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Temporal fractals in movies and mind
James E. Cutting1*, Jordan E. DeLong2 and Kaitlin L. Brunick3

Abstract

Fractal patterns are seemingly everywhere. They can be analyzed through Fourier and power analyses, and other
methods. Cutting, DeLong, and Nothelfer (2010) analyzed as time-series data the fluctuations of shot durations in
150 popular movies released over 70 years. They found that these patterns had become increasingly fractal-like and
concluded that they might be linked to those found in the results of psychological tasks involving attention. To
explore this possibility further, we began by analyzing the shot patterns of almost twice as many movies released
over a century. The increasing fractal-like nature of shot patterns is affirmed, as determined by both a slope
measure and a long-range dependence measure, neither of which is sensitive to the vector lengths of their inputs
within the ranges explored here. But the main reason for increased long-range dependence is related to, but not
caused by, the increasing vector length of the shot-series samples. It appears that, in generating increasingly fractal-
like patterns, filmmakers have systematically explored dimensions that are important for holding our
attention—shot durations, scene durations, motion, and sound amplitude—and have crafted fluctuations in them
like those of our endogenous attention patterns. Other dimensions—luminance, clutter, and shot scale—are
important to film style but their variations seem not to be important to holding viewers’ moment-to-moment
attention and have not changed in their fractional dimension over time.

Significance
Psychologists are very good at studying the instant or an
instantaneous slice out of a longer episode. Yet we often
have very little to say about how information, or how a
mental activity, is distributed over 1 h or more. Popular
movies offer an opportunity to investigate such distrib-
uted information and mental activity and the linkage be-
tween them. Movies have: (1) shots that vary in duration
which are separated by cuts that dictate eye movements;
(2) scenes that vary in duration which control event
structure and attention to the narrative; and varying (3)
degrees of motion and (4) sound amplitude that also
affect attention. In an investigation of 295 movies
released from 1915 to 2015, we find that the film-length
patterns of these four dimensions of movies have con-
verged over the last 50–80 years on temporal fractal
patterns (1/f ) and we find others that have not. These
differences suggest that the fractal patterns are, in some
sense, intentional on the part of filmmakers. Moreover,
these results can be mapped onto their statements about
the goals of their craft – to synchronize viewers’

attention with the rhythms of the movies. These 1/f pat-
terns also mimic the fluctuations of attention shown in
cognitive tasks (Gilden, 2001, 2009), suggesting that
movie viewers’ attention patterns are not that different
from those found in the laboratory.

Background

The photoplay … will thus become more than any
other art the domain of the psychologist who analyzes
the workings of the mind.

Münsterberg (1915, p. 31)

The photoplay obeys the laws of the mind rather than
those of the external world.

Münsterberg (1916, p. 97)

Hugo Münsterberg was an applied psychologist who,
late in his life, became infatuated with the then-new art
form of photoplays; we now call them movies. He
exhorted psychologists to study and to make movies for
the purposes of exploring the human mind. It appears
that no professional psychologist followed his
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suggestion, perhaps largely because there were few tools
and little technology available to undertake such a scien-
tific study. But time has passed and our statistical and
computational means have vastly improved. Now, after a
lapse of a century, an increasing number of psychologists
are interested in the psychology and cognitive science of
movies (see, for example, Kaufman & Simonton, 2014;
Shimamura, 2013; see also Hochberg & Brooks, 1996).
Münsterberg was certainly correct to suggest that
movies could be used to study the mind (see, for ex-
ample, Bezdek et al., 2015; Hasson, Malach, & Heeger,
2009; Levin & Baker, 2017; Magliano & Zacks, 2011) but
likely wrong to separate the laws of the mind from those
of the external world.
In this context, Cutting, DeLong, and Nothelfer (2010)

reported a striking finding. In an analysis of the patterns
of shot durations across the lengths of 150 different
popular movies released from 1935 to 2005, they found
a trend in fractal-like temporal patterns. That trend had
two parts. From 1935 to about 1960, there was consider-
able variation across movies and little apparent relation
of fractal dimension to those movies but, over the period
from about 1960 to 2005, shot-duration fluctuations
began to approach a fractal-like pattern. The theoretical
account for the division of movies into these two groups
is a standard one in film studies: Hollywood movies from
the silent era to about 1960 were produced top-down
under the studio contract system and those thereafter
were increasingly produced by more independent groups
of individuals assembled ad hoc for each movie (see
Bordwell, 2006; Bordwell, Staiger, & Thompson, 1985).
The Cutting et al. results were striking because Gilden

(2001, 2009; Gilden, Thornton, & Mallon, 1995, Thorn-
ton & Gilden 2005; see also Pressing & Jolley-Rogers,
1997) had earlier reported that a fractal patterning was
found in choice reaction times for cognitive tasks. Could
there be a functional connection between the structure
of movies, which require exogenous shifts of attention,
and psychological laboratory tasks, which require en-
dogenous emissions of attention? One purpose of this
article is to suggest further that there may be.
Complicating the search for a connection is the problem

that fractals are everywhere, in both time series and in
visible arrays. Large numbers of entities in nature and
culture seem to follow these self-similar patterns (DeLong,
2015; Gilden, 2009; Mandelbrot, 1983; Newman, 2005;
West, 2017) – the measurement of coastlines, the fluctua-
tions in stock markets, the variations in the height of tides,
the branching of trees, the florets in Romanesco broccoli,
and the patterns in music, speech, steps, breaths, heart-
beats, and so forth. Perhaps we should assume that frac-
tality (Stadnitski, 2012a) is the null hypothesis when
considering naturally or socially occurring, complex tem-
poral or spatial structure. If this were the case, the

ubiquity of fractals also makes it more difficult to deter-
mine a functional linkage between any pair of them. Let
us outline the outstanding issues, our path to discovery,
and then explore the nature of fractals in time-series data.

Continuing issues about movies and fractals
Again, Cutting et al. (2010) reported that fluctuations of
shot durations in movies have become increasing
fractal-like and that this might be related to attention.
Three issues remain unsettled. First, the increase in
measured fractal dimension might be contaminated by
the length of the data vector, as we discuss below.
Second, fractal vectors imply distal correlations in the
data, but the use of a power spectrum analysis may not
be the most advantageous to demonstrate such long-
range dependence, which we discuss in Studies 1 and 2.
And third, there is currently only a weak linkage be-
tween fractal dimensions in movies, which exogenously
demand attention, and the fractal dimensions of data in
cognitive tasks, signifying fluctuations in endogenous at-
tention. We attempt to address this in our concluding
discussion.
To us, the most intriguing aspect of the results of

Cutting et al. (2010) is that, insofar as we knew at the
time, we had documented the only increase in fractal-
like structure over time (but see Wijnants, Bosman,
Hasselman, Cox, & Van Orden, 2009). To be sure, we
had no firm account of why this might be so, but it
seemed likely to be enabled by the increased availability
of film footage that could be cut into a film (giving
editors more choices) and, over the last 30 years, by the
increased use of digital, non-destructive editing tech-
niques. The latter afford greater speed and precision and
a greater ease in the reworking of visual ideas. Of
course, the underlying assumption is that, somehow,
film editors and likely other filmmakers tacitly have in
mind the ideal of a fractal-like pattern of shot durations
for the whole film.
The article by Cutting et al. (2010) has been reason-

ably widely cited, particularly in the press, and it gar-
nered wide attention on the Internet. Unfortunately, in
their interpretation of our article, bloggers often made
two errors. First, they linked the results to the alleged
shrinking of viewers’ attention spans, for which there is
no evidence. And second, they thought that an increas-
ing fractal-like dimension improved the quality of the
movies, garnering higher profits, which Cutting et al.
had assessed and for which they also found no evi-
dence.1 The paper also attracted attention within the
community of cinemetrics scholars, those who use quan-
titative methods to measure certain aspects of movies.2

The most important critique evolved out of several
cinemetric discussions. Salt (2010) suggested that faster
editing (shorter shots), particularly in action movies,
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might by itself create increasing slopes. Cutting and Salt
went back and forth on this and other issues, and Cut-
ting (2014c) reanalyzed the data from 160 movies from
1935 to 2010 and found reliable effects of both release
year (again a quadratic effect) and number of shots.
Meanwhile, DeLong (2015) performed many analyses on
the movie sample used by Cutting et al. (2010), replicat-
ing the original findings and going beyond them. How-
ever, DeLong’s analyses reinforced Salt’s (2010)
speculation. Several measures of fractal dimension
seemed sensitive to sample size (in other words, to the
number of shots in the movie). With these suggestive
but inconclusive leads, it seemed time to revisit the idea
of shot fluctuations in popular movies as inherently
moving towards a fractal pattern.

Path of narration and discovery
In this article, we present something of a twisted tale.
We first give a short background concerning fractal
(fractional) analysis of time series vectors, with an em-
phasis on those related to the shot patterns of popular
movies. We then move on to six empirical studies.
In Study 1, we replicate the results of Cutting et al.

(2010) while nearly doubling the number of popular
movies investigated and by extending the time frame of
the corpus of movies. In particular, we find that the fluc-
tuations of shot durations in movies after 1960 have in-
creasingly approached a temporal fractal pattern (1/f 1;
see, for example Mandelbrot, 1999). However, we also
find two important constraints. First, our major result –
that after 1960 the increased slope, α, of the shot-
duration fluctuations fit by our model 1/f α − is also
strongly correlated with the number of shots in the
movies. Second, investigating the broader literature, we
discovered that the major aspect of our results – long-
range dependence – may not be best measured by our
model.
In Study 2, we substitute for our power-spectrum

model a different measure of linear vector complexity –
the exact local Whittle estimator. This is an algorithm
used for parameter estimation in autoregression analyses
and is regarded as a good estimate of the fractional (frac-
tal-like) nature of a vector. Using the Whittle estimator,
we replicate two aspects of our results from Study 1.
First, we find an increase in the magnitude of Whittle
estimates over time and, second, the Whittle estimate is
also correlated with the number of shots per movie. The
issue raised, then, is: Are both measures contaminated
by the length of the vector analyzed?
Study 3 simulates vectors of different lengths and dif-

ferent fractal-like values and, for the relevant range of
fractality, we find little general increase in either slopes
or Whittle estimates with increase in vector length
within our domain of study. Similarly, Study 4 doubles

the lengths of the shot vectors in all movies and finds no
general increase in either slope or Whittle estimates
compared to the original data. Thus, although the length
of the shot vector is correlated with the fractal-like
results of Studies 1 and 2, it is not a cause underlying
those results of increasing vector complexity over time.
In addition, Study 3 showed that the variability in the
slope estimates is considerably greater than that for the
Whittle estimates, thus suggesting that the latter
provides a more consistent measure of fractal-like struc-
ture in a vector.
Study 5 investigated three additional fluctuations in

movies that, like shot duration, show a confluence over
time towards a fractal dimension – the duration patterns
of scenes, the motion patterns across shots, and the
sound amplitude patterns. Over release years, we find
striking linear increases in the Whittle estimates for
scene durations and motion, and a decrease for sound
amplitude, with all three of these measures converging
towards a true fractal.
Study 6 investigated fluctuations in movies that show

no changes over time in fractality – the patterns of lumi-
nance, clutter, and shot scale. That is, results show no
convergence toward a true fractal over release years.
Finally, we link these results to statements by filmmakers
and to psychological responses. Next, we need to eluci-
date the nature and structure of fractal vectors.

Fractals, time series, and colored noise
A fractal (or a fractionally dimensioned object;
Mandelbrot, 1983) contains a pattern that repeats at
many different scales, from small to large and vice versa.
Thus, fractals are called self-similar. Here we focus on
temporal patterns in time-series data. When analysis is
done on a temporal fractal, the power of each Fourier
component increases in proportion to its wavelength –
the inverse of its frequency (or 1/f ). Thus, patterns in
larger component sine waves are scaled-up versions of
those of smaller component sine waves; they are
enlarged equally in both wavelength and the square of
the amplitude (that is, power). Phase is not relevant in
this context.
Consider the three waveforms shown in upper panels

of Fig. 1. By tradition these are called noises. The differ-
ent noise arrays were generated by an algorithm given in
Little, McSharry, Roberts, Costello, and Moroz (2007),
the output values were then normalized (mean = 0,
standard deviation = 1), and then their fractal property
remeasured. The upper left panel shows an array of ran-
dom numbers called white noise, the upper middle panel
shows numbers in a fractal pattern called pink noise,
and the upper right panel shows brown noise, akin to
one-dimensional Brownian motion.
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Together, these are called colored noises. These seem to
be strange terms and the origins of some of these names
may appear obscure. To be sure, we already noted the ori-
gin of the “color” brown from Brownian motion, but the
others are less clear. White is from analogy to white light,
which has roughly equal energy at all visible frequencies,
and pink stems from the fact that light with a fractal dis-
tribution appears pink, with strongest components at the
long-wavelength (red) end of the chromatic spectrum.
When plotted on log-log coordinates of power against

frequency (the inverse of wavelength), white, pink, and
brown noises have different slopes: white ≅ 0.0, pink (or
fractal) ≅ 1.0, and brown ≅ 2.0. Functions with these
approximate slopes are as shown in the lower panels of
Fig. 1. In white noise, every value is independent of the
one that precedes it; in brown noise (also called a ran-
dom walk or a drunkard’s walk), every value is randomly
generated around the previous value. Pink noise is “in
between.” We will discuss these as noises with different
slopes, where the slopes (ideally 0, 1, and 2, but varying
smoothly in between) are given by exponent alpha in the
power-spectrum expression 1/f α. Notice that two of the
slopes at the bottom of Fig. 1 are negative rather than
positive but, by convention and since the exponent in
the expression is in the denominator, this reverses the
sign (and direction of slope). Figure 1 also reports the
values of the exact local Whittle estimators of these
noises, a measure we discuss in detail in Study 2. The
types of “noises” that we will consider, however, look
quite different than those in Fig. 1. Nonetheless, these
can be measured in the same way once the data are nor-
malized. Some of these are shown in panels of Fig. 2.

The top panels refer to dimensions investigated in Stud-
ies 1 and 5. Figure 2a shows the series of shot durations
for the first 512 shots of Back to the Future (Zemeckis,
1985) which, for the complete vector of 1327 shots, has a
fractal slope near 1.0. Figure 2b shows the relative amount
of motion in each of the first 512 of 2468 shots in Dances
with Wolves (Kostner, 1990), which also has a slope near
1.0. Motion here is measured as the mean correlation be-
tween the luminance values of all pixels in successive
frames where all of those frames occur within a given
shot. Thus, 1.0 is perfect stillness and 0.2 is a low mean
correlation of frames (a lot of motion) within a shot.
Values, of course, can be as low as −1.0, but few movies
have any shots with interframe correlations < 0. Figure 2c
shows the sound amplitude profile across the length of A
Night at the Opera (Wood, 1935) of the first 512 of 1281
values, each representing 100 frames (a 4.17-s slice) of the
movie. The pattern is measured in arbitrary amplitude
units. Here the slope is quite steep, > 1.0.
The bottom panels refer to dimensions discussed in

Study 6. Figure 2d shows the mean within-shot lumi-
nance for the first 512 of 548 shots in Westward Ho
(Bradbury, 1935). Here the slope is very steep, near 2.0
and close to brown noise. Figure 2e shows the mean
clutter in the first 512 of 1887 shots in Superman II
(Lester, 1980), where clutter is measured as the propor-
tion of edge pixels in the image that remain after each
frame is passed through Laplacian of Gaussian filter (see
Henderson, Chanceaux, & Smith, 2009; Rosenholtz, Li,
& Nakano, 2007). And finally, Fig. 2f shows the shot
scale profile for the first 512 of 1782 shots in Star Wars:
Episode 5 – The Empire Strikes Back (Kershner, 1980).

Fig. 1 Three types of temporal noise. The top panels show 512-element samples of white (or random) noise, pink (or fractal) noise, and brown (or
Brownian) noise. Slope values refer to the exponent (alpha) in the expression 1/f α and Whittle values refer to the exact local Whittle estimator of
long-range dependency in the data (Shimotsu & Phillips, 2005). See the text for explanations of both. The bottom panels show the power spectra
for each patch of noise for wavelengths (traveling windows along the time-series vector) between 28 to 21 shots
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Notice the discrete steps of 1 to 7 in the shot scales. Its
slope is about halfway between white and pink noise.

Study 1: Shot-duration fluctuations, sample size,
and long-range dependence
Methods
Assembling a larger sample of movies
Members of our lab have studied many quantitative as-
pects of movies, incrementally increasing the sample size
as we have progressed. Much of this is discussed and
reviewed in Cutting (2016a). Cutting et al. (2010) ana-
lyzed the shot-duration patterns of 150 English-
language, feature-length, popular movies – ten each for
15 years evenly divisible by five (e.g. 1935, 1940, …,
2000, 2005). We sampled across genres and from among
the most popular of these release years. Subsequently,
we expanded that sample to include ten similarly chosen
movies from 1915, 1920, 1925, and 1930, and ten from
2010 and 2015.
For other purposes, we had replaced ten of these

movies that were longer than 2.5 h. These are thought
to have different narrative properties than those under
that limit (Thompson, 1999). The alternates were ten
with more standard durations from the same genres and
release years. Nevertheless, here we have included both
the originals and the ten alternates. We also added two

from Cutting, DeLong, and Brunick (2011). This aggre-
gation, so far, yields 222 movies released over a century,
1915 to 2015. A listing of 210 of these is given in Cut-
ting (2016b), ten more can be found in the supplemen-
tary material to Cutting et al. (2010), and two in
Cutting, DeLong and Brunick (2011).
To these we added 75 separate feature-length movies

made for children and explored by Brunick (2014).
Three per year, these were released between 1985 and
2008 and were the highest grossing G-rated theater or
direct-to-DVD releases. Two of these films overlapped
with the previous aggregate, yielding a total of 73 differ-
ent movies. The children’s movies have remarkably simi-
lar shot-pattern characteristics to the movies made for
adolescents and adults for the same period (Brunick &
Cutting: Pace and appearance in movies made for chil-
dren and adults, in preparation), which provides a list of
those movies.
In sum, we now had a grand total of 295 English-

language, feature-length movies, almost twice that of Cut-
ting et al. (2010). Many analyses below, however, are done
on 263 movies, and some on 180, 48, and 24. Thus, the
statistical power for determining effects – where α = 0.05,
and d = 0.80 – is 0.99+, 0.99+, 0.99+, 0.77, and 0.46, re-
spectively, for samples of 295, 263, 180, 48, and 24 movies.
The median effect size reported in this article is d = 0.72.

Fig. 2 Waveforms for six dimensions of movies – a shot duration, b motion, c sound amplitude, d luminance, e clutter, and f shot scale – taken from the
first 512 shots in six movies. The first and waveforms like it are the focus of Studies 1, 2, and 4; the latter five and waveforms like them from other movies
are discussed in Studies 5 and 6. Slope = the value of alpha in 1/f α; Whittle = a fractional estimate of vector complexity. Both are discussed in the text
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Measuring time-series power spectra
With one exception, we followed the methods used by
Cutting et al. (2010). We created a vector consisting of
the linear sequence of shot durations in each movie. All
movies in this sample had between 188 and 3235 shots,
as determined in previous research. The movies were
between 49 and 204 min in duration. The Academy of
Motion Picture Arts and Sciences defines a feature-
length film as one lasting at least 40 min. However,
except for the silent movies (1915–1925, mean duration
= 81 min) and the children’s movies (mean duration = 89
min) in this sample, the mean duration of the other fea-
ture movies is quite constant at about 110 min from
1930 to 2015. Again, the values in these shot-duration
arrays were then normalized for each movie.
The next step entailed Fourier analysis; this was

accomplished by fitting phase-shifted sine waves to
successive and successively larger segments (windows) of
the shot vector. The lengths of these shot windows were
powers of two – 2 shots, 4 shots, 8, 16, 32, 64, 128, and
up to 256 shots. We fit travelling windows of each size
along the length of the shot vector. That is, for example,
for segment lengths of eight shots we fit the normalized
durations of shots 1 to 8, then 2 to 9, then 3 to 10, then
4 to 11, and so forth through n-7 to n, where n is the
number of shots in the movie. We then averaged these
separate fits, calculating mean power.
Cutting et al. (2010) had extended their analyses to 2m

shots, where m is the largest power of 2 that is less than
the n shots in each movie. They then fit these data with
a hybrid model that measured both white noise (or ran-
dom noise, which has a flat spectrum, and is referred to
as 1/f 0) and colored noise. Their assumption, and that
of Gilden (2001; see also Wijnants et al., 2009), was that
all such signals have a background of random (white)

noise and that a fractal-like pattern should be estimated
as emerging in the context of that background. Import-
antly, for the colored-noise part of the model, we varied
alpha (α) in 1/f α until the simultaneous combination of
colored noise and white noise best fit the data. All ob-
tained values of alpha for these movies were in the range
of 0.0–1.54, with a mean of 0.55 and a standard devi-
ation of 0.25. Some of these fits are shown in Fig. 3 here
and others were shown in Fig. 3 of Cutting et al. (2010).
If the size of the shot sample inherently increases the

exponent alpha, as suggested in previous discussions
and research (Cutting, 2014c; DeLong, 2015; Salt, 2010),
this might be because the increase in the number of
samples in each window and that the averages over the
larger number of samples reduces statistical variability,
yielding smoother and more reliable functions. To
explore this possibility, we truncated the power analysis
after travelling windows of 28 (or 256) shots but ana-
lyzed the shot vector out to n, its last shot. Thus, the
larger the n the more the averages should smooth the
results. In addition, we analyzed only those movies with
at least 512 shots. This latter criterion reduced the
sample to 263 movies.

Results
Slopes and individual movies
Figure 3 shows the data and model fits for nine movies.
The Lion King (Allers & Minkoff, 1994), a movie of 1202
shots, provides a framework for the display of the others.
By convention and as in Fig. 3, the traveling window
sizes (wavelengths, or 1/frequencies) appear on the ab-
scissa in descending order (256 to 2 shots). These are
plotted against the relative log power values on the or-
dinate. The data are shown by a thicker blue line. The
model fit (combining white and colored noise) is shown

Fig. 3 Power spectra for the data (in blue) of and model fits (in red) to the shot-duration fluctuations of nine movies. These reflect a power analysis on
the normalized shot vectors for each movie. Notice three trends: steeper-sloped movies tend to be more recent, more recent movies tend to have
more shots, and model fits tend to be better for movies with more shots. These parallel trends form the focus of Studies 1–4
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by a thinner red line. Notice that several model fits are
slightly curved, as they should be with a log-scaled mix-
ture of white noise (a flat function) and colored noise (a
sloped function). The influence of the white noise
would diminish with greater wavelengths and greater
power. The slope of the colored noise fit (α in 1/f α)
for The Lion King is 0.54, about halfway between a
true fractal (1/f 1) and white noise (1/f 0).
Given this backdrop, a full range of data and model

fits from eight other movies are also shown in Fig. 3.
Notice that the slopes (the values of alpha in 1/f α) are
near 1.0 for the leftmost pair of movies (Back to the
Future, Zemeckis, 1985, and Mission: Impossible – Rogue
Nation, McQuarrie, 2015), near 0.67 for the next two
movies (Inside Out, Docter & Del Carmen, 2015, and
Harry Potter and the Deathly Hallows, Part 1, Yates,
2010), near 0.33 for the third pair (Bells of St. Mary’s,
McCarey, 1945, and Apollo 13, Howard, 1995), and near
zero for the rightmost pair (Return of the Pink Panther,
Edwards, 1975, and Asphalt Jungle, Huston, 1955). No-
tice, too, that the more recent movies are generally to
the left and that they also generally have more shots.
Thus, the results for these nine movies set up the

pattern for both effects – that more recent movies
have a steeper slope, in line with the results of
Cutting et al. (2010), but they also have more shots.
And a third effect is that across all movies the in-
crease in the number of shots is correlated with the
improvement of the hybrid model fits (adjusted R2 = 0.05,
t(261) = − 3.81, p = 0.0002, d = 0.47). Mean root-mean-
squared deviations for movies with about 500 shots is

about 0.20, whereas that for those with about 2000 shots
is about 0.10. Notice that the fit for Return of the Pink
Panther is particularly poor.

Expectations and the patterns of slopes across movies
Cutting et al. (2010) reported that the pattern of slopes
among the earlier movies (from 1935 to about 1960) was
relatively flat and varied and that the pattern for the
later movies (about 1960 to 2005) increased over time
with less variation. Cutting et al. also reported that the
linear increase across the whole set, 1935 to 2005, was
also reliable, but not as compelling. With the movies
added to the beginning of the release year distribution
(1915, 1920, 1925, and 1930) and to its end (2010 and
2015) it was difficult to know what we should predict.
More critically, however, the addition of the children’s
movies increased the density of movies between 1985
and 2008, roughly the time frame of the sharpest
increase in slope, which was the central and emphasized
finding of Cutting et al. The results are shown in Fig. 4a.
Based on previous results, we looked for both linear

and quadratic trends. To be clear, the data are quite
noisy, which is the main reason for waiting eight years
to update Cutting et al. (2010) until we could explore
many films over a longer period of time. An increasing
linear trend was modest (adjusted R2 = 0.017, t(261) = 2.34,
p = 0.02, d = 0.30), but the quadratic trend shown in the
figure was more robust (adjusted R2 = 0.087, t(260) = 4.60,
p < 0.0001, d = 0.57).
Again, the quadratic trend bottoms out at about 1960,

a result that would appear to reinforce the division of

Fig. 4 Results of Studies 1 and 2 plotting values of fractal measurements per movie against release years and against number of shots per movie.
Shown are four scatterplot results for movies released between 1915 and 2015. a Alpha values (slopes) of 263 movies as a quadratic function of
release year (Study 1). Only the right half of that function fits the data well. b The exact Whittle estimate values for 295 movies as a linear
function of release year (Study 2). c The slopes as a function of the number of shots in 263 movies (Study 1). d The Whittle estimates for 295
movies as a function of the number of shots (Study 2). Colored areas are 95% confidence intervals on the regressed fits
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popular movies into those of the Hollywood Studio era
and those that came later. However, the left-hand side of
the trend has little statistical support. Although the
apparent decline in slopes from 1915 to 1955 looks im-
pressive, it is not by itself reliable (adjusted R2 = 0.045,
t(60) = − 1.68, p = 0.098). Thus, the quadratic function
fails the two-lines test (Simonsohn, 2017) – dividing the
distribution between falling and rising segments, and
testing for the significance of both linear trends. None-
theless, our interest had originally been focused on the
period from 1960 onwards.
Importantly for the argument presented in Cutting et

al. (2010), the linear trend of the subsample from 1960
to 2015 was also quite strong (adjusted R2 = 0.11, t(200)
= 5.10, p < 0.0001, d = 0.72). Thus far, then, our evidence
extends the results of Cutting et al. (2010).

Slopes and shot-sample size
In exploration of the effects of shot number (sample
size), Fig. 4c shows the scatterplot of the same slope
values against the number of shots in each movie. The
regression trend, with its 95% confidence interval, is
quite strong (adjusted R2 = 0.15, t(261) = 6.78, p < 0.0001,
d = 0.84), replicating Cutting (2014c). As one can see,
the mean slope (alpha value) for movies with only about
500 shots is near 0.4, but for those with 3000 shots is
near 1.0. Clearly, as was seen in the individual movie
data of Fig. 3, both release year and shot number are
contenders in accounting for the data.
Using two predictors of slope, the quadratic regres-

sion values from the release-year data of each movie
and the linear regression values for the number of
shots, we find that shot number is a stronger pre-
dictor (t(260) = 4.84 p < 0.0001, d = 0.60) than is re-
lease year (t(260) = 2.49, p = 0.014, d = 0.30). Indeed,
in stepwise regression, we find that entering the num-
ber of shots first accounts for 15% of the variance
and the addition of the quadratic values adds only
2%, whereas entering the quadratic values first yields
9% of the variance, but the addition of shots adds
another 8%. Thus, it is clear that the number of
shots, not release year, is the more potent cause of
the increase in slope.
Moreover, and again, since the pattern in the post-

1960 movies was most critical to the conclusions of
Cutting et al. (2010), we could simply assess the linear
effects of release year and shot number on derived slope
in those movies from 1965 to 2015. Together these
account for 24% of the variance in the data, but the
effect of shot number is again substantial (t(189) = 5.89,
p < 0.0001, d = 0.86), whereas that of release year is not
(t(189) = 1.89, p = 0.06). Clearly, the evolution towards a
1/f 1, or fractal, structure in the shot patterns of movies

is reflected in more shots per movie in these data than
in release years.
Why do longer shot vectors garner higher slope

values? Again, one reason might be a smoothing of the
data through the averaging of more samples. As can be
seen in Fig. 3, the fits of the hybrid model to the data seem
to get better as the number of shots increases (right to
left). On the other hand, one might have assumed that the
mean slope estimates would remain roughly the same
across movies with different numbers of shots, but with
decreased variance (not increased slope) as the number of
shots per movie increased. This possibility is one rationale
behind the simulations in Study 3.

Long- and short-range dependence
An important issue emerges from the broader literature
in the context of these data and analyses. This concerns
long-range dependence, also called – and seemingly in a
deliberate ploy to confuse psychologists – “memory.”
The idea comes from hydrology and originally con-
cerned the cadence of the build-up of runoff from rain-
storms throughout a watershed as the water approached
a dam on a large river (Hurst, Black, & Simaika, 1965).
Over the subsequent decades this idea was then applied
to many time-domain self-similar processes, even brain
states (Tagliazucchi et al., 2013).
To be concrete, the implication of this idea to the

results of Study 1 and those of Cutting et al. (2010) is as
follows: they claimed that there are long-range relation-
ships among the shot durations. But that claim may be
suspect. In particular, the relatively high power in the
long-wavelength results of The Lion King, seen at the
left-hand side of Fig. 3, suggests that, among others,
there are correlations among the shot durations at lags
of 256 shots that are due to long-range processes under-
lying the data. As it turns out, however, this need not be
the case. Short-range dependence (local correlations)
can lead to effects that look like long-range processes
are at work (Karagiannis, Faloutsos, & Riedl, 2002;
Wagenmakers, Farrell & Ratcliff, 2005).
This is a known problem, an active research area, and

has been addressed in many different venues (see
DeLong, 2015) – for example, Karagiannis et al. (2002)
in telecommunications research and Wagenmakers et al.
(2005; Farrell, Wagenmakers, & Ratcliff, 2006) in re-
sponse to Gilden (2001) and his study of reaction times.
Both sets of authors offered solutions. Wagenmakers et
al. suggested testing the difference in autoregressive
(AR) model results [ARFIMA(1,d,1) - ARMA(1,1)] on
each data vector. The first model has a component (d
for dimension, not effect size) that could measure long-
range dependence, but the second model does not.
However, Gilden (2009) questioned this approach on
grounds of model flexibility and the overfitting of data.
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On the other hand, Karagiannis et al. (2002) tested
many AR indices and endorsed the Whittle estimator,
which takes on values of 0 for white noise, near 0.5 for
pink noise, and about 1.0 for brown noise. Named for
work by Peter Whittle (1951), a New Zealand/Finnish
mathematician, the Whittle estimator was found it to be
the most robust in detecting long-range dependence
provided that the data are not periodic (Karagiannis et
al., 2002; Stadnitski, 2012b), which the movie data are
not. We have employed the exact local Whittle estimator
(Shimotsu & Phillips, 2005), a further improvement. The
Whittle is typically used to estimate the fractional (non-
white) noise dimension (d) underlying time-series data
for autoregression models. Once the nature of this par-
ameter is estimated, other patterns in the data can be
explored.3

Given the possible contamination of long-term de-
pendence measures by short-term processes and follow-
ing earlier simulations by DeLong (2015), it occurred to
us that the power-spectrum slope values calculated in
Study 1 might not be the best estimates of long-range
dependence and, hence fractality, in the movie data.
Thus, it seemed prudent to re-measure all of our movies
with the exact local Whittle estimator.

Study 2: Shot-duration fluctuations, Whittle
estimates, and spectral slopes
Using the Shimotsu and Phillips (2005) version of the
Whittle estimator, we calculated the long-term depend-
ence in the full sample of 295 movies of Study 1. Results
are shown in Fig. 4b and again the data are noisy. How-
ever, there is a slight increase in Whittle value across
release years (adjusted R2 = 0.02, t(293) = 2.84, p = 0.005,
d = 0.33), but without a quadratic trend (t(292) = 1.7,
p = 0.09). The linear Whittle trend from 1960 onward
is even stronger (t(200) = 5.10, p < 0.0001, d = 0.72).
But again, across the whole sample we found a strong
correlation between number of shots and the Whittle
estimates (adjusted R2 = 0.15, t(294) = 7.14, p < 0.0001,
d = 0.83) as shown in Fig. 4d.
Nonetheless, two further results troubled us. First, al-

though the correlation between slopes and Whittle
values for these movies is relatively high (r = 0.60, t(261)
= 12.05, p < 0.0001), it is not as high as we had expected.
One might attribute this to the difference between the
quadratic pattern in the slope data and the linear pattern
in the Whittle data. However, as noted earlier, the left--
hand side of the quadratic fit is deceiving. It does not, by
itself, show a reliable decline. Moreover, whereas the
correlation between slope and Whittle values for movies
between 1960 and 2015 is reasonable (r = 0.57, t(200) =
9.86, p < 0.0001, d = 1.39), that for movies between 1915
and 1955 is no different, it is positive, and it is even mar-
ginally higher (r = 0.69, t(59) = 7.45, p < 0.0001, d = 1.94).

Thus, there is no warrant to worry about the quadratic vs
linear regression fits shown in Figs. 4a and b.
Second and more important, after factoring out the

effect of shot number on Whittle values, the effect of
release year remained a reliable but modest effect
(t(291) = − 2.35, p = 0.02). However, it is in the reverse
direction – with smaller Whittle estimates across pro-
gressive release years. This latter result suggested that
we urgently needed to understand the effects of shot
number in movies as measured by both measures – shot
spectrum and Whittle estimates. It appeared that Salt
(2010) may have been correct, that an increase in shot
number alone created fractal-like effects.

Study 3: Simulations of colored noises at different
slopes and vector lengths
Method
Using the algorithm of Little et al. (2007), we generated
1/f α noises with nine intended alpha values of 0.0 to 2.0
in 0.25-step intervals, and in sample sizes (vector
lengths) of 512, 768, 1024, 1536, 2048, and 3072.
Intended values are those to which the algorithm should
converge in an indefinitely long series. The vector-length
range generally conforms to the number of shots in
feature-length movies over the century, with the second,
fourth, and sixth values halfway between those of 29, 210,
211, and 212. We generated 1000 strings for each
intended alpha value at each vector length and measured
the actual alpha means and standard deviations of the
collection of resulting slopes, using the same algorithm
that we used in Study 1 (the modification of that used
by Cutting et al., 2010; Gilden, 2001). We did the same
for the exact local Whittle estimates (Shimotsu &
Phillips, 2005).

Results and discussion
The patterns of slopes and Whittle estimates as a func-
tion of sample size are shown in the panels of Fig. 5,
with standard deviations (not confidence intervals) for
each function shown in lighter grays. Nine patterns of
analysis are shown in each panel, corresponding to
results of simulations for intended slopes of 0.0 (at the
bottom of each panel) to 2.0 (at the top) at six different
vector lengths. Whittle estimates average about 43% of
the slope values. To compare the two measures, we
rescaled the Whittle estimates, multiplying them by 2.32,
so that they had the same grand means. This rescaling
value will also be useful in Study 5.
Notice three effects. First, the length of the vector

(sample size) does not generally change the measured
fractal-like value for power analyses (left panel) with
slopes < 1.0 and is not a factor for Whittle estimates for
data with slopes approximately < 1.5. However, and
second, above these values the length of the vector
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increased the measured slope. For the overall intended
slope values (0.0–2.0) across the six vector lengths, this
interaction of some increasing and some non-increasing
functions is robust (t(100) = 10.81, p < 0.0001, d = 2.16).
Moreover, the increases in slopes with vector length are
greater for the power analyses than the increases in the
Whittle estimates (a second-order interaction, t(100) = 5.59,
p < 0.0001, d = 1.17).
Thus, Salt (2010) was generally correct in suggest-

ing that larger vector strings can generate larger
slopes (and even Whittle values). However, the do-
main in which this increase occurs is not the domain
of slopes and Whittle values of the movies investi-
gated here. Again, the mean slope of the 295 movies
is 0.55 with a standard deviation of 0.25; the mean
Whittle estimate is 0.18 with a standard deviation of
0.10. Both are domains in which the biased inflation
of slope values is not apparent.
Third, the standard deviations of the simulated results

are relatively smaller for the Whittle estimates than for
the power analyses. Setting aside the data for intended
slopes of 0.0, the coefficients of variation (standard devi-
ations/means) for the other 48 points (eight intended
slopes X 6 vector lengths) are smaller for the Whittle esti-
mates (t(47) = 9.04, p < 0.0001, d = 2.64). Thus, it would
appear on the basis of their smaller variation
(coupled with the reduced inflationary bias with lar-
ger vectors) that the Whittle estimate is a more

trustworthy approach to the study of long-range de-
pendence in this context. Moreover, the smaller size
of the standard deviations makes it use more appro-
priate for smaller samples, as we will see in Study 5.

Study 4: Doubling the shot-duration vector
Although the essentially null results across sample sizes
for alphas (slopes) < 1.0 in Study 3 are compelling, the
values used to generate them have nothing to do with
movies. A comparison of Figs. 1 and 2 shows that there
are differences in these waveforms and perhaps some of
these are important. To assess the shot-vector case more
directly we performed another analysis.

Method
To provide a second test of a possible effect of vector
length on the measured slope and the measured Whittle es-
timate, we simply doubled the shot vector of each of the
263 movies employed in Study 1 for the power spectra ana-
lyses, and did so for the full sample of 295 movies for the
Whittle analyses. That is, in each case we concatenated two
versions of the shot vector, end to end, the first shot of the
repetition abutted to the last shot of the original.

Results and discussion
Shown in the left panels of Fig. 6 is a scatterplot of
movies with the slope values from Study 1 for each plot-
ted against the slope value obtained from doubling the

Fig. 5 Results of Study 3 investigating the relation between length of vectors and their fractal dimension. The panels show means (as points) and
standard deviations (not confidence intervals) as shaded areas of noise simulations. Each point represents the mean of 1000 simulation trials.
Noises were generated by algorithm (Little et al., 2007) and fit by the models used in Study 1 (measuring slope) and in Study 2 (measuring
Whittle estimators by the method of Shimotsu & Phillips, 2005). In each panel, noises were generated with intended slopes of 0.0 to 2.0 in
intervals of 0.25. Whittle values average about 43% of slope values in these simulations
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shot vector. The alpha values for the doubled vector are
slightly less than those for the original vectors (−0.02) but
given the sample size that difference is reliable (t(263) = −
3.65, p < 0.0001). This effect appears to manifest itself in
doubled shot vectors in movies with fewer shots yielding
slightly higher values and doubled shot vectors in movies
with more shots yielding slightly lower values. Indeed, the
slope of the linear regression (not shown in Fig. 6) is 0.87.
Thus, there is a small bias in the power spectrum results.
Note, however, that the regression values in Fig. 4c for
slopes against movies with 750 and 1500 shots is 0.47 and
0.61. Thus, the bias effect here is only about one-seventh
of the total effect reported effect in Study 1 and also gen-
erally in the opposite direction.
Shown in the right panel of Fig. 6 is the scatterplot of

movies with the Whittle values from Study 2 matched to
those obtained from doubling the shot vector. Here, too,
the mean difference in the two values very slightly disfa-
vors the doubled vectors (− 0.008, regression slope =
0.989), but given the large sample size this modest differ-
ence is also statistically reliable (t(292) = − 2.94, p = 0.004).
The magnitude of this difference is about one-ninth of the
magnitude of Whittle values for two movies with 750 and
1500 shots – 0.14 and 0.21, taken from the regression line
in Fig. 4d – but again in the opposite direction.
One potential flaw in the design of this study is that

the exact local Whittle estimator can be sensitive to
periodic signals (Shimotsu & Phillips, 2005). Doubling a
shot vector certainly introduces periodicity. However,
parallel simulations were also done for enantiomorphic
doublings of the shot vector (z-to-a concatenated to the
end of a-to-z) and the results were indistinguishable
from those seen in the right panel of Figs. 6.

Thus, the results of both Studies 3 and 4 strongly
suggest that one of the results of Studies 1 and 2 – the
increase in long-range dependence shown in the shot-
duration vectors in more recent films – is, contrary to
Salt (2010), not simply a result of a movie having more
shots. Instead, they must have another cause. Something
has been done to the shots in the crafting of the movies
as the shot strings got longer over time. As Cutting et al.
(2010) suggested one likely candidate of this cause is the
movie editor, although other filmmakers would certainly
play important roles.
To explore the idea that filmmakers might craft these

long-range effects, we needed more dimensions of
movies to consider. Study 5 looks at the durations of
scenes within a movie, motion within shots, and sound
amplitude within movies. Study 6 looks at the properties
of luminance, clutter, and shot scale within shots. Full
disclosure: We sorted those dimensions into the two
studies after we knew their results.

Study 5: The changing fractal-like patterns of
scene durations, motion, and sound amplitude
Across the studies done in our lab, we have measured
much more than just shot durations of movies. Using
and expanding on our analyses of scenes, motion, and
sound here – and luminance, clutter, and shot scale in
Study 6 – we set out to explore any possible fractal-
like progressions that might be relevant and irrelevant
to what filmmakers do in fashioning movies. As be-
fore, we normalized the values in each of the six types
of arrays and calculated their exact local Whittle
estimators.

Fig. 6 Results of Study 4 where the shot vectors of movies were doubled, concatenated end to end. Slopes (left) and Whittle values (right) for the
doubled shot vectors are plotted against the undoubled results of Studies 1 and 2. The diagonal lines represent equal values in both measures;
they are not regression lines
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Method
Scenes and scene durations
Typically, with cuts at either end, a shot’s duration is
easy to measure. But what is a scene? A scene in theater
is typically defined as an event that takes place in one
location, over a contiguous stretch of time, with a fixed
set of characters (Polking, 1990, p. 405), and the same
typically holds for movies. A scene boundary occurs with
a change in one or more of these three attributes.
Moreover, a scene can typically be said to have a begin-
ning, middle, and an end – an integrity that creates a
whole. Movies can also have something different, which
we call subscenes. These have changes in location, time,
and character but they often have neither beginnings
nor ends. They are essentially ongoing middles and they
signify parallel action. This technique is called cross-
cutting. Cross-cutting has been used since the beginning
of feature-length movies in the 1910s and it has gener-
ally increased over time. For example, the climax of
action films often cross-cuts between the protagonist
and antagonist in different locations before they meet in
a final confrontation. Here, as we have in past studies
(Cutting, 2014a; Cutting, Brunick, & Candan, 2012), we
combine the analyses of scenes and subscenes, and
simply call them scenes.
Cutting et al. (2012) employed a subsample of 24

movies from the larger sample – three genres (a drama,
a comedy, and an action film) at eight release years
(1940, 1950, 1960, 1970, 1980, 1990, 2000, and 2010).
They had three observers watch each movie twice, first
simply to enjoy it and second to segment the film into
scenes and record the frame number of the beginning of
the scene. All segmentations that were agreed upon by
at least two of the observers were used here and the
duration of the scenes measured. These movies average
106 scenes but, as will be discussed below, their number
varies by release year (Cutting, in press). The scene
durations were normalized as in the previous studies
and the scene-duration vector was analyzed using the
exact local Whittle estimator, as in Studies 2–4.

Motion
To analyze motion (and luminance and clutter in Study
6), we eliminated some movies from consideration. It
seemed unwarranted to look at the motion, luminance,
and clutter profiles of silent movies – those in this sam-
ple from 1915 to 1925. In total, 10–20% of all shots in
these movies are intertitles. Intertitles have no motion
(except jitter from low-budget analog-to-digital transfer),
are typically black, and are cluttered only with white
text. We also did not have these data by shots for the
children’s movies (Brunick, 2014) or the two used by
Cutting, DeLong and Brunick (2011). This left 180
movies in the sample for measures of motion,

luminance, and clutter. These movies were released from
1930 to 2015.
Motion can be measured in many ways but in natural

stimuli all tend to be strongly correlated (Nitzany &
Victor, 2014). Thus, we have chosen the simplest, which
can be called zero-order motion. We measured the cor-
relation of pixels in one image with those of the next
(actually the next adjacent, n and n + 2, to reduce
digitization artifacts and avoid an issue in earlier ani-
mated movies where frames are often doubled). At 24
frames/s the average movie in this sample has 155,000
frames. This method of motion measurement was used
by Cutting, DeLong and Brunick (2011) and Cutting
(2016a, 2016b). We had first downsampled each frame
of the movies to a 256 × 256 array (about 65,000 pixels),
then converted color frames to 8-bit grayscale (with
pixel values in the range of 0–255), correlated the
frames, and then averaged all across-frame correlations
within each shot (but not those including frames strad-
dling a cut). This value determined the motion within
that particular shot. Variations of the within-shot corre-
lations across time, and hence the variation in amount
of motion, are shown in Fig. 2b for the first 512 shots of
Dances with Wolves (Kostner, 1990).

Sound amplitude
Here we employed 48 movies used previously by Cutting
(2015), three movies per release year divisible by five
from 1935 to 2010 – one drama, one comedy, and one
action film. The appendix of Cutting (2015) lists those
movies and 24 of them were used by Cutting et al.
(2012). A sample waveform is shown in Fig. 2c for the
sound pattern in the Marx Brothers film, A Night at the
Opera (Wood, 1935).
Shots are visually discontinuous across their boundaries,

but audio is not; it flows smoothly across cuts and helps
to make cuts less apparent to viewers (Shimamura,
Cohn-Sheehy, Pogue, & Shimamura, 2015). Thus, we ig-
nored shots in this analysis. From the video files, we ex-
tracted the audio track at a sampling rate of 44,000 Hz.
We then divided the length of the movie into 100-frame
bins (4.17 s) and assessed the amplitude of the combined
stereo tracks. We then created a bin vector for fractional
analysis, which varied by the length of the movie.

Results and discussion
Scene durations
As with the fluctuations of shot durations, there has
been increasing long-range dependence in the duration
patterns of scenes in movies released over the last 70
years. The Whittle estimates by release year are shown
in the left panel of Fig. 7, along with their regression line
(adjusted R2 = 0.29, t(22) = 3.26, p = 0.004, d = 1.40) and
the 95% confidence interval. Notice that the Whittle
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estimates show a striking increase. For scenes in con-
temporary movies the values very nearly reach 0.43,
which is analogous to a fractal (1/f 1) value in these data,
having started as nearly white noise in 1940.
Stadnitski (2012a) recommended that at least 500 obser-

vations be used before estimating d (for dimension) in
autoregression or power analyses, whether by Whittle
values or any other method. The number of scenes in
these 24 movies fall well short of that recommended cri-
terion. Thus, other calculations are needed. The left panel
of Fig. 7 also shows error bars on the datum for each
movie. These are standard deviations and were deter-
mined using an analog to the procedure in Study 3. The
Whittle estimate (d) of each movie’s scene pattern was
converted to an intended alpha value (α ≅ 2.32*d, as deter-
mined in Study 3) and 1000 random time series were gen-
erated for that intended alpha and the number of scenes
in that movie. Whittle standard deviations were recorded,
which were in the range of 0.12–0.02 for vectors between
35 and 215 scenes. Results show that the shortness of the
scene-duration vectors does not contribute markedly to
the results in the left panel of Fig. 7.
With these results, we now know that the increase in

long-range dependence across release years can be found
in both the fluctuations of shot durations and scene
durations. Moreover, these occur at different scales. The
mean, median, and modal number of shots per scene are

11 shots, six shots, and one shot, respectively. The
mean, median, and modal shot durations in the 24
movies sampled here are 5.5, 3.1, and 1.5 s, respectively;
and the mean, median, and modal scene durations are
81, 57.5, and 12.5 s, respectively. Moreover, and some-
what surprisingly, the Whittle estimates for the shot-
duration fluctuations and the scene duration fluctuations
across movies are negatively correlated, although not
strongly so (r = − 0.24, p = 0.26). Thus, the shot-duration
fluctuations are not merely a subset of those for scene
durations, nor are the scene-duration fluctuations a
superset of those for shots. They are simultaneous,
fractal-like patterns at different and offset scales.

Motion
The central panel of Fig. 6 shows the motion data with a
rising trend across all release years (adjusted R2 = 0.17,
t(178) = 6.01, p < 0.0001, d = 0.90). The rise for movies
from 1960 onward is also reliable (adjusted R2 = 0.032,
t(118) = 2.24, p = 0.027, d = 0.41). This function is not as
steep as that for scenes, but is steeper than that in Fig. 4b
for the shot-duration data. Moreover, like that for
scenes, it converges on fractal values in the contempor-
ary movies of this sample (again, the 1/f 1 simulations of
Study 3 generated Whittle values near 0.43). Moreover,
this effect is linear; there is no hint of a quadratic trend
(t(176) = 0.77, p = 0.44).

Fig. 7 Results of Study 5 plotting fractal dimension against release years for three movie variables. Left: A scatterplot of the increase in long-range
dependence, measured by the exact local Whittle estimator and of the scene-duration vectors of 24 movies from 1940 to 2010. The regression
line and 95% confidence intervals are also shown. The small error bars in the left panel indicate the standard deviations in generating 1000
pseudo-random sequences with the measured Whittle value and number of scenes for the given movie. Middle: The scatterplots of the fractal-like
measure of motion in each shot for the shot vector in 180 movies. Right: A decline in long-range dependence for sound amplitude in sample
vectors of 48 movies. All panels show a reliable change in long-range dependence over release years. The upper horizontal green line represents
the approximate fractal value of 1/f 1 (pink noise) as determined in Study 3; the lower line represents 1/f 0 (white noise)
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Sound amplitude
The right panel of Fig. 6 shows something unusual in
this context – a downward sloping function across re-
lease years (adjusted R2 = 0.18, t(46) = − 3.41, p = 0.0014,
d = 1.01), again without a hint of a quadratic function.
We were quite surprised by this finding, but we take it
as strong evidence that something like fractal (pink
noise) variation is likely the implicit target goal of the
filmmakers (in this case likely the sound editor), not just
something that increases as one massages the dimen-
sions of a movie to try to improve it.

Study 6: The unchanging fractal-like patterns of
luminance, clutter, and shot scale
Among the other physical measures of movies that
we have recorded and investigated are the mean lumi-
nance of each shot, the mean clutter in each shot,
and the mean shot scale (see Cutting, 2016a, 2016b;
Cutting & Armstrong, 2016, 2018). So, we focus in
this study on these patterns of long-range dependence
across release years.

Methods
Luminance
Again, frames from 180 movies (used for motion analysis
in Study 5) were downsampled to 256 × 256 arrays. Color
movies were converted to grayscale, then all frames in all
movies were gamma corrected, and the median value
taken for all pixels in each frame. For all frames within a
shot, the average of those medians was taken. Variations
in the mean shot luminances are shown in Fig. 2d for the
first 512 shots of Westward Ho (Bradbury, 1935).

Clutter
We used a method from Rosenholtz et al. (2007; see also
Cutting & Armstrong, 2016; Henderson et al., 2009),
adapted from static images. Here, for the same 180
movies we took every tenth downsampled frame within
each shot and passed it through a Laplacian of Gaussian
filter, a standard edge detecting algorithm (see Marr,
1982, pp. 58–59). This creates a mostly black image with
jagged, single-pixel-width white lines corresponding to
the edges in the original image. We then counted the
percentage of white pixels in the otherwise black image,
averaged those values within a shot, and that averaged
proportion was our estimate for the clutter of each shot.
The assumption here is that more edges equal more ob-
jects and textures, equals more clutter. A clutter wave-
form of the first 512 such shots in Superman II (Lester,
1980) is shown in Fig. 2e.

Shot scale
For the third measure of this group, we returned to the
24 movies from Study 5 released from 1940 to 2010

(Cutting et al., 2012). For each of those movies we had
categorized the scale of each shot, which is essentially
the measure of the size of the head of a character in the
frame. Conventionally, this is done allocating shots to a
seven-point scale, although the measure is actually
continuous. In this context, 1 = an extreme long shot
(usually of landscapes, cityscapes, or seascapes in which,
if there are any characters visible, they are quite small);
2 = long shot (where the full body of the character can
be seen, but there is little space in the frame above her
head or below her feet); 3 =medium long shot (the char-
acter is seen above the knees); 4 =medium shot (above
the waist); 5 = medium closeup (chest up); 6 = closeup
(head and shoulders); and 7 = extreme closeup (face or
part of a face only, or a shot of a comparably sized
object). A sample waveform is shown for Star Wars:
Episode 5 – The Empire Strikes Back (Kershner, 1980) in
Fig. 2f. Notice the effect of the quantized 7-point scale.

Results and discussion
Luminance and clutter
The panels of Fig. 8 show quite different results from
those of Fig. 7. The left panel shows an essentially flat
function for the luminance data (adjusted R2 < 0.01,
t(178) = 1.12, p = 0.26). The mean Whittle values for the
luminance data are 0.56, quite a bit above a pure fractal.
The likely reason for this is that luminance changes
across shots within a scene are a bit like Brownian mo-
tion, as seen in the right panel of Fig. 1. Dominating the
pattern in Fig. 2d are random and small deviations in
shots from a pedestal value for the scene, but then these
are followed by sometimes-large changes in luminance
across scenes. The middle panel of Fig. 8 shows a similar
flat function for the clutter data (adjusted R2 < 0.01,
t(178) = 1.0, p = 0.32). The mean Whittle values for clut-
ter are different, 0.34, and a bit closer to pink noise (d ~
0.43) than to white noise (d ~ 0.0).
Importantly, both luminance and clutter fluctuation pat-

terns across release years from 1930 to 2015 contrast with
that of motion, shown in the central panel of Fig. 7. The
interaction with release years is strong for both the
motion-luminance comparison (adjusted R2 = 0.09, t(177)
= 4.29, p < 0.0001, d = 0.64) and for the motion-clutter
comparison (adjusted R2 = 0.10, t(177) = 4.46, p < 0.0001,
d = 0.67).

Shot scale
Finally, right panel of Fig. 8 shows the results for the
much smaller array of shot scale fluctuation data. Again,
the data are noisy and there is no clear pattern across re-
lease years (adjusted R2 < 0.01, t(22) = − 0.08, p = 0.94).
Mean Whittle values are 0.22, about halfway between
white noise and a fractal value. Given the differences in
sample size we cannot directly compare these results
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with those of motion, but we can compare them against
the scene results in the left panel of Fig. 7. Importantly,
the interaction of the difference in Whittle values for
scenes and shot scales across release years is consider-
able (adjusted R2 = 0.20, t(22) = 2.53, p = 0.02, d = 1.08).

Caveat: Changes in means vs changes in
fluctuation patterns
At this point it is important to keep in mind two
kinds of trends within movies across release years –
those of the dimensions (reflected in changes in
means over time) and those of the fluctuations in
those dimensions (reflected in changes in the long-
range dependence measure over time). The latter are
the focus of this article, but our lab has previously in-
vestigated the former in detail. Consider again six di-
mensions – shot duration, scene duration, motion,
luminance, clutter, and shot scale. We had no previ-
ous estimates of the seventh dimension – mean
sound amplitude – across years, and given the
changes in technology and theater presentation we
would find it difficult to suggest anything useful.

Shot duration
Perhaps the most widely reported change in popular
movies is in their shot durations over time (see Bordwell,
2006; Cutting, 2015; Cutting, DeLong, Brunick, Iri-
cinschi, & Candan, 2011; Salt, 2006, 2009). Shots have
generally gotten shorter, decreasing more or less linearly
from a mean of about 10 s/shot in 1950 to about 4 s/

shot in 2010. As noted by Cutting et al. (2010) and as
found in Studies 1 and 2, the shot-duration fluctuation
patterns have also changed. But in contrast, these have
generally increased in their long-range dependence over
the same period.

Scene duration
Scenes have also changed in these two ways. As noted
by Cutting et al. (2012) and as suggested in the results
of Study 5, scenes have generally gotten shorter over
time, decreasing from a mean of about 90 s/scene in
1940 to that of about 50 s/scene in 2010. But the fluctu-
ation patterns, as measured in Study 5 by the Whittle
estimate for long-range dependence, have generally
increased over this period.

Motion
Amounts of motion have also changed across release
years. Cutting, DeLong, Brunick, Iricinschi, & Candan
(2011) reported that the mean motion in shots, averaged
across the length of movies, has increased from 1935 to
2010. Study 6 here found that the measured long-range
dependence in the fluctuation patterns of motion in
movies has also generally increased, here from 1930 to
2015.

Luminance
Cutting et al. (2011) reported that the mean luminance
in shots has decreased from 1935 to 2010, due in part to

Fig. 8 Results of Study 6 for Whittle estimates of three dimensions in the shots of movies. Left: The unchanging Whittle values for shot-luminance
vectors across release year for 180 movies. Middle: The same measure for shot-clutter vectors for 180 movies. Right: Shot-scale vectors in 24 movies.
The upper horizontal green line represents the approximate value of 1/f 2 (brown noise) as determined in Study 3, the middle line represents the
approximate value of 1/f 1 (pink noise), and the lower line the value of 1/f 0 (white noise)
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increased sensitivity of film stock and the later conver-
sion to digital formats. This change also increases con-
trast, allowing greater luminance differences between
brighter objects (and people) and darker backgrounds
(Cutting, 2014b). However, Study 6 showed that the
long-range dependence in fluctuation patterns of lumi-
nance across the lengths of movies has been quite varied
but is unchanged over roughly this same period.

Clutter
One measure of the complexity of the cinematic image
has also shown change. We have not previously pub-
lished data on the mean clutter per shot before but these
have decreased more or less linearly from 1930 to 2015
(adjusted R2 = 0.10, t(178) = − 4.55, p < 0.0001, d = 0.68),
with the individual frames of movies becoming “cleaner.”
That is, in more contemporary movies, there tend to be
fewer people (Cutting, 2015), fewer objects, and fewer
textures in the background that might distract the
viewer. Yet Study 6 showed that the long-range depen-
dences in the fluctuation patterns of clutter in shots is
unchanged over the same period.

Shot scale
The standard measure of the size of the character in the
movie frame has shown a change across time. Salt (2006,
2009), Cutting and Armstrong (2018), and Cutting et al.
(2012) have shown that the size of the character’s head
in movie frames has increased in movies from the 1910s
to 2010. In silent film and early sound film, the average
shot scale across a whole movie was a medium long shot
(showing the character from knees up) whereas, as cam-
eras got smaller and more mobile, by 2015 it was closer
to a medium closeup (showing the character from the
chest up). This change makes the character’s facial ex-
pressions and emotions easier to discern. In contrast,
Study 6 showed that the fluctuation patterns in shot
scale across movies has essentially remained unchanged
between 1940 and 2010.
It is also important to remember that the changes in

the means of these dimensions over time can have no
influence on their measured fluctuations. All dimension
values are normalized before the fluctuations were mea-
sured (means = 0, standard deviations = 1). Thus, the
absolute durations of shots and scenes, and the extent of
motion, the amounts of luminance and clutter, and mea-
sures of shot scale can have no role in results showing
long-range dependence and their possible changes over
time.

General discussion
We now have seven datasets assessing release-year trends
of long-range fluctuations in movie sequences. Post hoc,

we find two groups. The first group consists of fluctua-
tions of shot durations, scene durations, shot motion, and
sound amplitude all converging on a fractal value over at
least 70 years from the 20th and into the 21st century.
The second group consists of shot luminance, shot clutter,
and shot scale, all of which show no trends over time.
What might we be able to say about why these dimensions
differ? And why have fractal patterns (long-range depend-
ence) emerged in one set of them? Let us begin with state-
ments by filmmakers themselves.

Pulse, pace, and the intentions of filmmakers
Every popular movie is made by a large team of individ-
uals and it is difficult to assign credit to any one member
for any one dimension of a film. To simplify matters,
however, let us concentrate on the jobs of four individ-
uals or small groups, roughly in the order they come to
the task of filmmaking – the scriptwriter, the director,
the cinematographer, and the editor. These are the pri-
mary individuals that control the timing, the dynamics,
and the energy of the movie.
Consider four views on their roles in successful story-

telling that might be relevant to our time series results.
Scriptwriter Aronson (2000, p. 40) believes that film
structure is about good timing. She states:

In fact everything about film – about moving pictures
– is connected with time and movement in time, that
is to say action, in every sense. Film consists of
movement in all ways, physical, emotional, and
spiritual. In screenwriting, story is movement and our
characters move through their own mental landscapes
(italics in the original).

Directors are busy with a multitude of jobs and seem
not to write about their role in the shaping the cadence
of movies. However, New York city theater director
Parker (2012) echoes Aronson’s view and expresses part
of her role in terms that apply equally to a movie
director.

good direction can be spotted in transitions… The
director is the lynchpin of pace, because it’s a thread
that goes through every part of the production.

Cinematography means “motion writing,” and
cinematographer Brown (2012, p. 210) writes about
similar goals:

moving the camera is much more than just going
from one frame to another. The movement itself, the
style, the trajectory, the pacing, and the timing in
relation to the action all contribute to the mood and
feel of the shot.
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And finally, film editor Pearlman (2009, pp. 63–64) is
fundamentally interested in the perception of rhythms.
Paramount to her are:

the functions of rhythm in creating cycles of tension
and release and synchronizing the spectator’s rhythms
to the film’s pulse and its fluctuations … the art of
shaping rhythm is a choreographic art in that it
involves shaping physical movement for affect. The
core unit of this choreographic art is pulse. (italics in
the original).

Thus, among the many other aspects of making a
movie or a play, these individuals point to the creative
goals of finding and making the appropriate dynamics,
or pulse.

What’s attention got to do with it?
Cutting et al. (2010) linked their results to fractal pat-
terns in human cognition (Gilden, 2001, 2009), but at
the time the linkage seemed tenuous. Can we now do
better? According to Pearlman (2009), the goal of the
filmmaker is to create sensory, perceptual, and emo-
tional rhythms in a movie and to synchronize the
viewers’ rhythms to them. We now know that there are
fluctuations in the shot duration, scene duration, mo-
tion, and sound patterns in movies that have become
more fractal-like over time. We also know that audience
eye movements (Hasson et al., 2008) and brain activa-
tion patterns (Hasson et al., 2009) are synchronized with
one another and with the content of the movie. We
know further that movie shots typically are joined across
a cut and that cuts trigger eye movements (Mital, Smith,
Hill, & Henderson, 2011, Smith 2013), a low-level de-
mand for attention. And we know that eye movements
during visual search in the laboratory typically have a
fractal pattern (Aks, Zelinsky, & Sprott, 2002).
Cuts, however, are often cognitively disguised by con-

tinuity editing (Smith, 2012). That is, despite what their
eyes are doing, viewers, when given the overt task to de-
tect cuts, miss many of them entirely (Smith & Hender-
son, 2008). Indeed, editors typically try to make cuts
cognitively invisible (Shimamura et al., 2015) by the
technique called matching-on-action. Leftward motion
in one shot is matched by leftward motion in the next.
Sudden changes in direction of motion are known at-
tract attention (Howard & Holcombe, 2010; von Mühle-
nen & Lleras, 2007), which is the likely reason why
editors match-on-action in shots within scenes. Cuts
separating scenes, on the other hand, are rarely missed
(Smith, Levin, & Cutting, 2012). Brain activity is quite
different at scene boundaries as opposed to shot bound-
aries within a scene (Magliano & Zacks, 2011; Zacks,
Speer, Swallow, & Maley, 2010).

Finally, it is very important for viewers to register
scene boundaries to track the narrative (Sargent et al.,
2013). Otherwise comprehension and memory are jeop-
ardized. This process is called event segmentation, which
is quite automatic and happens largely under exogenous
control (Zacks & Swallow, 2007) – that is, determined
by the movie. Moreover, failures of event segmentation
in the real world can be a sign of cognitive decline
(Richmond, Gold, & Zacks, 2017).
Thus, when we as movie viewers track shots, scenes,

and their content in a contemporary film (and we must),
we are paying attention to fractal-like patterns. When
we move our eyes after a cut (and we reflexively do), we
are responding to a larger a fractal-like pattern. When
we respond to the motion across shots (and we instinct-
ively do), we are also tracking a larger fractal-like struc-
ture. And when we listen to the sound pattern of a
movie (and we mandatorily do), we are following tem-
poral fractals. And again, we know that the goal of film-
makers is to have viewers respond to the fluctuations
that they create (Pearlman, 2009, 2017) and that viewers’
eyes and minds respond to those fluctuations (Hasson et
al., 2008, 2009). So, that’s what attention has to do with
it.

Fractal convergence and non-convergence
We began this article with the claim that fractal patterns
are nearly ubiquitous. This statement is a bit misleading.
Instead, we believe that random patterns are incredibly
rare and that in the temporal domain there is a wide
array of naturally and socially occurring patterns be-
tween and beyond 1/f 0 and 1/f 2. Temporal fractal pat-
terns, those near 1/f 1, can be particularly interesting, in
part, because they are found in a wide variety of human
processes from physiology to cognition. The dimensions
of movies that converge on fractals – shot durations,
scene durations, motion, and sound amplitude – can be
argued to be important to the viewer’s attention. Image
changes (transients cause by cuts), motion changes (with
and across shots), and sound changes attract attention.
In addition, scene changes are important for compre-
hension. Thus, it is not difficult to imagine why film-
makers might craft these dimensions if fractality is an
implicit goal.
But what about luminance, clutter, and shot scale? Are

these dimensions less important in holding viewers’
moment-to-moment attention. We know that luminance
changes can grab attention (Cole, Kuhn, & Skarratt,
2011; Spehar & Owens, 2013; Theeuwes, 1991), but film
luminance is a more a property of a scene than it is of
the shots that make it up. That is, luminance is less
likely to change across shots within a scene than across
shots at a scene boundary. Moreover, it is only a weak
cue to scene change – only 40% as potent as color
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change and only 4% as potent as time or location
changes taken together (Cutting et al., 2012). It is cer-
tainly true that luminance, like color, affects mood and
tone in a movie, but it does not seem as if luminance
change would be a frequent driver of attention in a
movie. Perhaps that is a reason why filmmakers have not
systematically changed their use of it over time.
Clutter has been important to popular filmmakers over

time. Earlier, we reported that the clutter in movie im-
ages (where clutter is a proxy for the number of objects,
people, and textures) has decreased over the last 90
years. The reason for this, it seems clear, is to narrow
the focus of the viewer, removing extraneous objects and
people from the image, to control gaze more effectively.
Shots will vary in their clutter, but clutter distracts atten-
tion rather than attracting it. Thus, there would seem to
be no reason for filmmakers to manipulate it to help
assure their viewers are engrossed in a movie.
Finally, shot scales do vary systematically across a

scene and their variation tends to have a basic scalloped
profile. Scenes tend to begin with a long or medium-
long shot, then the camera moves in on the characters
as they converse, and then it often backs off at the end
of the scene (Cutting et al., 2012). The major purpose of
this pattern is, in the first shot to introduce the viewer
to the surroundings of the characters and their relative
positions within it, in the next shots to focus better on
the conversationalists and particularly their faces so the
viewer can discern their emotional states (Cutting &
Armstrong, 2018), and then often to back away. Change
in shot scale is a strong signal for scene changes, seven
times more potent than luminance changes (Cutting et
al., 2012), and thus is a candidate for grabbing the
viewer’s attention. Thus, it could serve the effect of frac-
tals in scene durations, but since shot scale has little to
do with duration (but see Cutting & Armstrong, 2016) it
need not be manipulated by filmmaker’s other than to
structure scenes.
We recognize that our accounts of the non-changes in

the fractional dimension of some attributes of movies
may seem ad hoc. We also recognize that our accounts
of the psychological effects of the fractal confluences of
other attributes are only based on correlations. Nonethe-
less, we find our results and these possible accounts
compelling, and possibly even true.

Thoughts on the emergence of fractals in movies
Pearlman (2009) wrote that the pulse of movies is cen-
tral to engrossing viewers. It is worth remembering that
pulse is not a metronomic beat. The three most import-
ant pulses for human beings are those of the heart, the
lungs, and the feet. We know that healthy heart beats
(Goldberger et al., 2002), healthy respiration (Hoop,
Burton, & Kazemi, 1996), and healthy gait (Hausdorff,

2007) all have a fractal pulse. In contrast, evenly spaced
heartbeats and breaths are symptoms of disease and
evenness of gait is a prediction for an upcoming fall.
Health has been described as coordination of multiple
systems and subsystems working at different time scales.
The flexible and adaptive interactions of these systems
are the very basis of health, and the form of their inter-
action is a balance of competitive and cooperative pro-
cesses (Van Orden, 2007). So, a first idea is that this
seems like an appropriate metaphor for the teamwork
needed in creating a movie – cooperation and competi-
tion among filmmakers, working together but trying to
do their best as they see fit, manipulating the dimensions
that they see fit.
A second idea comes from the only other domain that

we know of in which time-series data have converged on
fractal values over time. That domain is motor control,
where fractal-pattern results are relatively commonplace in
the literature. Using a large digitizer tablet, Wijnants et al.
(2009) trained individuals to draw lines with their non-
dominant hand back and forth between two targets as
rapidly and accurately as possible. They then treated as
time-series data the between-target movement times of
1100 trials in each of five blocks. Across blocks, mean reac-
tion time declined and mean slope increased to 1/f 1. Thus,
well-practiced individuals generate fractal patterns whereas
the same individuals, when unpracticed, generated approxi-
mations closer to white noise.
Could the achieved coordination in motor control be

analogous to a recently achieved, smoother coordination
of filmmakers in producing a movie? Could it be that
the cultural inculcation and cross-generational acquisi-
tion of skills by filmmakers over decades is like the
motoric practice of single subjects over minutes? Have
filmmakers’ products converged on fractals because of
their attained increase in skill and fluidity? Such an
account is speculation, but a tantalizing one.

Summary and conclusion
The results of Studies 1 and 2 extend those of Cutting et
al. (2010). The fluctuating patterns of shot durations in
movies released over the past century are approaching a
fractal pattern. But there are two caveats. First, that
approach has been slow (Study 1) and, second, it is clear
that measuring the slope of the power spectra appears
not to be the best way to assess the long-range depend-
encies in the data (Study 2). Exact local Whittle estima-
tors seem better. Nonetheless, the Whittle estimate
results tend to reinforce the data and conclusions of
Cutting et al. (2010).
Results also showed that slopes and Whittle values

have increased with the number of shots in movies
(Studies 1 and 2). However, shot-vector lengthening is
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not causally related to that increase, and thus is not a
measurement artifact (Studies 3 and 4). Longer arrays
do not inherently produce increased spectral slopes or
increased long-range dependence; filmmakers do.
The results of scene duration fluctuations, motion

fluctuations in shots, and sound amplitude fluctuations
(Study 5) also show changes in long-range dependence
over time, all converging on fractal values, two from
nearer white noise and one from nearer brown noise.
Together, these results suggest that fractality has been
an implicit target in the evolution of temporal factors in
movies. Movies may engross viewers, in part, by syn-
chronizing them to its fractal patterns. This may be one
of the reasons movies are so engaging and so popular
worldwide.
A century ago, Münsterberg (1915) suggested that

psychologists should study movies to study the mind.
Fortunately, psychologists, neuroscientists, and others
are now doing so. Movies, because of their multimodal
complexity and their ability to place us in varied emo-
tional and cognitive states, are a nearly bottomless fount
for psychological research. Happily, we can now carry
out Münsterberg’s wishes.

Endnotes
1For a sample misconstrual about our study and atten-

tion span see Kaliym Islam (1 Mar 2013) “Attention
span and performance improvement,” Ariel, https://
www.trainingindustry.com/blog/performance-manage-
ment/attention-span-and-performance-improvement/;
and for a sample misinterpretation about a link between
1/f and the quality of films see Jeremy A. Kaplan (26
February 2010) “The science of Hollywood films: It’s all
in the chaos theory,” FoxNews.com, https://news.natio-
nalgeographic.com/news/2010/02/100225-foxnews-sci-
ence-of-hollywood-films-chaos-theory/.

2See the eight blogposts in the section entitled “Shot
lengths and psychology: Has attention to do with it?” at
http://www.cinemetrics.lv/articles.php. Most of these are
concerned with discussions of the short-range autore-
gression measures used by Cutting et al. (2010), a topic
beyond the scope of this article.

3Although it is not our focus, the goal of AR models is
prediction. AR models assume that, given a string of
values (a time series), the upcoming value is best pre-
dicted by a combination of two factors: (1) the pattern
underlying the previous values; and (2) a stochastic
(noise-generating) process also reflected in those values.
There are many types of AR models, one of which is
ARFIMA (autoregressive fractionally integrated moving
average). The term “fractionally” refers to the fractional
(fractal-like) dimension, d, of the noise: 0.0 = white noise,
0.5 = pink noise, 1.0 = brown noise, and possible noises
in between and beyond. The parameter d is one of the

inputs into ARFIMA model. Thus, the value of d cap-
tures the nature of the noise generated that accompanies
the pattern of typical interest. Here, however, we are not
interested in the possible underlying pattern in the time
series (but see Cutting, 2016a, 2016b); we are interested
only in the “noise” itself. An estimator of that noise is
based on an algorithm that is used to characterize its
distribution, expectancy values, and variances – all cap-
tured by the estimated fractional value, d (Stadnitski,
2012a). Estimators come in a number of varieties and
the Whittle estimator belongs to the family based on
periodograms (the other two are based on maximum
likelihoods and detrended fluctuation analysis). Periodo-
grams are similar to Fourier analysis but optimized for
unevenly time-sampled data and differently shaped basis
functions. Thus, the Whittle would appear to be more
flexible in fitting noise data than our spectral analysis.
This flexibility could be reflected in the difference in
standard deviations in the results of Study 3 (Fig. 5).
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