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Abstract

In some circumstances, people interact with a virtual keyboard by triggering a binary switch to guide a moving cursor
to target characters or items. Such switch keyboards are commonly used by patients with severely restricted motor
capabilities. Typing with such systems enables patients to interact with colleagues, but it is slow and error prone. We
develop a methodology that can automate an important part of the design process for optimally structured switch
keyboards. We show how to optimize the design of simple switch keyboard systems in a way that minimizes the
average entry time while satisfying an acceptable error rate. The first step is to model the user’s ability to use a switch
keyboard correctly for different cursor durations. Once the model is defined, our optimization approach assigns
characters to locations on the keyboard, identifies an optimal cursor duration, and considers a variety of cursor paths.
For our particular case, we show how to build a user model from empirical data and demonstrate that the resulting
optimized keyboards are quite different from existing keyboard designs.
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Significance
Patients with severe motor disability often use a switch
keyboard, where binary actions from the user guide a
moving cursor to items on the keyboard. Such switch
devices enrich patients’ lives by allowing them to com-
municate with friends, family, and work colleagues. How-
ever, such devices are notoriously slow and even small
benefits in performance can dramatically improve com-
munication. We show how to measure and model human
performance with a switch device in a way that enables
the application of optimization algorithms to design
switch keyboards that minimize entry time while satisfy-
ing a defined acceptable error rate. The resulting optimal
designs are quite different from existing products.

Background
Computers play an integral role in the social and eco-
nomic lives of most people, but some people are unable
to use a traditional keyboard or touchscreen. For example,
some spinal or brain injuries lead to locked-in syndrome
where patients are almost fully paralyzed and cannot
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speak, even though their cognitive abilities are intact
(Laureys et al., 2005). Such patients have very limited
interaction with their environment, and computer access
can greatly enhance their quality of life. To provide com-
puter access, human–computer interactions leverage the
limited muscle control (e.g., an eye blink or a small mus-
cle contraction) of the user to trigger binary signals in
switch devices. As described in detail below, such devices
work with a virtual keyboard to guide a cursor on the key-
board to select a desired character or function. This type
of switch keyboard thereby allows patients to engage in
local and on-line discussions with caregivers, friends, and
employers (Bauby, 1997; Tavalaro & Tayson, 1997).
Several virtual keyboard designs have been proposed

by commercial companies. For example, the SwitchXS
keyboard provides various modes that implement mouse
input and keyboard characters (AssistiveWare, 2013). In
a common design, an initial switch activation initiates a
cursor that follows a path across the keyboard and stops
to select an item when the user triggers the switch device
again. A default approach is for the user first to select
a row containing a desired item and thereby direct the
cursor to move across that row’s items for an additional
user selection. Other keyboard designs use a similar strat-
egy but define differently the groups of items that can
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be selected. For example, in the Logo keyboard (Norte
& Lobo, 2007), two major scanning groups (numeric and
alphabetic) are displayed, and the user first triggers the
switch to select one of these two groups, and then selects
the item in the selected group as the cursor moves across
the group.
Because of the very limited type of user input (only a

binary switch), the cursor must scan (or be guided by
switch actions) across different keyboard items. Indeed,
these types of systems are sometimes referred to as scan-
ning keyboards (MacKenzie & Felzer, 2010). Such an
approach means that some items are reached relatively
quickly (those near the beginning of the cursor path) while
other items take longer to select (those near the end of
the cursor path). Thus, the arrangement of characters
along the path significantly affects input efficiency, and
many studies have explored ways to improve the design
of virtual keyboards (not only for patients, but also for
other specialized keyboards). A simple and effective way
to improve keyboard efficiency is to place commonly used
keyboard items early in the cursor path (Hughes, Warren,
& Buyukkokten, 2002; Mayzner & Tresselt, 1965; Zhai,
Hunter, & Smith, 2002).
Other factors also influence the usability of a virtual

keyboard. For example, the scanning speed of the cur-
sor cannot be too fast (users would not have enough
time to respond correctly) nor too slow (users would have
to wait unnecessarily for the cursor to reach a desired
item). Francis and Johnson (2011) showed that charac-
ter placement on a switch virtual keyboard can be treated
as a mathematical optimization problem with a trade-
off between speed and accuracy. They also proposed an
algorithm to design a keyboard that optimized the cursor
speed for a given desired accuracy.
An important component of keyboard optimization is

the path the cursor follows across the keyboard. There
are many different possible cursor scan paths (MacKenzie
& Felzer, 2010; MacKenzie 2012). Figure 1 shows a key-
board where the cursor follows a linear cursor path (see
Additional file 1: Movie 1 for an animated version). Here,
the cursor starts at the first key (top left) and then pro-
ceeds to each key one by one by wrapping from the end
(right side) of one row to the beginning (left side) of the
next row. When the cursor covers the key of interest, the
user triggers the switch and thereby selects that item.With
this kind of cursor path, selecting any virtual key requires
only one action by the user, and 1 to 64 cursor steps.
Figure 2 (Additional file 2: Movie 2) demonstrates a

row–column cursor path, which is commonly used in
switch keyboard designs. Here, the cursor starts at the
top row and first scans across the rows to allow the user
to select the row containing the target character. When a
row is selected, the cursor then scans the columns in the
selected row so that the user is able to select the target

key by triggering the switch device again.With this kind of
cursor path, selecting any virtual key requires two actions
by the user and two to 16 cursor steps.
Figure 3 (Additional file 3:Movie 3) shows the same kind

of keyboard where the cursor follows a quadrant cursor
path. Here the cursor first moves across the four quad-
rants of the keyboard. When the user triggers the switch,
the cursor follows a row–column path within the selected
quadrant. With this kind of cursor path, selecting any vir-
tual key requires three selections by the user (one for the
quadrant, one for the row, and one for the column), and
three to 12 cursor steps.
Figure 4 (Additional file 4:Movie 4) shows the same kind

of keyboard where the cursor follows a binary cursor path.
Here, the cursor first moves across the left and right halves
of the keyboard. A selection by the user focuses the cursor
path to the selected side, which is then divided into a top
and bottom. Further selections keep dividing the number
of remaining keys in half and guide the cursor toward the
target key. With this kind of cursor path, selecting any vir-
tual key requires six selections by the user and six to 12
cursor steps.
As Figs. 1, 2, 3 and 4 and Additional file 1: Movie 1,

Additional file 2: Movie 2, Additional file 3: Movie 3, and
Additional file 4: Movie 4 demonstrate, different cursor
paths can be assigned to the very same physical layout
of the keyboard. In terms of guiding the cursor to a tar-
get key, it is the cursor path, rather than the physical
layout of keys, that determines the efficiency of the key-
board. To enable users to learn and remember the cursor
path, the physical layout of the keyboard may reflect the
groupings of virtual keys along the path, but our analysis
supposes that users know the cursor path regardless of its
complexity.
The choice of a cursor path is important because it

imposes requirements on the user and determines the
time needed to select an item. For example, accessing a
key on the keyboard for the linear cursor path requires
only one selection from the user, while the binary cursor
path requires six selections. If triggering the switch device
is difficult for the user, it might be best to use a cursor
path that needs few selections. On the other hand, the
linear cursor path will take a long time to reach items at
the end of the path (64 cursor steps for the final item),
while the binary cursor path takes no more than 12 cursor
steps. Several studies have explored the costs and ben-
efits of different types of cursor paths (e.g., Koester &
Simpson, 2014).
The need for severely disabled patients to communicate

is so striking that researchers are continually exploring
methods to improve their performance (e.g., Broderick &
MacKay, 2009; Koester & Simpson, 2014; Lin, Wu, Chen,
Yeh, & Wang, 2008; MacKenzie & Felzer, 2010; Miró-
Borrás & Bernabeau-Solar, 2009; Morland, 1983; Sears &
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Fig. 1 Linear cursor path keyboard. In a linear cursor path, the cursor moves key by key across the keyboard. In this example, the cursor starts at the
upper left corner and moves in a wrap-around pattern across the keyboard rows. Thus, it would move from the “h” key at the right side of row 1 to
the “i” key at the left side of row 2. When the cursor is over the desired key, the user triggers the switch to select that key (here, the letter “k”). To
simplify the display, movement of the cursor is not explicitly shown between the “b” key and the “j” key

Zha, 2003). A challenge for these investigations is that
different approaches require development of new tools
for applying design constraints related to a particular
instance. Here, we provide a general approach that can
be modified to consider other constraints and aspects of
switch keyboard designs.

Because it formed themotivation for the basic optimiza-
tion approach, in this paper we focus on the optimiza-
tion of a switch virtual keyboard design by considering
a variety of factors that influence the speed and accu-
racy of a keyboard. The rest of the paper is organized
as follows. The next section quantitatively describes the

Fig. 2 Row-column cursor path keyboard. In a row–column cursor path, the cursor moves across rows until the switch is triggered and then moves
across the keys in the selected row (here, row 2). A trigger of the switch selects the desired key (here, the third key, to select “k”)
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Fig. 3 Quadrant cursor path keyboard. In a quadrant cursor path, the cursor moves across different quadrants of the keyboard, then across rows in
the selected quadrant, and then across the keys in the selected row. In the example shown, it takes five cursor steps and three switch actions to
select the “m” key

keyboard design problem and develops a mixed integer
programming (MIP) algorithm that solves a key part of
the design problem. This algorithm is orders of magni-
tude faster than one described in Francis and Johnson
(2011), and many of the subsequent results are tractable
only because the MIP algorithm provides a quick solution

to a critical part of keyboard design optimization. The
subsequent section describes a behavioral experiment that
measures performance for a switch keyboard. The sub-
sequent section explains how to develop a performance
model from the behavioral data.With the resulting model,
the final section describes optimized keyboards for several

Fig. 4 In a binary cursor path, the cursor segments the keyboard into remaining halves. The user triggers the switch to select the keyboard half that
contains the target. The selected region is then halved again for an additional selection. The process continues until the cursor is on the target key.
In the example shown, the user is guiding the cursor toward the “*” key, and three more cursor steps and two more switch selections from the user
are required
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different situations and compares and contrasts differ-
ent keyboard designs. The experimental data files, anal-
ysis scripts, and optimization programs are available at
the Open Science Framework (https://osf.io/vuaxj/?view_
only=489c5b2f9b8b45cbb866416ef1e50ef4).

An algorithm to solve the speed/accuracy trade-off
We describe the design problem in a general way because
it demonstrates the common aspects of keyboard design
for many different situations. An instance of the virtual
keyboard design problem consists of an integer set I =
{1, 2, . . . ,N} that refers to characters and an integer set
K = {1, 2, . . . ,N} that refers to keyboard locations. The
design task is to assign the characters to keyboard loca-
tions. Let Fi be the frequency of the i-th character in a
given text corpus. These character frequencies might be
estimated from general databases, or might be based on
the specific type of text entered by a specific user.
First consider the time needed to reach a location on the

keyboard (speed of entry). Let Sk be the number of cur-
sor steps required to reach location k from the start of
the cursor path. For example, for the row–column cursor
path shown in Fig. 2, to reach position 12 (supposing the
keys are indexed in sequence from left-to-right and top-
to-bottom), it will first take two steps to reach the second
row, and then four steps to reach the fourth column in
row 2. Therefore, in this cursor path, the total number of
steps to reach position 12 is S12 = 2+4 = 6. Note that the
value of Sk depends on the cursor path; different cursor
paths may lead to quite different values of Sk even for the
same key position. In addition, we let D be the duration
that a cursor will stay on each step of the path. Therefore,
the time to reach position k is D × Sk .
Now consider the accuracy of reaching a location on a

keyboard. Let Pk be the probability of the user making
an error while trying to guide the cursor to position k. It
is reasonable to imagine that Pk increases as D decreases
(with a slower cursor the user is less likely to make an
error), but the exact nature of the relationship needs to
be measured or modeled. We will measure and model the
relationship in later sections.
To promote subsequent calculations, we introduce an

indicator variable Xik that is equal to 1 if the i-th character
is assigned to position k and 0 otherwise. Then we define
the average entry time across all entries as

Ct =
∑

i∈I
∑

k∈K
FiDSkXik

∑

i∈I
Fi

(1)

where most of the terms in the numerator summation
will be zero, except for where item i is at position k. At
those positions, the numerator sums the entry time (DSk)

multiplied by the frequency, Fi, of character i. We also
define the average error rate as

Ce =
∑

i∈I
∑

k∈K
FiPkXik

∑

i∈I
Fi

, (2)

which gives the average error probability across all char-
acter entries.
In general, Ct and Ce trade off each other. For exam-

ple, placing the most commonly used characters near the
beginning of the cursor path will decrease Ct , but if those
locations are error prone, then Ce will increase. We sug-
gest that a practical way to trade off speed and accuracy
is to identify a user-defined acceptable error rate, ε. We
then describe the problem as assigning characters to the
keyboard so that Ce ≤ ε and Ct is minimized.
Another practical constraint on keyboard design is that

some groups of characters should be spatially grouped
because of historical reasons or user preferences. For
example, the numerical characters (i.e., 0–9) are com-
monly co-located and ordered. For the keyboards con-
sidered here, we grouped them together and put them
in the tail of the keyboard layout, that is, the numerical
characters are assigned to locations as follows:

G = {(55, 55), (56, 56), (57, 57), (58, 58), (59, 59), (3)
(60, 60), (61, 61), (62, 62), (63, 63), (64, 64)}

where the indices 55–64 for the first coordinate corre-
spond to the numerical characters 0–9 and the indices
55–64 for the second coordinate indicate the last ten
locations on the keyboard. Figures 1, 2, 3, and 4 (and
Additional file 1: Movie 1, Additional file 2: Movie 2,
Additional file 3: Movie 3, and Additional file 4: Movie 4)
show keyboards that follow these constraints.
We now describe how to find (Pareto) optimal solutions

in which no other solution has both a lower average entry
time and satisfactory error rate. The task can be modeled
as a MIP problem:

minimize Ct (4a)

subject to
∑

k∈K
Xik = 1, for all i ∈ I ; (4b)

∑

i∈I
Xik = 1, for all k ∈ K; (4c)

Xik = 1, for each (i, k) ∈ G; (4d)
Ce ≤ ε, (4e)
Xik ∈ {0, 1}, for each i ∈ I ; k ∈ K; (4f)
Ct ,Ce ≥ 0. (4g)

Constraint (4a) seeks to minimize the average time
needed to reach items on the keyboard. Constraint (4b)

https://osf.io/vuaxj/?view_only=489c5b2f9b8b45cbb866416ef1e50ef4
https://osf.io/vuaxj/?view_only=489c5b2f9b8b45cbb866416ef1e50ef4
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ensures that each character can be assigned to only one
position on the keyboard. Constraint (4c) ensures that
each position in the keyboard layout contains only one
character. Constraint (4d) determines the arrangement
of the numerical characters as mentioned above. Con-
straint (4e) ensures that the average error rate is no
larger than the user-identified acceptable error rate ε.
Constraints (4f) and (4g) are variable-type constraints
that ensure the objective functions remain true to their
definitions.
As an initial check on the MIP approach, we took the

Sk , Fi, D, and Pk terms as defined by Francis and Johnson
(2011) and used Gurobi Optimizer 5.6 (Gurobi, 2013) to
solve the MIP problem. The resulting solution of char-
acters assigned to locations on the keyboard was very
similar to what was produced by Francis and Johnson
(2011) with a hill-climbing algorithm. However, the MIP
algorithm was much faster. It took approximately 3 sec-
onds to find a solution while the hill-climbing algorithm
took approximately 3 h to generate essentially the same
keyboard layout. Furthermore, the MIP algorithm is guar-
anteed to find an optimal keyboard layout that satisfies the
acceptable error rate condition (if one exists), while the
hill-climbing algorithm yields a keyboard layout that may
not be optimal.
For any given keyboard design task, most of the terms

in the MIP model are readily available: the cursor dura-
tion, D, can be taken as a given value for any instance; the
character frequencies, Fi, can be estimated from a text cor-
pus; the number of cursor steps, Sk , can be calculated for
a given cursor path; and characters assigned to fixed posi-
tions, G, can be readily created as needed. The only terms
that remain to be identified are the error probabilities for
different keyboard positions, Pk . In the next section, we
describe how to estimate these terms with a behavioral
study.

Estimates of error probabilities
This section demonstrates one way to estimate the Pk
terms that are needed to drive the optimization approach
described above. Pk corresponds to the probability that
a user guiding the cursor to key k on a switch keyboard
makes an error some place along the cursor path to that
keyboard location. Ideally, these values would be guided
by basic research on how quickly and reliably humans
respond to dynamic stimuli. Although the literature on
reaction time, timing, and predicted movements is enor-
mous (Jensen, 2006; Posner, 1978), we were unable to
identify published work that provides a model framework
for characterizing the probability of correct responses for
the kind of task involved in using a switch keyboard.
Speed/accuracy trade-offs are commonly studied in areas
such as traditional typing (Yamaguchi, Crump & Logan,
2013), but there the users largely control their actions

rather than time their action to coincide with a stimu-
lus event (the cursor being over an appropriate section of
the keyboard). Likewise, the switch keyboard task seems
related to simple reaction times, but effective use of the
keyboard involves planning a precisely timed action rather
than quickly responding to a stimulus. Such plans may
occur well before the cursor covers a relevant part of
the keyboard. Perhaps the area of basic research closest
to the actions involved in a switch keyboard are mea-
sures of coincidence timing (Smith &McPhee, 1987). Even
here, though, the fit is not perfect, as the cursor move-
ments are highly learned and initiated by switch keyboard
users. Ultimately, we suspect that switch keyboard users
memorize a planned set of timed actions that are learned
for commonly used characters with a specific cursor
duration (for example, see the user video at http://www.
assistiveware.com/a-pivotal-role-in-the-household).
Here we describe an experiment that estimates these

error probabilities for the different locations of the key-
board for several different cursor durations. These esti-
mates will both contribute directly to the optimization
methods described above and provide basic research into
the accuracy of a sequence of timed actions. For the design
task, the ideal experiment would estimate these probabili-
ties from the same kind of individuals who will ultimately
use the switch keyboard. In many cases, the ultimate users
are patients with severe motor disabilities and their per-
formance with a switch device might be quite different
from a non-patient population. To complicate matters fur-
ther, performance on the switch keyboard should be esti-
mated after users have had substantial experience using
the switch keyboard; otherwise the estimated probabilities
will become inaccurate as users improve with additional
practice.
With these constraints in mind, it seemed impractical

(and perhaps unjustifiable) to ask patients to participate in
a tedious experiment to measure performance on a switch
keyboard until we had demonstrated the validity and value
of the overall optimization approach. Thus, rather than
using locked-in patients, we recruited seven students from
Purdue University to complete up to 25 experimental ses-
sions. The use of normal subjects rather than patients with
motor disabilities restricts our conclusions about which
keyboards should be used for a given person, but this
was always going to be a conclusion of this kind of study.
The optimized keyboard design for a given patient will
depend on the characteristics of the user, their familiar-
ity with the device, the type of text they enter, and their
acceptable error rate. Since our intention is to demon-
strate an optimization algorithm that can accommodate
these individual characteristics, gathering data from nor-
mal students is appropriate (and much easier). Of course,
interesting optimization outcomes may also be derived by
specifically studying the characteristics of patients.

http://www.assistiveware.com/a-pivotal-role-in-the-household
http://www.assistiveware.com/a-pivotal-role-in-the-household
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Subjects
Seven student participants used a button-style switch
device (Origin Instruments, 2013) that is similar to a com-
puter mouse, but specially designed for people with motor
disabilities that use switch keyboards. A participant could
attend at most two sessions each day (in the morning and
afternoon, respectively). Before the formal experiments, a
1 h tutorial was given so that the participant could practice
and get familiar with the keyboard and the switch devices.
To motivate participants to perform their best, each par-
ticipant received a base of $5 for each session and a reward
of $0.025 for each correct character entry. On average,
participants earned around $45 for a session.

Methods
We created a typing programwith a text window and a vir-
tual keyboard with a row–column cursor path as shown in
Fig. 5. The program was run on a computer using Mac OS
X with an LCDmonitor that has 1920× 1200 pixels. Each
character entry can be considered to be a trial where the
participant’s task is to guide the cursor to the target char-
acter on the keyboard by triggering the switch device at
the appropriate times. To make the task somewhat engag-
ing, participants were presented with a prompt window
that displayed an inspiring quote. The participant’s task
was to use the virtual keyboard to type the characters of
the quote. To keep the task simple, all characters were in
lower case. Throughout the experiment, the assignment
of characters to keyboard positions was as given in Fig. 5,
which tended to put the most commonly used items at the
beginning of the cursor path (Francis & Johnson, 2011).
For each character to be entered, the participant initi-

ated the cursor with a selection action (pressing the switch
device), and then the cursor moved across the keyboard
with a cursor duration, D, that was fixed for a block of

sessions. The cursor always started at the top row and
moved down the rows of the keyboard. When the par-
ticipant hit the switch device to select a row, the cursor
started to move across the selected row from left to right
until the participant again triggered the switch or the
cursor went past the last character of the row. A cor-
rect selection of the target character caused the prompt
window to highlight the target character in green, and
an incorrect selection (i.e., the participant responded too
early or the cursor moved past the target) led to the target
character being highlighted in red in the prompt window
(see Fig. 5). There was no opportunity for the partici-
pant to correct an error; instead, the trial was scored and
the participant started the next trial when ready. When
a given quote was finished, the participant clicked the
“Next text” button in the prompt window to be presented
with another quote. Additional file 5: Movie 5 shows the
program in use for a small set of text entry.
The experiment was self-paced, with participants taking

breaks as desired and continuing or stopping as moti-
vated. In general, a given session lasted approximately 1 h.
Within a session, the cursor duration was fixed, but across
sessions it was D = 0.200, 0.175, 0.150, 0.125, or 0.100
seconds. For each participant, sessions started with the
longest cursor durations and the duration was gradually
decreased for later sessions. The participant and exper-
imenter together judged whether the participant should
move to a faster cursor duration. In a few cases, a par-
ticipant went back to a slower cursor duration because
either they found the new duration to be too short or
the wrong cursor duration was accidentally entered for
a session. Because of the self-paced and self-motivated
properties of the experiment, different participants had a
different number of trials for different cursor durations
and different numbers of overall sessions.

Fig. 5 Experiment windows. The prompt and keyboard windows used to gather empirical data on the use of a switch keyboard. The keyboard used
a row–column cursor path, and the present location of the cursor is highlighted in green. The prompt window indicated what text to enter and
provided color feedback as to whether the correct key was entered. The characters are assigned to keys so that the most frequently used characters
require few cursor steps and can thereby be quickly reached
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Results and discussion
Figure 6 plots the proportion of entry errors as a function
of session for each participant, split by the different cursor
durations. There is a clear practice effect in the early ses-
sions with the 200-ms cursor duration. It is more difficult
to judge whether there are practice effects for other ses-
sions because the cursor duration changes across sessions.
As expected, the proportion of errors generally increases
as the cursor duration decreases. The exact relationship
between cursor duration and proportion of errors varies
quite a bit across participants because of the self-paced
nature of data collection and the individualized progres-
sion to shorter cursor durations. Pooling the character
entries across all participants and counting the number
of correct and incorrect entries produces the values in
Table 1.
To optimize the design of a switch keyboard, we want

to know how entry accuracy varies across the key-
board locations as a function of the cursor duration.
Figure 7 color codes the percentage of correct entries
for each location on the row–column keyboard used in
the experiment for each of the tested cursor durations.
When the cursor movement is slow (cursor duration is
150–200 ms), Fig. 7a–c shows that performance is gen-
erally above 70 %, although it deteriorates a bit as the
cursor duration decreases. Figure 7d shows that perfor-
mance notably drops for the 125-ms cursor duration,
especially for the first (top) row of the keyboard. Presum-
ably, this characteristic is because the cursor moves past
the first row too quickly for the user to hit the switch.
Figure 7e shows that the same behavior is present for
the 100-ms cursor duration with even worse performance
overall.

Fig. 6 Experimental results. Proportion of entry errors as a function of
experimental session. Each curve corresponds to a different
participant and different symbols indicate the cursor duration
(milliseconds) that was used for that session. Error bars indicate plus
and minus one standard error of the proportion. For most statistics,
these error bars are quite small because a session involved entering
around 1,700 characters

Table 1 General statistics describing text entry accuracy for the
different cursor durations of the experiment

Cursor Number of Number of Proportion of Proportion of
duration (ms) characters entry errors entry errors correct entries

200 37,602 4,480 0.119 0.881

175 44,314 4,720 0.107 0.893

150 47,891 7,807 0.163 0.837

125 45,815 12,887 0.281 0.719

100 98,808 41,365 0.419 0.581

Modeling of error probabilities
To promote optimal switch keyboard designs, we wanted
to use the empirical data to develop a model that could
predict performance for different cursor paths and differ-
ent cursor durations. With that goal in mind, we focused
on modeling a user’s ability to trigger the switch device
at the appropriate times. Each successful trial in the
row–column keyboard involves two such triggers: one
for selecting the row containing the target and one for
selecting the column/key within the selected row. An
unsuccessful (error) trial may have one correct or incor-
rect trigger selection (for selecting a row) but may not
have any selection for a column (because there is no need
if an error were already made by selecting the wrong row).
On some error trials, there may be no selection at all (e.g.,
the cursor moves past the row containing the target). We
hypothesized that trigger timing performance would be a
function of the cursor duration and the number of cursor
steps from the cursor start or last trigger (e.g., the row or
column number).
We deliberately focused the model on the probability

of correctly triggering the switch because it enables a
predicted calculation of correct entry probabilities for a
variety of cursor paths. An important part of this predic-
tion is an independence assumption, meaning that for the
same index value of a row or column, the correct selec-
tion probabilities are the same. Let πs be the probability
of correctly selecting the switch following s cursor steps
after the previous selection. For a row–column keyboard,
there are two selections, with the first corresponding to
the row, s = row(k), and the second corresponding to the
column, s = column(k), so the error probability of guid-
ing the cursor to position k is modeled as the complement
of the product of the correct selection probabilities:

Pk = 1 − πrow(k)πcolumn(k). (5)

The same type of probabilities can be used to pre-
dict performance for a quadrant cursor path, where the
predicted correct entry probability to reach position k
would be πquadrant(k)πrow(k)πcolumn(k) and the predicted
error entry probability is 1 minus that product. Similarly,
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Fig. 7 Experimental results. The percentage of correct keyboard entries, combined across all participants, for each row–column keyboard location
with the indicated cursor duration

for a linear cursor path, there would be a single oppor-
tunity to make an error with probability 1 − πk and for
the binary cursor path there would be six opportunities to
make errors with associated probabilities.
To estimate the πs probabilities, we assume they are a

function of the cursor duration and the number of cursor
steps as defined by logistic regression, that is, the correct
selection probabilities can be modeled as follows:

πs = exp(β0 + β1D + β2s)
1 + exp(β0 + β1D + β2s)

, (6)

where s indicates the number of cursor steps since the
last selection action (e.g., the quadrant, row, or column
to be selected). The β weights were estimated from the
experimental data using logistic regression to produce
β =[−1.85, 21.20, 0.41]. We also considered a model with
an interaction of the cursor duration and the number
of cursor steps, but it made the nonsensical prediction
that performance deteriorates when the cursor duration
increased beyond 400 ms.
To explore the behavior of the model, these parame-

ter estimates were then entered into Eq. (6) to produce
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estimated correct selection probabilities of π̂s for s =
1, . . . , 8 and cursor durations D = 0.1, 0.125, 0.150,
0.175, and 0.2 seconds. For the row–column keyboard,
the predicted probability of a correct entry is the prod-
uct of the selection probabilities for the row and column
of a target key. To get a sense of how well the model
matches the experimental data, Fig. 8 plots the propor-
tion of correct entries for the experimental data against
the model-predicted proportion of correct entries for the
five experimental cursor durations. Here, only those con-
ditions (key location and duration) with 100 or more trials
are included because the model cannot be expected to
match the proportions for poorly measured cases. The
error bars indicate one standard error for the experimen-
tal data (for many points the error bars are smaller than
the symbols). Ideally, the points would fall on the diago-
nal line from bottom left to top right, and while the model
is not perfect, the predicted performance does correlate
somewhat with the experimental data, r = 0.57.
To understand the model’s behavior further, Fig. 9 dis-

plays the predicted correct entry percentages in the same
format as in Fig. 7. Unlike the data, the model has no
missing conditions, but it generally behaves similarly as
the data. In particular, performance deteriorates as the
cursor duration decreases. For a cursor duration of 200
ms, there is little variation in performance across the dif-
ferent keyboard locations. For shorter cursor durations,
the model predicts improved performance for locations
reached with late selections.

Fig. 8Model fit. Model-predicted and empirically measured
proportion of correct keyboard entries. These are combined across all
participants for row–column keyboard locations with the indicated
cursor duration. Error bars (often too small to be seen) indicate
plus/minus one standard error of proportion

Although far from perfect, our overall impression is
that the model does a good enough job of accounting for
the experimental data that it is fruitful to explore how
it contributes to the optimization of switch keyboards.
In particular, the model predicts performance for cursor
durations and cursor paths that were not measured in the
experiment. Hopefully, future research and theories will
lead to bettermodel predictions and thus better optimized
switch keyboard designs.

Creating optimized keyboards
To demonstrate the construction of an optimized key-
board, we first design a keyboard for entry of the quotes
used in the experiment. Table 2 lists the frequencies, Fi, of
the characters in the quotes. For a given cursor path, the
optimal keyboard is the one that assigns characters to key-
board locations and identifies a cursor duration, D, that
satisfies Ce ≤ ε and minimizes Ct .
Note that the correct entry probabilities in Eq. (6)

depend on the value of the cursor duration, thus the aver-
age error rate also depends on the cursor duration. The
cursor duration is restricted by the display capabilities of
computer hardware. We supposed that a computer moni-
tor refreshes the display at 100 Hz, which means that the
shortest cursor duration would be 10 ms and that longer
cursor durations would be multiples of 10 ms (covering
multiple frames of the display). For a fixed acceptable
error rate, we considered all possible cursor durations
between 10 and 1,000 ms, in steps of 10 ms. For each
of these cursor durations, the MIP algorithm identified
the optimal placement of characters to keys to satisfy the
acceptable error rate and minimize average search time.
The optimal keyboard is the one with the cursor dura-
tion that produces the shortest entry time and satisfies the
acceptable error rate.

Optimal row–column keyboards
We start by considering a row–column keyboard.
Figure 10 shows the character arrangements for opti-
mal keyboards that satisfy different acceptable error
rates. According to the entry error model, both of these
keyboards perfectly match their respective acceptable
error rate. Not surprisingly, the optimal cursor duration
depends on the acceptable error rate. To satisfy the ε = 0.1
acceptable error rate, the cursor duration must be rather
long, D = 0.19 seconds (190 ms), while a much shorter
cursor duration can be used when the acceptable error
rate is ε = 0.5, D = 0.02 seconds (20 ms).
To make the average entry time small, one might expect

that the optimal design places the most frequent charac-
ters early in the cursor path and sets the cursor duration
long enough to ensure that the error probabilities for these
characters do not become too high. Indeed, this strategy
is used for the ε = 0.1 condition. Here, the most common
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Fig. 9Model performance. Model-predicted percentage of correct keyboard entries for each row–column keyboard location with the indicated
cursor duration. The pattern of correct entries is similar to the experimental data in Fig. 7

characters (space, “t”, “e”, “a”, “o”, and “i”) are located along
the first few rows and columns of the keyboard. Less fre-
quent characters, such as “&”, “%”, and “]”, are placed at
locations that require more cursor steps. This strategy
is a good one because the most frequent characters are
reached with few steps, which tends to minimize average
entry time.
However, an alternative approach is used for the ε = 0.5

condition. Here the cursor duration is set to be very brief,
which means that there is a high probability of making an

error for the first few rows and columns. High-frequency
characters (“s”, “o”, “e”, “a”, and “t”) tend not to be placed on
those error-prone locations and instead are shifted to later
rows and columns that have a lower probability of error.
The large number of cursor steps needed to reach these
frequent keys is offset by the short cursor duration, so the
average entry time is low.
Generally, for a fixed acceptable error rate, a decrease

in the cursor duration leads to a decrease in average
entry time. However, this relationship is not always the
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Table 2 Character frequencies for the quotes used in the experiment and for the Python computer code

Frequency Frequency Frequency Frequency

Char Quotes Python Char Quotes Python Char Quotes Python Char Quotes Python

space 5,346 1,980 p 415 142 : 9 57 } or # 0 30

a 1,764 211 q 19 7 ∧ 0 0 [ 0 65

b 370 54 r 1,385 428 & 0 1 ] 0 65

c 800 132 s 1,655 198 * 0 649 - 325 13

d 758 171 t 2,076 271 ( 0 113 _ 0 91

e 2,876 297 u 827 117 ) 0 113 ∼ 0 0

f 521 76 v 306 48 ; 7 0 0 5 100

g 503 48 w 552 42 ’ 108 70 1 1 80

h 1,138 49 x 23 62 ? 15 0 2 2 29

i 1,803 204 y 620 58 + 0 22 3 0 7

j 61 17 z 29 2 = 0 81 4 0 13

k 223 56 ! 4 3 < 0 8 5 0 24

l 1,089 109 @ 0 1 > 0 3 6 0 19

m 590 167 , 165 101 / 0 21 7 0 12

n 1,680 213 . 434 152 \ 0 2 8 1 4

o 1,995 245 % 2 15 { or ′′ 0 244 9 1 6

case; sometimes increasing the cursor duration led to a
decrease in the average search time because an increase in
the cursor duration alters the probabilities of making an
error and thereby enables a reconfiguration of the charac-
ters that leads to faster entry. This kind of effect highlights
the need to consider a range of cursor durations and to
identify the optimal character assignments to best satisfy
the accuracy and speed goals of an optimized keyboard
design.

Optimal keyboard designs for other cursor paths
Figures 11, 12 and 13 show the properties of the optimal
designs for keyboards using a linear, quadrant, or binary

cursor path, respectively. As shown in Fig. 11, a linear
cursor path, where the cursor scans over individual keys,
generally uses the shortest possible cursor duration (0.01
seconds) and assigns characters to different keys to alter
the average error rate and average entry time. For the ε =
0.5 condition, the optimal keyboard produces an average
error rate of 0.35, which is lower than the acceptable error
rate of 0.5. This mismatch is because the cursor duration
is already at its smallest possible value, and the most fre-
quently used characters are already assigned to their most
error-prone locations (e.g., the top row). It simply is not
possible for this cursor path to further trade off accuracy
for speed for this text corpus.

Fig. 10 Optimal row-column keyboards. Optimal row–column keyboard design and cursor duration. Acceptable error rates of a ε = 0.1 and b
ε = 0.5. This combination of key assignments and cursor duration satisfies the acceptable error rate and minimizes average entry time
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Fig. 11 Optimal linear keyboards. Optimal linear keyboard design and cursor duration. Acceptable error rates of a ε = 0.1 and b ε = 0.5. This
combination of key assignments and cursor duration satisfies the acceptable error rate and minimizes average entry time

Fig. 12 Optimal quadrant keyboards. Optimal quadrant keyboard design and cursor duration. Acceptable error rates of a ε = 0.1 and b ε = 0.5. This
combination of key assignments and cursor duration satisfies the acceptable error rate and minimizes average entry time

Fig. 13 Optimal binary keyboards. Optimal binary keyboard design and cursor duration. Acceptable error rates of a ε = 0.1 and b ε = 0.5. This
combination of key assignments and cursor duration satisfies the acceptable error rate and minimizes average entry time



Zhang et al. Cognitive Research: Principles and Implications  (2016) 1:6 Page 14 of 18

Figure 12 shows two optimal quadrant keyboards, where
the cursor first moves over different quadrants and then
rows and columns within a selected quadrant. Both key-
boards tend to place high-frequency characters in the first
two quadrants (top-left and top-right quadrants). They
differ in the placement of low-frequency characters and
in the cursor duration, with the keyboard requiring a low
acceptable error rate having a cursor duration nearly twice
as long as the keyboard requiring a high acceptable error
rate.
Figure 13 shows two optimal binary keyboards, where

the cursor alternates between remaining halves of the key-
board to zero in on the desired key. Here, a change in
the acceptable error rate from 0.1 to 0.5 hardly alters
the assignment of characters to keys (only the “m” and
“p” characters switch positions), which makes some sense
because different key positions are nearly equivalent due
to the way the cursor focuses in on a target key. For
example, with a binary cursor path, 20 of the 64 keys are
reached with nine cursor steps, while an additional 30
keys are reached with eight or ten cursor steps. With such
homogeneity, changing the key assignments for a binary
cursor path often has very little impact on the average
entry time. In a similar way, key assignments have only
a modest effect on the error entry rate. Thus, the main
variable controlling speed and accuracy for a binary cur-
sor path is the cursor duration, which is longer for smaller
acceptable error rates.
A user of a switch keyboard wants to identify the best

possible keyboard design for the type of text entry they
will use, and for an acceptable error rate. As described
above, the optimal design depends on the cursor path,
so users should compare the optimal keyboard designs
for different cursor paths and choose the best. Figure 14
summarizes the properties of optimal keyboard designs
for different cursor paths as a function of the acceptable
error rate. Critically, Fig. 14a indicates that for all but the
highest acceptable error rates, the linear cursor path pro-
duces a much smaller average entry time than any other
cursor path. This advantage for the linear cursor path is
because it involves a single switch action, so there is only
one opportunity for the user to make an entry error. In
contrast, the row–column cursor path always involves two
switch actions, and the quadrant and binary cursor paths
have more switch actions and therefore more opportuni-
ties for an entry error. The linear cursor path leverages this
advantage by making the cursor duration extremely brief
and assigning characters to keys in a way that satisfies the
acceptable error rate.
It is notable that the optimal solution for a linear cur-

sor path does not always look like a very good keyboard
design. For example, the keyboard in Fig. 11b places the
space character at the first key. The logistic model pre-
dicts that a user has a 0.77 probability of making an entry

Fig. 14 Properties of optimal keyboards. Properties of optimal
keyboards for different cursor paths as a function of the acceptable
error rate. a A comparison of average entry time indicates that the
linear keyboard is predicted to perform best for most acceptable error
rates. b The cursor duration of the optimal keyboard for each cursor
path indicates that the linear keyboard uses a nearly constant cursor
duration at the minimum possible value of 0.01 seconds. c All
keyboards except for the linear keyboard trade off accuracy for speed
by producing a predicted average error rate that is close to the
acceptable error rate
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error at this key, so this most commonly used character
is unlikely to be entered correctly. Such a property seems
to make the keyboard essentially unusable, but this lim-
itation simply reflects the requirements imposed on the
design. A keyboard with an acceptable error rate of 0.5
is, indeed, unlikely to be a usable keyboard. The problem
is not with the design process but with the design spec-
ification. There is a similar problem for the keyboard in
Fig. 11a, which satisfies an acceptable error rate of 0.1.
Here, the “k” character is on the second key, which has a
predicted error rate of 0.7. Clearly, someone entering the
word knock on such a keyboard faces low odds of success.
But for the provided text corpus (the quotes used in the
experiment), the letter “k” is rather uncommon (Table 2),
so this type of entry is uncommon. One could impose
additional constraints on the design process, such as to
ensure that every key has an acceptable error rate in addi-
tion to an acceptable average error rate. The optimization
process would be similar to what is described above, but
the additional constraint would result in quite different
optimized keyboards.

Effect of a different text corpus on optimal keyboard design
The optimal keyboard design also depends on the dis-
tribution of character frequencies Fi, which are defined
by the text corpus that is appropriate for a given user.
These frequency distributions may vary widely depending
on what kind of material is being entered into the key-
board. For example, a user who writes novels or poems
may rarely use characters such as “[” or “}”, while a user
who writes Python computer programs would commonly
use characters such as “i” and “f” as well as “(” and “*”. To
explore the effect of the text corpus on optimal keyboard
design, we identified the frequency of 64 characters from
an early version of Python code that was used to calculate
the optimized keyboard, and we compared the resulting
keyboards to the keyboards designed for the quotations
used in the experiment. Table 2 shows the frequencies of
the characters included in our Python code. To ensure that
all Python-related characters were part of the keyboard,
the characters “{” and “}” in the original keyboard were
replaced by the characters “#” and “′′”.
Figure 15 shows optimal keyboards using a linear cur-

sor path for the Python text corpus. Like the linear cursor
path keyboards for the quotes, the cursor duration is at
the smallest possible value, 0.01 seconds. Given the differ-
ences in character frequencies, it is not surprising that the
optimized assignment of characters to keyboard positions
varies with the text corpus, as a comparison of Figs. 11 and
15 demonstrates. Nevertheless, the same basic principles
underlie each optimized keyboard. For a low acceptable
error rate, the high-frequency characters are placed a bit
down the cursor path so that they have a low probability
of an entry error and low-frequency characters are placed

at the beginning of the cursor path. For a higher accept-
able error rate, the high-frequency characters are placed at
the beginning of the cursor path, where the keys have the
highest predicted entry error probability and are reached
most quickly.
The average entry time seems to be faster for the

keyboards optimized for the quotes text than the key-
boards optimized for the Python code text. This difference
reflects the distribution of frequencies across the charac-
ters in the text corpus. Among other things, the Python
computer code has 294 uses of numerals, while the quotes
text uses numerals only ten times. Since the numerals are
all fixed at the end of the linear cursor path, they take a
relatively long time to reach.
For completeness, we also investigated the relation-

ships between average entry time, cursor duration, aver-
age error rate, and the acceptable error rate for different
cursor paths, using the Python code text corpus. These
relationships are very similar to the results obtained for
the quotes text corpus shown in Fig. 14.

Conclusions
People with severe motor control problems often rely
on switch devices to communicate. We studied the fun-
damental characteristics of a switch virtual keyboard by
framing the design task as a speed/accuracy trade-off
optimization problem. In particular, we proposed a MIP
model for this problem to minimize the average entry
time, given an acceptable error threshold. We further
described how to estimate and model the necessary error
probabilities. Automating these optimization tasks can be
part of a general method for improving the usability of
these kinds of devices (Koester & Simpson, 2014).
The approach considers many needs of the user. First,

the acceptable error rate is established by the user, which
allows them to specify their own typing style. Second, the
user can choose their own text corpus depending on their
personal interests and needs. We also tested the effects of
different cursor paths, and showed that the optimization
process selects an optimal keyboard for different cursor
paths by balancing the trade-off between the average entry
time and the average error rate.
A consistent outcome is that an optimized keyboard

with a linear cursor path is much faster than an optimized
keyboard for other cursor paths. This result is surpris-
ing because virtual keyboards on the market generally
use a hierarchical structure similar to a quadrant cursor
path, and often have even more levels to the hierarchy.
The optimization analysis presented here suggests that a
deep hierarchy is problematic because it introduces many
opportunities for an error. To compensate for the high risk
of error, the cursor duration has to be made so long that
the average entry time is quite large. A linear cursor path
avoids these problems by requiring only one selection.
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Fig. 15 Python-based optimal linear keyboards. Optimal linear keyboard design and cursor duration relative to the Python code text corpus.
Acceptable error rates of a ε = 0.1 and b ε = 0.5. This combination of key assignments and cursor duration satisfies the acceptable error rate and
minimizes average entry time

When coupled with a short cursor duration, the average
entry time for a linear cursor path can be quite short.
However, there are two important limitations to the

current analysis that suggest additional investigation is
required before broadly recommending linear cursor
paths. First, the efficiency of a linear cursor path depends
on the frequency distribution of characters in the text cor-
pus. When more characters are part of the keyboard, the
number of cursor steps for characters at the end of the
path increases accordingly. If the frequency distribution of
characters is fairly uniform, then average entry time will
dramatically increase for larger keyboards, and there may
then be an advantage to hierarchical cursor paths. Second,
the predicted optimal linear keyboards used the smallest
possible cursor duration (10 ms), but the model predic-
tion of performance for such a cursor duration is based on
experimental data that measured performance for much
longer cursor durations (the briefest being 100 ms). We
do not have a lot of confidence in the model’s prediction
for such short cursor durations. In a similar way, the pre-
dicted performance for cursor steps beyond eight are also
not directly supported by experimental data. We do not
have evidence that the model does poorly in these con-
ditions, but there should be validation of the model (and
possibly refinement) with additional empirical studies.
The optimization approach can be elaborated to con-

sider additional characteristics of keyboard function. For
example, a popular approach is to enable predictive typ-
ing, where the keyboard monitors what is typed and
presents a list of options and the user can select a full word
after entering the first few letters. Such a feature carries
both positive and negative aspects for users of switch key-
boards. On the positive side, it may require entering fewer
characters to type common words and thereby it may
speed communication. On the negative side, navigating

to the list of choices requires the user to guide the cur-
sor to the list (either with a linear cursor path or in a
hierarchical structure). There is, of course, a risk of a selec-
tion error when trying to reach an item in the prediction
list, and an error in that context may alter the list and
thereby render the system rather difficult to work with.
If a prediction system is part of a keyboard, then there
is a need to optimize its design within the keyboard, and
the approach we have presented here can be modified to
provide such optimization. Similarly, it is important to
consider how users would correct errors with a switch
keyboard. Error correction with a switch keyboard using
a delete or undo command can only be initiated by the
user guiding the cursor to an appropriate action key. To
correct past text, switch keyboards have action keys that
move a marker in the text (e.g., up a line or down a page).
Some switch keyboards also allow for control of mouse
actions (movement, hold, drag, select, stop, click, and
double-click commands), which can be used to fix errors,
among other things. Such command keys should also be
optimized according to their frequency of use for a given
user.
Future work should also consider details of the switch

device. Different patients are able to use different mus-
cles to control a switch device. A person who uses eye
blinks (Bauby, 1997), a sip-puff headset, or manipulates
EEG signals (Serby, Yom-Tov & Inbar, 2005) may produce
very different error probabilities than what is reported
here and thus would require different keyboard designs.
Future work should also explore easier methods of esti-
mating and modeling a user’s ability to use the switch
device. Koester & Simpson (2014) simply measured how
well users could trigger single, double, and triple clicks
of the switch device. Such an approach would be much
faster than the empirical approach used here. Likewise,
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Simpson, Koester and LoPresti (2007) proposed that an
appropriate cursor duration is one that generates a ratio
of the user’s reaction time and the cursor duration equal
to 0.65. If true in general, then it should be easy to
model error probabilities. Regardless of the empirical
method, once the error probabilities for a user’s abil-
ity with a switch device are identified and modeled, the
optimization algorithm described here can be readily
applied.
Although our investigation was motivated by the needs

of locked-in patients using switch keyboards, the com-
putational optimization approach developed here should
also apply to other users and keyboards. For example,
touchscreen devices in automobiles (including keyboards)
face a similar entry constraint (e.g., drivers and passengers
tend to use single-finger entry rather than multiple-finger
typing) and time-sensitive environments (e.g., Young Lee,
Gibson & Lee, 2016). Although the interface method is
rather different, there remains a speed/accuracy trade-off
that can be optimized using some of themethods reported
here. Military helicopter pilots face similar design issues
when interacting with a multifunction display (Francis,
2000; Francis & Rash, 2005). Thus, basic research into the
design of switch keyboards for locked-in patients should
prove fruitful in addressing the design of other types of
systems that face fundamentally similar problems despite
substantial differences in users, use cases, and interface
details.

Additional files

Additional file 1: Movie 1. Animation of a switch keyboard where the
cursor follows a linear path across the keyboard. The “Hit switch” text
below the virtual keyboard indicates when a user would need to trigger a
switch device to guide the cursor toward a target letter (“k” in this case).
The cursor duration is D = 200 ms. (GIF 387 kb)

Additional file 2: Movie 2. Animation of a switch keyboard where the
cursor follows a row–column path across the keyboard. The “Hit switch”
text below the virtual keyboard indicates when a user would need to
trigger a switch device to guide the cursor toward a target letter (“k” in this
case). The cursor duration is D = 500 ms. (GIF 211 kb)

Additional file 3: Movie 3. Animation of a switch keyboard where the
cursor follows a quadrant path across the keyboard. The “Hit switch” text
below the virtual keyboard indicates when a user would need to trigger a
switch device to guide the cursor toward a target letter (“m” in this case).
The cursor duration is D = 750 ms. (GIF 214 kb)

Additional file 4: Movie 4. Animation of a switch keyboard where the
cursor follows a binary path across the keyboard. The “Hit switch” text
below the virtual keyboard indicates when a user would need to trigger a
switch device to guide the cursor toward a target letter (“*” in this case).
The cursor duration is D = 750 ms. (GIF 310 kb)

Additional file 5: Movie 5. A movie of the switch keyboard typing
program used in the experiment. The user clicks the mouse (a switch
device) to guide the cursor (green highlighting on the virtual keyboard)
toward the next letter in the quote. Color-coded feedback indicates
whether the user was successful (green) or not (red) in selecting the
desired character. Note that the cursor duration here (400 ms) is much
longer than what was used in the experiment. (MP4 7137 kb)
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