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Abstract

The ability to predict what is going to happen in the near future is integral for daily functioning. Previous research
suggests that predictability varies over time, with increases in prediction error at those moments that people
perceive as boundaries between meaningful events. These moments also tend to be points of rapid change in the
environment. Eye tracking provides a method for noninterruptive measurement of prediction as participants watch
a movie of an actor performing a series of actions. In two studies, we used eye tracking to study the time course of
prediction around event boundaries. In both studies, viewers looked at objects that were about to be touched by
the actor shortly before the objects were contacted, demonstrating predictive looking. However, this behavior was
modulated by event boundaries: looks to to-be-contacted objects near event boundaries were less likely to be early
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and more likely to be late compared to looks to objects contacted within events. This result is consistent with
theories proposing that event segmentation results from transient increases in prediction error.

Significance statement

The ability to predict what will happen in the near fu-
ture is integral for adaptive functioning, and although
there has been extensive research on predictive process-
ing, the dynamics of prediction at the second by second
level during the perception of naturalistic activity has
never been explored. The current studies therefore de-
scribe results from a novel task, the Predictive Looking
at Action Task (PLAT), that can be used to investigate
the dynamics of predictive processing. Demonstrating
the utility of this task to investigate predictive process-
ing, it was applied to study the predictions made by
Event Segmentation Theory, which suggests that people
experience event boundaries at times of change and un-
predictability in the environment. The results of these
studies are of interest to communities investigating the
dynamic comprehension and segmentation of naturalis-
tic events and to communities studying visual perception
of naturalistic activity.
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Introduction
The ability to anticipate what is going to happen in the
near future is essential for survival. Prey animals must
make predictions about the locations of their predators in
order to avoid being eaten. Predators must anticipate the
location of their prey so as not to starve. Predictive pro-
cessing has been shown to play a central role in functions
ranging from object recognition (e.g., Bar et al.,, 2006) to
action guidance (e.g, Grush, 2004) to deliberative
decision-making (e.g., Doya, 2008). Across these domains,
humans and other organisms form representations that
correspond to what is likely to happen in the near future.

One feature of everyday activity is that predictability
varies over time such that at some times predictions are
accurate and prediction error is low, whereas at other
times prediction errors can spike suddenly. For example,
when cooking a hotdog on a fire, it is easy to predict
what is going to happen for the first few minutes: the
hotdog will slowly become warmer and warmer as it be-
gins to cook. However, at a certain point, the hotdog will
quickly begin to turn brown, and it is difficult to predict
exactly when it will go from browning to burning or
even catching on fire.

Contemporary models have proposed accounts of how
this variability in predictability is used by the perceptual
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system to enable adaptive processing of sequences of hu-
man activity. One recent theory, Event Segmentation
Theory (EST; Zacks, Speer, Swallow, Braver, & Reynolds,
2007), describes the temporal dynamics of predictive
processing in everyday event comprehension. EST pro-
poses that people maintain working memory representa-
tions of the current event, event models, that inform
perceptual predictions about future activity. These pre-
dictions are compared with sensory inputs from the en-
vironment to calculate a prediction error—the difference
between the prediction and what actually occurs. When
prediction error rises transiently, the working memory
representation is updated to better reflect the current
environment. In naturalistic activity, prediction error in-
creases tend to happen when features in the environ-
ment are changing rapidly. For example, when watching
someone prepare for a party, people would experience
low levels of prediction error as the actor walks around
the table and sets plates in front of each seat, because it
is easy to predict that the actor is going to continue set-
ting the table. However, when the actor finishes setting
the table, there are many possible actions in which the
actor could engage, and prediction error would increase
as the actor switches to blowing up balloons. This in-
crease in prediction error would cause updating of
viewers” event models to better represent the actor’s new
goal of blowing up the balloons, causing people to ex-
perience a subjective event boundary. Throughout this
process, predictions would continue to be made based
on each new piece of information gathered from the en-
vironment. As the actor continues to blow up balloons,
prediction error would decrease and the cycle would
begin again.

EST relates the computational mechanism of predic-
tion error-based updating to the subjective experience of
events in a sequential stream of behavior. When an
event model is updated, the perceiver experiences that
one event has ended and another has begun. The sub-
jective experience of event boundaries can be studied
using a unitization task, in which participants are asked
to press a button whenever they believe one meaningful
activity has ended and another has begun (Newtson,
1973). Using boundaries defined with this technique,
Zacks, Kurby, Eisenberg, and Haroutunian (2011) tested
the hypothesis that event boundaries correspond to
points of high prediction error. They asked participants
to watch movies of an actor doing everyday activities
(i.e., washing a car, putting up a tent). These movies
were paused periodically and participants made predic-
tions about what would occur five seconds later in the
movies. The movies were then restarted and participants
received feedback about the accuracy of their predictions
by continuing to watch the movies. Some of the pauses
occurred immediately before a boundary between
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activities such that the to-be-predicted activity was part
of a new event, and some of the pauses occurred within
activities such that the to-be-predicted activity was part
of the current event. The authors found that predictions
were less accurate when predictions were made across
event boundaries than when predictions were made
within events. Further, a functional MRI experiment de-
scribed in the same paper demonstrated that structures
in the midbrain associated with signaling prediction
error were more activated when participants attempted
to predict across an event boundary. These results pro-
vide evidence that prediction failures are associated with
the perception of event boundaries. However, this study
was limited, first, in that comprehension was stopped re-
peatedly to administer the prediction task and, second,
in that it provided very little information about the tem-
poral dynamics of prediction error.

Other relevant data come from studies using a narra-
tive reading paradigm (e.g., Speer & Zacks, 2005; Speer,
Zacks, & Reynolds, 2007; Zacks, Speer, & Reynolds,
2009b). In these studies, event boundaries tended to be
identified at points when many features of the situation
were changing, consistent with the suggestion that in
naturalistic activity periods of change tend to produce
prediction errors. Participants’ reading times slowed at
event boundaries, and when readers were asked to rate
the predictability of each clause they rated event bound-
aries as less predictable. Pettijohn and Radvansky (2016)
showed that editing the text to make a feature change
predictable eliminated slowing in reading time, consist-
ent with the idea that event boundaries are associated
with spikes in prediction error.

For the visual comprehension of naturalistic everyday
activities, eye tracking provides a promising method for
studying the time course of predictability. Eye tracking
has been used to study predictive looking behavior in
people ranging from infants to adults. For example,
Haith and McCarty (1990) investigated infants’ anticipa-
tory looks to stimuli that alternated between the left and
right of the screen and found that infants made reliable
anticipatory looks to the locations where stimuli were
about to appear. In a similar study, Romberg and Saffran
(2013) found that infants made anticipatory eye move-
ments to locations where stimuli were probabilistically
expected to appear. In addition, Hunnius and Bekkering
(2010) studied predictive looking in infants using a para-
digm in which the infants watched an actor use an ob-
ject multiple times while the infants’ eyes were tracked
using an eye tracker. On some trials, the actor used the
object in a typical fashion (e.g., bringing a hairbrush to
the head) and, on other trials, the actor used the object
in an atypical fashion (e.g., bringing a hairbrush to the
mouth). The authors found that infants predictively
looked at the location where the object was typically
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used, even when the actor brought the object to the
atypical location, meaning that the infants were not
solely using motion information to make these predic-
tions. Predictive looking has also been studied in adults.
Flanagan and Johansson (2003), for example, had partici-
pants watch an actor move three blocks from one side
of the table to the other while their eyes were tracked
using an eye tracker. The authors found that participants
started looking at the location where the blocks would
be moved before the blocks arrived there, suggesting
that participants were predicting the block movements.
Similarly, Vig, Dorr, Martinez, and Barth (2011) found
that when adults watched brief naturalistic scenes, eye
movements to salient stimuli were nearly instantaneous,
despite the fact that controlled laboratory studies have
found that it takes an average of 200 ms to saccade to
and fixate on a newly presented stimulus. The authors
suggest that participants made predictive eye movements
to the locations where salient information would soon
be presented.

Predictive looking has also been studied extensively
in the context of sports. For example, Hayhoe,
McKinney, Chajka, and Pelz (2012) studied predictive
eye movements as participants played squash. They
found that participants made anticipatory eye move-
ments ahead of the ball’s position at multiple time
points throughout the ball’s flight toward them, rather
than simply tracking the ball's actual location. In
addition, Diaz, Cooper, Rothkopf, and Hayhoe (2013)
used a virtual racquetball task and found that partici-
pants made predictive eye movements to locations
above where the ball would bounce and varied their
predictive fixations based on the ball's bounce speed
and elasticity. Similar predictive looking to future ball
bounce locations were also reported when participants
watched recorded tennis matches (Henderson, 2017).

These studies provide strong evidence that people
make predictive eye movements while viewing naturalis-
tic activity. However, no previous studies have tested
whether predictive looking varies as a function of event
structure. Therefore, in a series of two studies that were
designed as close replications of one another, we used a
new anticipatory looking task, called the Predictive
Looking at Action Task (PLAT), to investigate the time
course of predictability. For this task, participants’ eyes
were tracked as they watched movies of an actor per-
forming an everyday activity that consisted of sequences
of goal-directed actions. Participants were not told to
engage in any explicit task other than paying attention
to the movie. Prediction was measured based on the
amount of time participants spent looking at the object
the actor was about to touch during the three seconds
before the actor actually contacted the object. This task
therefore allowed predictive looking to be time locked to
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object contact and made it possible to analyze the time
course of predictive looking. We hypothesized that look-
ing to the to-be-contacted object would increase as time
to object contact approached, providing an index of pre-
dictive looking.

After watching each of the movies once, participants
segmented the movies into meaningful units of activity
twice: once to identify the largest meaningful units of ac-
tivity (coarse events) within each movie and once to
identify the smallest meaningful units of activity (fine
events) within each movie. The locations at which par-
ticipants identified event boundaries were time-locked to
their predictive looking behavior during the passive
watching condition.

We hypothesized that if prediction error is higher near
event boundaries, then our index of predictive looking
would be effective; specifically, we predicted that looks
to the target object in the interval before contact would
be less frequent or would tend to be later (closer to ob-
ject contact) when objects were contacted near event
boundaries than when objects were contacted during the
middles of events. This amounts to predicting a main ef-
fect on looks to the target object (an overall reduction),
an interaction (looks to the target object shifting to be
relatively later in time), or both.

Materials and methods

The present data come from a larger study investigating
oculomotor control in naturalistic event viewing. A pre-
vious report (Eisenberg & Zacks, 2016) characterized the
effect of event boundaries on the size and frequency of
eye movements, and on pupil diameter. All of the ana-
lyses reported here are new.

Participants

Participants for Study 1 were recruited from the Wash-
ington University subject pool and were either given
course credit or paid $10 for their time. Thirty-two
people participated in the first study, but four were
dropped from all analyses because of inability to cali-
brate the eye tracker (2), self-reported lazy eye (1), and
self-withdrawal from the study (1). Therefore, data from
28 participants were included in the analyses reported
here (50% female, age range 18—25 years, mean age 20.6
years). Participants for the second study were recruited
from the Volunteer for Health participant registry, which
is a subject pool maintained by the Washington Univer-
sity School of Medicine. Thirty-two participants finished
Study 2, but seven were dropped from all analyses be-
cause of inability to calibrate the eye tracker (5), failure
to follow instructions (1), and technical error leading to
loss of data. Therefore, data from 25 participants were
included in the analyses for the study (68% female, age
range 22-50 years, mean age 34 years). The Washington
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University Human Research Protection Office approved
both studies.

Materials

Three movies of actors performing everyday activities
were used in each study. The three movies used in the
first study were an actor making copies and putting to-
gether a binder (349 s), an actor sweeping the floor (329
s), and an actor changing a car tire (342 s). The movies
for the second study were an actor making breakfast
(329s), an actor preparing for a party (376s), and an
actor planting plants (354 s). All six of these movies were
filmed from a fixed, head-height perspective, with no
pan or zoom.

Self-report measure

Before beginning the eye-tracking tasks, participants com-
pleted a demographics questionnaire that included age,
gender, handedness, ethnicity, foreign language know-
ledge, occupational history, educational history, marital
status, health status, and level of typical physical activity.

Behavioral and oculometric measures
Participants in both studies first watched three movies
without any explicit task other than to pay close atten-
tion to the movies. After watching all three movies, par-
ticipants watched the three movies two more times.
During these latter two viewings, they were asked to
press a button whenever they believed that one mean-
ingful unit of activity had ended and another had begun.
On one viewing, they were asked to identify the smallest
units that were natural and meaningful to them (fine
grain segmentation); during the other repetition, they
were instructed to identify the largest units that were
natural and meaningful (coarse gain segmentation). For
example, a typical participant might have identified a
coarse unit that could be described as “making toast”,
and fine units within that coarse unit that could be de-
scribed as “opening a bag of bread”, “putting bread in
the toaster”, and “turning on the toaster”. (Participants
were not given any such descriptions or specific instruc-
tions as to what should constitute a fine or coarse unit,
beyond those given above.) The order of fine and coarse
segmentation was counterbalanced across participants.
In addition, participants were not told anything about
the event segmentation task until after they had finished
watching all three movies passively in order to ensure
that participants would not covertly button press in the
passive condition. Participants’ consistency in identifying
event boundaries was similar to that seen in other stud-
ies of event segmentation (see Additional file 1 for a de-
scription of this analysis and the results).

Throughout all of these tasks, gaze location from the
participants’ right eye was tracked using an infrared eye
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tracker (EyeLink 1000; SR Research Ltd, Mississauga,
ON, Canada) that sampled at 1000 Hz. The eye tracker
camera was mounted on the SR Research Desktop
Mount. Participants were instructed to keep their heads
in an SR Research chin/forehead reset throughout all of
the tasks to minimize head movement during the tasks.
The camera was positioned 52 cm from the top of the
forehead rest. The movies were presented on a 19 in (74
cm) monitor (1400 x 900 resolution, viewing distance of
58 cm from the forehead rest, viewing angle of 38.6°).
Data were exported from Data Viewer software (SR
Research Ltd, Mississauga, ON, Canada) into text files,
which were then imported into R (R Core Team, 2014)
for analysis.

Calibration of the eye tracker was conducted before
beginning the study task. Participants were instructed to
look at each of five to nine dots presented serially across
the participant’s central and peripheral visual field. Fol-
lowing calibration, the measurements were validated by
having the participants look at each of these nine dots
again as they appeared on the screen. This validation of
calibration was considered good when there was an aver-
age error of 0.50 degrees of visual angle or less and
when the maximum error for any given dot was 1.00 de-
gree or less. Calibration and validation were repeated
until errors were under or very close to these cut-offs.
For Study 1, the mean average error was 0.35 degrees
(range = 0.18-0.54), and the mean of the maximum error
was 0.73 (range = 0.43-1.0). For Study 2, the mean aver-
age error was 0.39 (range = 0.2-0.69), and the mean of
the maximum error was 0.73 (range = 0.37-1.04).

Data analysis

Time course of anticipatory looking

Predictive looking was quantified by determining the
amount of time participants spent looking at the objects
the actor was about to touch over a series of time bins
spanning the 3000 ms before contact. First, for each
movie, an experimenter identified all of the time points
at which the actor came into contact with an object.
Dynamic interest areas capturing the 3000 ms before
contact through 1000 ms after contact were then placed
around each contacted object. Interest areas were placed
using the following rules: (1) all interest areas were rect-
angular in shape; (2) no interest areas were allowed to
overlap in time and space; (3) if potential interest areas
overlapped, only the first interest area was kept; (4) if
the actor contacted an object by touching it with an-
other object, the object in direct contact with the actor
was considered the object of interest (e.g., if the actor
put a bowl on the counter, the bowl was considered the
object of interest); (5) only objects that were fully onsc-
reen when contacted were considered objects of interest;
(6) if the longest dimension of an object was smaller
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than 105 pixels (visual angle of 2.9°), the interest area
was created around the entire object, and if the longest
dimension of an object was larger than 105 pixels, the
interest area was created around the part of the object
that the actor contacted (e.g., the handle of a large re-
frigerator); and (7) for objects smaller than 48 pixels
(visual angle of 1.3°) on any side, interest areas were cre-
ated with a minimum size of 48 pixels per side (see Fig. 1
for an example movie frame with an interest area
highlighted). For the movies in the first study, there were
51, 45, and 29 dynamic interest areas for the binder,
sweeping, and tire movies, respectively. For the movies
in the second study, there were 49, 48, and 34 dynamic
interest areas for the breakfast, party, and plants movie,
respectively.

Once the dynamic interest areas were identified for
each movie, the eye tracking data from the three seconds
before contact until one second after contact were di-
vided into six 500 ms time bins. Then, we calculated for
each subject how long their gaze fell within the interest
area for each of the time bins. This metric was calcu-
lated separately for each time bin and was not a cumula-
tive measure of looking over time. This variable was the
dependent measure in the reported mixed-effects model
analyses. The main analyses examined the three seconds
before object contact, but figures displaying the time
course of looking during the second after contact are in-
cluded in Additional file 1: Figures S1 and S2. To deter-
mine how looks to the target object varied as time to
object contact approached, the Ime4 and ImerTest pack-
ages in R (Bates, Maechler, Bolker, & Walker, 2015;
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Kuznetsova, Brockhoff, & Christensen, 2014) were used
to compare nested mixed-effects models to determine
whether including the fixed effect of time bin explained
significant additional variance in the dependent variable.
The effects package in R (Fox, 2003) was used to esti-
mate the fixed effects for plotting and to calculate confi-
dence intervals for the fixed effects in the linear mixed
effects models.

Time course of predictive looking around event boundaries
To test the effect of event boundaries on predictive look-
ing, we coded whether each object contact happened
within 3000 ms of a coarse boundary or within 3000 ms
of a fine boundary. This was done separately for each
participant, based on the segmentation data from their
subsequent viewing of the movie. (Only the initial view-
ing eye tracking data were analyzed to exclude contam-
ination from the cognitive operations necessary for the
segmentation task.) Because the locations of event
boundaries were identified individually by each partici-
pant, object contact could be near an event boundary for
some participants but not for other participants. In
addition, it was possible for there to be multiple event
boundaries within the time window around object con-
tact. An example time course from a randomly chosen
participant is displayed in Fig. 2.

Mixed-effects models were analyzed to determine
whether being near a fine or coarse event boundary re-
duced the overall amount of looking to the target object
(a main effect of event boundary condition) or shifted
when looks to the target object occurred (an interaction

3 seconds
before contact

contact

Fig. 1 Three example frames taken from one of the movies used in Study 2. The first frame is taken from around three seconds before the actor
contacted the chandelier and the third frame is taken from around the time the actor contacted the chandelier. The yellow box represents the
interest area, which was drawn around the chandelier—the object the actor was about to contact in order to hang a streamer. The purple dot
represents the gaze location of one participant. Here, the participant looked at the chandelier before the actor contacted it. (Participants did not
see the yellow box or their own gaze location while performing the task)
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Fig. 2 The time course of one movie for a randomly chosen participant from Study 2. The x-axis displays the time in the movie in seconds. The
blue and red lines depict fine and coarse boundaries, respectively. The dark green lines are the times of object contact. The light green shading
depicts the 3000-ms interest period during which looking was measured. The inset zooms in on 40s in the same movie to better show the
relationships between event boundaries and object contacts. As is evident from this time course, it was possible for there to be multiple fine and
course event boundaries during the three seconds before object contact. In addition, it was possible for there to be only fine, only coarse, or
both fine and coarse boundaries within the three seconds before a given object contact

between event boundary condition and time relative to
contact). (If the temporal window before object contact
were sufficiently large, one would expect no effect for
the earliest timepoints, before predictive looking is pos-
sible, with the effect building as time to contact
approached.) Again, the effects package in R (Fox, 2003)
was used to estimate fixed effects and confidence inter-
vals. For Study 1, 4.1% of the interest areas were classi-
fied as being near a coarse event boundary, 41.1% were
classified as being near a fine event boundary, and 15.2%
were classified as being near both a coarse and a fine
boundary. For Study 2, 5.5% were classified as being near
a coarse event boundary, 34.8% were classified as being
near a fine event boundary, and 17.6% were classified as
being near both a coarse and a fine boundary. Follow-up
analyses were also conducted to control for the size of

the interest area drawn around each contacted object in
order to ensure that interest area size did not drive the
event boundary effects.

Results

Time course of predictability

Looking to the target object increased over the three
seconds before contact. Specifically, for both studies,
there was a main effect of time bin (Study 1, x* = 2183.1,
df=5, p<0.001; study 2, x*=1858, df=5, p<0.001),
suggesting that looks to target objects increased as ob-
ject contact approached. Figure 3 displays the amount of
time participants spent looking at target objects within
each of the six 500-ms bins during the three seconds be-
fore the actor contacted the target object.
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Fig. 3 The panel on the left displays the results of the linear mixed effects model for the first study. The y-axis displays the beta values
representing the amount of time participants spent looking at the target object during each of the six 500-ms bins. The panel on the right
displays the same information for the second study. The x-axis for both figures displays the six bins, where the leftmost bin on each x-axis
represents the time farthest away from contact and the rightmost bin represents the time closest to contact. Error bars depict 95%
confidence intervals

Time course of predictability around event boundaries

To investigate the time course of predictability around
event boundaries, mixed-effects models were tested with
time bin and boundary type (within events, fine bound-
ary, coarse boundary, both fine, and coarse boundaries)
as fixed effects and item, movie, and subject as random
effects. For both studies, a model with an interaction
between time bin and boundary type fit the data
significantly better than a model with only the main
effects (Study 1, AIC = 259,606 vs AIC = 259,602, x* = 33.9,

df = 15, p = 0.004; Study 2, AIC = 245,626 vs AIC = 245,630,
X> =254, df=15, p=0.04). For both studies, there was a
significant main effect of bin (Study 1, F=233.72, df
=5, p < 0.001; Study 2, F=211.75, df=5, p<0.001),
and a significant interaction between time bin and
boundary type (Study 1, F=2.26, df=15, p=0.004;
Study 2, F=1.69, df=15, p=0.04). The form of the
interaction is illustrated in Figs. 4 and 5: for objects
contacted in the middles of events participants looked
to the object relatively early, whereas for objects
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Fig. 4 The panel on the left displays the results of the linear mixed effects model for the first study. The y-axis displays the beta values
representing the amount of time participants spent looking at the target object during each of the six 500-ms bins. The panel on the right
displays the same information for the second study. The x-axis for both figures displays the six bins, where the leftmost bin on each x-axis
represents the time farthest away from contact and the rightmost bin represents the time closest to contact. Each colored line represents the
amount of time participants spent looking at the target object for each boundary type. Error bars depict 95% confidence intervals calculated
based on between-subjects effects
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Fig. 5 The panel on the left displays the results of the linear mixed effects model for the first study. The y-axis displays the beta values
representing the amount of time participants spent looking at the target object during each of the six 500-ms bins. The panel on the right
displays the same information for the second study. The x-axis for both figures displays the six bins, where the leftmost bin on each x-axis
represents the time farthest away from contact and the rightmost bin represents the time closest to contact. The red line displays predictive
looking collapsed across boundary types (fine, coarse, both fine and coarse). The blue line displays predictive looking when there were no event
boundaries nearby (within events). Error bars depict 95% confidence intervals calculated based on between-subjects effects

-

contacted near event boundaries they tended to look
more just before object contact. The main effect of
boundary type was not significant (Study 1, F=0.95,
df =3, p=0.42; Study 2, F=1.38, df =3, p=0.25).

To determine whether boundary types differed signifi-
cantly from one another, three nested models were tested: a
null model containing a binary variable coding whether there
was an event boundary present or not, a model with this bin-
ary variable and a variable coding for the effect of fine
boundaries, and a model adding a variable coding for the
effect of coarse boundaries. All three models also in-
cluded interaction terms coding for the interaction of
time point and boundary type. None of these models
were significantly different from one another (Study
1, largest x*>=12.86, df=12, p=0.38; Study 2, largest
x> =13.41, df=12, p=0.34)." Therefore, all three
boundary conditions (fine, coarse, and both fine and
coarse) were collapsed into a single boundary variable, as
depicted in Fig. 4. For both studies, a model with an
interaction between time bin and boundary type fit the data
better than a model with only the main effects (Study 1, AIC
=259,605 vs 259,591, x°=23.7, df=5, p<0.001; Study 2,
AIC = 245,624 vs 245,620, x> = 14.6, df =5, p = 0.01). There
was a significant main effect of time bin (Study 1, F = 422.05,
df =5, p<0.001; Study 2, F=370.82, df=5, p <0.001), and
again there was a significant interaction between time bin
and boundary type for both studies (Study 1, F =4.75, df =5,
p<0.001; Study 2, F=2.92, df=5, p=0.01). The main
effect of boundary was again not significant (Study 1,
F=0.13,df=1, p=0.72; Study 2, F=1.50, df = 1, p = 0.22).

To assess which, if any, individual time points had signifi-
cant differences between the boundary and within-event

conditions, we fitted mixed-effects models testing the dif-
ference for each time point. None of these were significant
(Study 1, largest F =3.03, p = 0.08; Study 2, largest F = 1.04,
p=031).

Follow-up analyses found that the size of interest
areas differed significantly between boundary and
within-event conditions for Study 1, but not for Study 2
(Study 1, Within = 5470.9 pixels, sd = 2631.5, Boundary
=5731.5 pixels, sd =2552.3, t = - 7.1, p < 0.001; Study 2,
Within = 3877.5 pixels, sd =2882.8, Boundary = 3864.7
pixels, sd =2632.6, £=0.31, p =0.75). Therefore, to ensure
that interest area size did not drive the event boundary ef-
fects, mixed-effects models that controlled for the size of
each interest area were tested. The same pattern of results
as reported above was found for both studies. There were
main effects of interest area size (Study 1, F =17.56, df =1,
p<0.001; Study 2, F=27.17, df =1, p<0.001) and of time
point (F=422.05, df=5, p<0.001; Study 2, F =370.82,
df=5, p<0.001), and there was a significant
interaction of time point and boundary type (Study 1,
F=4.75, df=5, p<0.001; Study 2, F=2.92, df =5, p = 0.01).
The main effect of boundary was not significant for
either study (Study 1, F=0.10, df=1, p=0.76; Study
2, F=1.55, df=1, p=0.21).

In sum, both experiments showed an interaction be-
tween time and boundary condition, such that around
event boundaries compared to within events, partici-
pants looked less at the target objects early and looked
more during the 500 ms before object contact. There
was no overall reduction in looking to the target object.
In other words, event boundaries were associated with a
shift in looking such that looks to the target location
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occurred closer to the point at which the object
would be contacted. There was no evidence that
coarse and fine boundaries differed from each other,
and in neither experiment could the effect be statisti-
cally localized to any individual time points. In
addition, these effects held even after controlling for
the size of the interest areas.

Discussion

The current studies introduce the PLAT as a tool for in-
vestigating the time course of predictive looking and
provide the first demonstration of the dynamics of pre-
dictive looking during viewing of a naturalistic sequence
of activities. In both studies, the amount of time partici-
pants spent looking at a target object increased as the
actor came closer to contacting the object. This result
provides validation that this looking behavior can be
used as a noninvasive measure of prediction during on-
going comprehension.

After determining that the PLAT could be used to inves-
tigate predictive processing, it was used to study the dy-
namics of predictability around event boundaries. In both
studies, the amount of time participants spent looking at
the object the actor was about to contact increased pro-
gressively during the three seconds before contact. In
addition, there was a significant interaction such that
looks to the target object happened later around event
boundaries than within events; in other words, eye move-
ments were less anticipatory of the object contact to
come. All of the results replicated across the two studies,
providing strong evidence for these effects.

Our interpretation of this interaction is that in the
middle of an event it is easier to predict what will hap-
pen two to three seconds ahead, so viewers’ eyes are
somewhat likely to jump ahead to the to-be-contacted
object. For example, in Fig. 1, once the actor steps on
the ladder and reaches up toward the chandelier with
the streamer in his hand, it is fairly clear which object
the actor is about to touch because there are no other
objects nearby. When this happens, their eye may have
moved on by the time the actor’s hand actually reaches
the object, leading to decreased looking times right be-
fore contact. In contrast, near an event boundary it is
more difficult to predict two to three seconds ahead, so
the eye is more likely to reach the object being manipu-
lated just before the actor’s hand arrives, leading to in-
creased looking times right before contact. These effects
are not huge but they appear robust.

The two studies described here were purposely de-
signed as close replications of one another in order to
determine the reproducibility of the results. However,
while the design of the studies was nearly identical, the
populations and movies used in the studies differed. In
the first study, participants were undergraduates
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recruited from the university’s participant pool, whereas
in the second study, the participants were recruited from
the general population of St. Louis and included a much
more diverse age range. In addition, completely different
movies were used in the two studies to ensure that the
results were not specific to particular sequences of nat-
uralistic activity, but instead were generalizable to other
sequences of actions. The pattern of results from the
two studies was almost identical, providing strong evi-
dence for the findings reported here.

These results, and this interpretation, are consistent
with previous studies investigating prediction around
event boundaries using explicit measures. In three stud-
ies, Zacks et al. (2011) asked participants to watch simi-
lar movies of everyday activities to those used in the
present studies. Each movie was paused eight times, four
times around event boundaries and four times within
events and participants either made forced choice
two-alternative decisions about what would happen five
seconds later in the movie or they made yes—no deci-
sions about whether one image would appear five sec-
onds later in the movie. The authors found that
participants were more accurate in making predictions
when the movies were paused within events than when
they were paused right before event boundaries.

We initially predicted that the presence of an event
boundary might be associated with lower predictive look-
ing overall, a main effect, in addition to the interaction ob-
served. One possibility is that this main effect would have
been observed if we had looked farther back in time be-
fore each object. As can be seen in Figs. 3 and 4, the lar-
gest difference between the conditions appears to be at
the earliest timepoints. In the explicit prediction study of
Zacks et al. (2011) a difference was found for predictions
of five seconds in the future. However, a forced choice
task is very different to making open-ended predictions by
looking around a visual space. Therefore, it is possible that
prediction would be equally bad around event boundaries
and within events as object contact becomes farther away
in time, especially since participants in the current study
spent an average of less than 50 milliseconds looking at
the target object from 2500 to 3000 milliseconds before
contact.

It is also possible that the lack of a main effect of
boundary type is due in part to the large difference in
the number of observations for each boundary condi-
tion. As noted above, only 4.1 and 5.5% of the observa-
tions occurred near coarse boundaries, which likely
explains the large confidence intervals for this condition.
However, this difference in number of observations can-
not fully explain the results. First, the results presented
above were obtained using linear mixed effects model-
ing, which took into account the different numbers of
observations among the conditions. In addition, when
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the boundary conditions were collapsed into within
events versus around event boundaries, the number of
observations in each condition were more similar (60.4
and 57.9% of observations were around event boundaries
for the two studies). Therefore, it is unlikely that add-
itional observations for the coarse boundary condition
would have dramatically altered the results.

The size of interest areas differed significantly between
the within-event and boundary conditions for Study 1,
and although the results of the models held even when
controlling for the effect of interest area size, it is neces-
sary to consider reasons for the differences between
boundary conditions. One possibility is that when larger
objects are contacted and moved around on screen,
more movement and other visual changes occur com-
pared to when smaller objects are contacted. Previous
studies have found that low-level visual changes in
movies can predict the locations of event boundaries
(Hard, Tversky, & Lang, 2006; Speer, Swallow, & Zacks,
2003.; Zacks, 2004; Zacks et al,, 2009b; Zacks, Kumar,
Abrams, & Mehta, 2009a), providing some evidence that
people might be more likely to identify event boundaries
when larger objects are contacted. However, follow-up
analyses found that, across participants, most object
contacts were not consistently identified as either
within-events or around boundaries. For Study 1, across
object contacts, an average of 11.1 (sd = 6.8, range = 0—
28) participants identified object contacts as within-
events and 169 (sd=6.8, range=0-28) participants
identified object contacts as boundaries. In addition,
for Study 1, the correlation between the size of an
interest area and the number of participants who
identified an event boundary near that interest area
was only 0.1 (p=0.27). Therefore, the size of an
interest area did not significantly predict whether par-
ticipants would identify an event boundary nearby.

Furthermore, because some objects were contacted
multiple times during each movie (Study 1, 16 objects;
Study 2, 24 objects), it was possible to determine
whether features of an object strongly determined where
people identified event boundaries by determining
whether participants consistently identified event bound-
aries near these repeatedly contacted objects. The results
suggest that this was not the case, as there was little
consistency across repeated contacts of the same object.
For Study 1, repeatedly contacted objects were consist-
ently classified as near event boundaries 41.7% of the
time (sd =0.20, range = 12.5-87.5%), were consistently
classified as within-event 12.1% of the time (sd =0.12,
range = 0-37.5%), and were classified inconsistently
46.2% of the time (sd=0.15, range=12.5-75%). For
Study 2, repeatedly contacted objects were consistently
classified as near event boundaries 33.5% of the time (sd
=0.27, range=0-87.5%), consistently classified as
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within-event 23.67% of the time (sd =0.19, range = 0—
62.5%), and inconsistently classified 42.83% of the time
(sd =0.14, range =12.5-70.8%). Therefore, neither the
size of the interest areas nor other features of the objects
themselves fully drove the boundary condition results.
However, future studies that use interest areas that are
all the same size are necessary to achieve complete con-
fidence that the event boundary effects reported here are
not due, in any way, to differences in the size of the
interest areas.

In addition to its utility in the current studies, the
PLAT has strong potential for utilization in other stud-
ies investigating predictive processing. The PLAT allows
for the collection of large amounts of data in a short
amount of time, as each of the five- to six-minute
movies contained between 29 and 51 target objects and
3000 data points were analyzed for each of these trials.
Although this study was not designed to investigate in-
dividual differences in predictive looking, the large
amount of data that can be collected using the PLAT
positions it as a potentially powerful individual differ-
ences measure. If individuals vary in their time course
of predictive looking, performance on the PLAT might
correlate with other cognitive measures such as work-
ing memory or executive function. It would be inform-
ative to determine whether predictive looking behavior
is fully explained by other cognitive abilities or whether
it is a separate cognitive ability in a similar way as
working memory is at least partially independent of ex-
ecutive processing.

The PLAT also has potential for studying predictive
processing in populations that are unable to perform ex-
plicit prediction tasks. For example, the task can be used
with infants or very young children, who would not be
capable of performing an overt prediction task. The task
could also be used to investigate predictive processing in
clinical populations who may not have the verbal or
motor ability to complete a prediction task that requires
overt responses.

Conclusions

People engage in prediction in almost every moment of
the day, and understanding how predictability varies
over time is integral to understanding how people com-
prehend ongoing activity. Using a novel predictive look-
ing task, the two current studies extended previous
research on the time course of predictability, finding
that participants engaged in less predictive looking
around event boundaries than within events at time
points furthest from contact and participants engaged
in more predictive looking around event boundaries
immediately before contact. These results are
consistent with previous studies that found decreases in
predictability at times of greatest change in the
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environment. The two current studies also demon-
strated the utility of the PLAT as a sensitive measure of
the time course of prediction, and the PLAT can easily
be extended to naturalistically study prediction ability
in healthy adults, clinical populations, infants and
young children, and even non-human primates.

Endnotes

'To determine whether looking behavior differed de-
pending on whether there was an event boundary before
versus after object contact, a new model that differenti-
ated between event boundaries that occurred before or
after object contact was tested against the simpler model
described above. The new model did not provide better
explanatory power than the original, simpler model
(Study 1, AIC for original model = 226,872, BIC for ori-
ginal model =227,090, AIC for new model =226,878,
BIC for new model = 227,238; Study 2, AIC for original
model = 214,268, BIC for original model = 214,338, AIC
for new model = 214,267, BIC for new model = 214,360),
suggesting that it was not necessary to differentiate be-
tween event boundaries that occurred before versus after
object contact.
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