pre-
ferred method of tackling this issue. Here, we showed
that even a simple computational model, based upon
PCA and LDA, was more successful than our human
participants in detecting morphs. As these techniques
become increasingly advanced (e.g. deep convolutional
neural networks — Raghavendra et al., 2017b), we predict
that success rates will supersede human abilities. Prob-
lematically, at least in many security contexts, final deci-
sions are often made by human operators, and as a
result, face morphing attacks may go undetected. As
Ferrara et al. (2014) note, the best solution is for govern-
ment officials to directly acquire ID photos at the place
of issue, preventing fraudsters from submitting pre-
made morph images for consideration. However, this
does not prevent other methods of fraud from taking
place (e.g. the use of hyper-realistic silicone masks; San-
ders et al., 2017).

Conclusions

Across four experiments, we have investigated human
and computer performance with high-quality face
morphs. Our results show that morph detection is
highly error-prone and that training does not provide
a useful solution to this problem. Instead, computer
algorithms may be a better method for minimizing
the frequency with which face morphing attacks are
missed. Interestingly, morphs typically resemble one
individual in the pair to a greater extent than the
other, suggesting a possible limitation for fraudsters
who plan to use such techniques. The results of
these experiments have important implications for
real-world national security measures and highlight
that it is essential for researchers to consider the
quality of morphs that are likely to be employed by
fraudsters in real-world settings.
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Endnotes

"We have presented images from Experiment 3 as we
did not have permission to publish the images used in
Experiments 1 and 2.

*We chose to use this wording rather than “Which of
these images have been digitally manipulated?” (Robert-
son et al., 2018) because we felt that this was a clearer
instruction. Importantly, all our images and those used
by Robertson and colleagues were digitally manipulated
in that all had been cropped, placed on a uniform back-
ground, etc. Therefore, our rewording makes it specific-
ally applicable to the detection of morphs and not these
other manipulations.

*We were unsure as to whether participants would
realize, based on the wording of the question, that they
could enter between zero and ten letters as their re-
sponse. However, a pilot study of the task with a differ-
ent sample of five people revealed a response range of
0-5 letters per trial. As such, we were confident that
participants would not misinterpret the question.

*After excluding all non-White models and judges,
these accuracies remained virtually unchanged: match
M = 83.7%, mismatch M = 83.9%.

Additional file

Additional file 1: Additional information regarding image creation and
analysis, as well as Experiment 3b investigating distinctiveness. (DOCX 28
kb)
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